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Abstract

For samples from distributions chosen from Dirichlet processes, we evaluate expecta-
tions of their functions. By making use of this result, we derive some properties of the sam-
ples and evaluate expectations of random functionals of Dirichlet processes.

1. Introduction

Ferguson [2] introduces the Dirichlet process as a prior distribution for Bayesian
nonparametric inference. It is well-known that a distribution chosen from a Dirichlet
process 1s discrete with probability one. It has a positive probability that some observa-
tions of a sample from a distribution chosen from a Dirichlet process are equal, even if
parameter is nonatomic (see Antoniak [1], p. 1160). We shall consider a function of a
sample from a distribution chosen from a Dirichlet process and give its expectation, from
which we shall derive some properties of a sample and evaluate expectation of a random
functional of a Dirichlet process.

The author assumes that readers are familiar with the Dirichlet process. For the de-
finition of a Dirichlet process see Ferguson [2]. Let X be a set and let A be a o-field of
subsets of X. Let e be a nonnull finite measure on (X,A). Q(+) denotes a distribution
a(*)/a(X) and M denotes a(X). We list some properties of a Dirichlet process.

Lemma 1.1(Ferguson [2]). Let P be a Dirichlet process on (X,A) with parameter @ and
let X be a sample of size 1 from P. Then for A€ A
P(X€ A)=Q(A).

Let Xi, ***, Xn be a sample of size n from a distribution P chosen from a Dirichlet
process. Then, as stated in Korwar and Hollander [3], we can view the observations X,
-+, X, as being obtained equentially as follows : Let X, be a sample of size 1 from P ;
having obtained X, let X, be a sample of size 1 from the conditional distribution P
given X ; and so on until X;, *=-, X, are obtained. Thus we have the following lemma,
which is essentially similar to the statement of Zehnwirth [5], p. 16.
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Lemma 1. 2. Let P be a Dirichlet process on (X,A) with parameter a and let X1, ***, Xn
be a sample of size n from P. Then we can view as follows : X\ has the distribution Q and for
k=1, =+, n—1, the conditional distribution of Xx.1 given X, *++, Xy is the distribution (MQ(+)
+2200% () [ (M + k), where for X € X, 8z denotes the measure on (X,A) giving the mass one to
the point x. k '

In Section 2, we evaluate expectation of a function of a sample, X,, -, X,, from a
distribution chosen from a Dirichlet process, EA(X,, ***, X,), for a measurable function
h under certain conditions. In Section 3, we shall give some properties of a sample,
which yields Proposition 3 of Antoniak [3] as a special case. Furthermore we shall give
the conditional distribution of a sample, which yields Theorem 2.5 of Korwar and Hol-
lander [3] as its corollary. Finally we evaluate expectation of a random functional of a
Dirichlet process. The evaluation is essentially as same as Lemma 5 of Yamato [4].

2. Expectations of functions of samples
From Lemma 1.1 a sample of size 1, Xi, from a distribution P chosen from a Dirich-
let process on (X,A4) with parameter a has the distribution Q. Therefore if the integral

ﬁh(x)dQ(x) exists for a real-valued measurable function A defined on (X,A4), then

EA(X)= [ h(x)dQ() (2.1)
X
(X",A™) denotes the n-fold product of measurable space (X,A4) for n=2, 3, . Let

Xi, X, be a sample of size 2 from a distribution P chosen from a Dirichlet process on
(X,A) with parameter a. Let h(x:,x;) be a real-valued measurable function defined on

(X?,4%) and symmetric in X1, X, We suppose that the integrals Lh(x,, 2,)dQ(x:)dQ(x,)
and ,Kh(x" 2,)dQ(x;) exist. Since by Lemma 1.2, given X,, X, has the distribution
(MQ(+)+ 6%, )[(M +1),

E[A(X,, X2 X]=1 M [h(X,, 2)dQ(x+ hlX,, XYM +1)
where j;h(xl, X,)dQ(x;) exists and is integrable by Fubini’s Theorem. Since X, has the

distribution @ by Lemma 1.2 and there exists expectation of the right-hand side of the
above equation,

EA(X,, X;)

=M [ b, 2)dQU)AQuE+ [hz, 2)dQE) M +1 (2.2)

In general we have the following

Theorem 2.1.  Let h(x,, =+, Xn) be a real-valued measurable function defined on (X", A"
and symmetric in X1, ***y Xn. Let Xy, ***y Xpn be a sample of size n from a distribution chosen
from a Dirichlet process on (X, A) with parameter a. Then



<. s -

Expectations of Functions of Samples from Distributions Chosen 3

Eh(X,, =, X (2.3)

n'MEmU:)
:ZS(Eimti)zn) no mi ;
i, (m<l)

!)M(")_A-Zmi)h(x”’ Yy Limayy Loy Loty 77 Lamizyy
Lomzs s Ty 5 T M- T dQ(X,5)

provided all integrals of the right-hand side exist. Where M™=M(M +1)---(M+n—1) for a
positive integer N, 2 \sximi=n denotes the summation over all sequences of M non-negative integers
m(1), -+, m(n) satisfying 27-1im(i)=mn and in the arguments of the integrand of the right-
hand side the number of xi; 1S T for i=1, **, n and j=1, -+, m(7).

Proof. We shall prove Theorem by induction for a positive integer n. It is shown
in (2.1) and (2.2) that Theorem holds for n=1, 2. We assume that Theorem holds for
n>2 and show that Theorem holds for n+1.

Let h(xi, ***, Xn:1) be a real-valued measurable function defined on (X™*', A™"') and
symmetric in X1, ***, Xn+1. We suppose existence of all integrals of the right-hand side
of (2.3) for n+1 instead of n. By Lemma 1.2, given X, ***, X, the conditional dis-
tribution of Xn.1 is (MQ(+)+22716x,(+)/(M + n) and

E[h(Xh Tt an Xn+1)|X1, "t Xn] (24)
=M f h(Xy, * Xny Zo)dQne)+ X0 h(Xey ) Xny X) (M +n),

where the integral _Kh(xl, “, Xn, Xn+1)dQ(Xns1) exists and is integrable by Fubini’s
Theorem.
Since l;h(x,, “*, Xn, Xni1)dQ(Xns1) is symmetric in X, '+, X, the assumption
yields
ME [A(X,, ', Xoy Te1)dQnn)/(M +n) (2.5)

n'MthiHl
=Za2mm:n) n emi) . n+1)
IIi_.i (m(i))M

Lomiz)s Lamzys """y Xms """y Lms xn+1)H?:lﬂz'n:l)dQ(xij)dQ<xn+l),

jzm(i»h(xll, Ty Ximayy X2y X1y 77,

where all integrals of the right-hand side exist by the assumption.

Note that glay, =+, xn)=2.7-1hAlx;, ***, Xn, X, is measurable function on (X", A"
and symmetric in Xy, ***, Xn, and g(xn, 0y Ximays X2y X1y, 5y Xomzyy Xomzy s Lmiy °°°
xm)=2*h(xn, oty Limyy Loy Loy 5 Xomzyy Lomzy sy Lmiy "y Lniy .’L‘), where in the
summation 2.* x takes X, ‘', Limay T, Tas s Lomzs Lemas s LTmiy v, T
Therefore the assumption yields '

EZ?:lh(Xla Tt Xn9 XJ)/(M+TI)
=Eg(X,, -, Xl(M+n) (2.6)
n!MZm(i)
H?=1 l'm(i)(m( L')!)M(THU

:Zsmimmsm
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Xgm(l) X):m(i)h(xn, s Limayy Lzts Laiy %y Xoemzs Lomzys *°°
s Xnts "'y L1y Lir) ?:1H?gidQ(xij)
+2m(2>£2m(i>h(xll, s Xamayy L2y Lory %y Loemzy Lomizys *°°

’ xm, T xm, xZI)H? lﬂmmdQ(xu)

+(n—1)m(n‘l)£z:m(i)h(xn, ty Ln-1,15 "y Ln-119 "7y Ln—1,mn-1)
sy Ln—1,mn-1) xn—m) ?=1H7LL{dQ(.'L‘”)
+nm<m)£2m(ilh(xnl9 s Ly xm)dQ(xm) }a

where if m(n)#0 then m(n)=1 and m(1)=-=m(n—1)=0.
A set (xu, ", Timay Tz, Tas s Tomzs Lamzs s Lnants s Lnern) With
1im’({)=n+1 can be obtained from some of sets (€11, ***, Limay L2y L2rs ***5 Lomey
Lamay ***s Tmy ***y Tm) with 237,im(i)=n by the following ways. {1} : A new variable

enters and mQ)=m (-1, m@2=m'Q@), - , mn)=m'(n), m(n+1)=0,
2m()+1=217,m’(i), which is seen in arguments of the integrand of the right-hand
side of (2.5). {2} : One of xu, **, Xima enters again and m(l)=m’(1)+1,

m@)=m’'2)—1, mB)=m'@), -, mn)=m'(n), m(n+1)=0, 2L.m@)=2m"(i),
which is seen in arguments of the integrand of the first integral of the right-hand side of
(2.6). {3l : One of X, Xu, ***, Xmos Xemz enters again and m(1)=m’(1),
m@2)=m'2)+1, m@B=m'B)—-1, m@=md), - , mnr=m(n), m(n+1)=0,

i-im(7)=2.74!m’(7), which is seen in arguments of the integrand of the second integral.

{n—l} : One of Xn-11s "5 Xn-1,1y **° s Lnoimn-1s s Ln-1mn-1 enters again and
ml)=m'1), - , mn-2)=m(n-2), mn—-1)=m'(n—1+1, m(n)=m'(n)—1,
m'(n+1)=0, 25 m()=2%'m(i). For nx2 if m(n—1)#0 then m(n)=0. This is
seen in arguments of the integrand of the third intergral of the right-hand side of (2.6).

inf : One of xn, ***, Xm, Whose number is n, enters again and m(1)=m’'(1)=0, -,
m(n—1)=m'(n—1)=0, m(n)=m’'(n)+1, m'(n)=0, m'(n+1)=1, 2 m)=21'm’(i),
which is seen in arguments of the integrand of the last integral.

Therefore from (2.4), (2.5), (2.6) we have
Eh/(Xh * Xn+1)

:{MEKh(Xl, °ty Xn, xn+1)dQ(xn+l)+EZ?=1h(X1, Tt Xn, XJ) }/(M_'_l)
=Zstztmw:m1)£zm'(ijh(x11, s Ximys X2y Loy ***y Xamiz)
me’(Z), Y xﬂ+l.l, R xn+11)IInH m“dQ(xu)

niM=""Y
X {
H:Hl mu)( ( ) )M(n+1

m/(l)'*"mx m'(1)+1)+
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3m’(3) , nm’'(n) ,
Fom @+ 1) <M @Dy g X (e Wm (n=1)+1)
(n+1)m’(n+1) ,
+ o )+ 1) Xn(m'(n)+1)}

(n+1)|MZm‘(i)
_Zso:mm n+1)Hn+1L ( ’(i)')M("H) xzm'mh(xn, oty Limyy L21y X21y "%,
i :

1
Lomz)s Loemis "y Ln+1ls "7 L) D72 mudQ(xu)

where 2 sszimiw=-n+1 denotes the summation over all sequences of n+1 nonnegative inte-
gers m’(1), -+, m’(n+1) satisfying 2.7/ im’(i)=n+1 and in arguments of the integrand
the number of x; is i for i=1, -, n+1 and j=1, -+, m’(i). Thus the theorem is

proved.
We can rewrite Theorem 2.1 in the following form, which is seen useful later.

Corollary.
Eh(Xh ) Xﬂ)

n'M*
ZZZ=1Z&Z’{W=m

=(KLr(1), -y rwDTE r(@M™
Lh(xl, Tyt Tuy Tl S Q)

where 2 sgtny-n represents the summation over all sequences of u integers r(1), -+, r(u) such
that 1£ (1)L« £ 7r(w) and X1 r(Q)=n, K{rQ), -, r(w) is the number of j such that
r(j)=1i (j=1, =, u) for positive zntegers u, i, r(1), =+, 7(u) and in the arguments of the
integrand of the right-hand side the number of x; is r(i) for i=1, -+, u.

3. Applications
We consider a function A such that h(x,, x,)=1if x;=x, and =0 if x;*+x,. Let X,

X; be a sample of size 2 from a distribution chosen from a Dirichlet process on (X, A)
with parameter @. Then EA(X,, X;)=P(X,=X,) and by (2.2) we have

P(X\=X)={M [ dQ)dQ(w.+ [dQiw) (M +1) (3.1)
= M Teer @D+ 1M +1),

where D is a set of discontinuity points of the distribution @, which is at most countable.
In general, we consider a function A such that A(x:, -, xn»)=1 if x;=+*=x, and =0
otherwise. Then by Theorem 2.1 we have the following

Proposition 3.1. Let Xy, -, Xn be a sample of size n from a distribution chosen from a
Dirichlet process on (X, A) with parameter a. Then

P(X,=-=X,) (3.2)
=2 lsmimp=nl RIME"Y 2 pQE™( ax N - (m (D)1 ™) M™ |+ (n—1)IMIM ™,

where the summation 2 sximu=n iS taken over all sequences of N nonnegative integers m(1), -+,
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m(n) satisfying 2.1 im(i)=n, except for m(1)=+-=m(n—1)=0, m(n)=1.

Now we shall consider the case that a is nonatomic. For positive integers n, u,
and a sequence of u positive integers 7(1), -+, 7(u) such that 1£7r(1)<£--- £ r(u) and
> r(i)=n, R(r(1), -, r(u)) consists of points in X™ and is defined as follows; (x:, ***,
Xn)€ R(r(1), +--, r(u)) implies that (i) values of x are equal and different from the re-
mainders for i=1, -, u and (x,", ***, x) belongs to R(r(1), -+, r(u)) for each permuta-
tion of X1, ***, Ln, X1y ***, Xn. For (x1, Xz -+, THE R(7r(1), +++, 7(uw)), we denote xi,
X25 'y Tn bY Y1y 5 Y15 Y2o ***5 Y2, ***s Yu, ***, Yy neglecting the order, where the num-
ber of y/'s is 7(i) for i=1, 2, -+, u. If there are same values in 7(1), ---, 7(u), then
we define ¥’s as follows; Suppose that 7(k(1))="---=7r(k(j))=1r for some k(1)<"'<k(j)
and 7()#F 7 for i#k(1), =, k(). If Xan=""=2Lw), Tsx=""=Lua, ***5 Lay="""=%Luy
correspond to Ymu, Ymzs ***s Yws, respectively, then min(s(1), -+, #(1)<min(s(2), ---,
t(2)< --- <min(s(j), -+, #(j). For example, we consider the case of n=5, u=3,
r(1)=1, r@2)=7r@B)=2. For (X, Xz, X3, Xs, L)ER(1, 2, 2) and X1 F X, =X37F X4=Xs,
hW=X1, Y=X5 Ys=x,. For (X1, Xz, X3, Lsy Xs)ER(1, 2, 2) and XzF=X1= X4 X2 =Xs,
=Xz, Yo=X1, Y3=X.

For a sample of size n, X,, **, Xn, such that (X, ==+, X,)€ R(r(1), -+, r(w)), we de-
note it by Yy, +-+, Yy, -+-, Yy, -+ Y, neglecting the order. Y,, ‘-, Y, denotes the dis-
tinct observations in the sample. In case that there are same values in 7(1), ---, 7(u),
we define Y’s by the same method to ¥’s.

Proposition 3.2. We suppose that a is nonatomic. Then for positive integers u, r(1),
o, 1r(u) satisfying 1£ r(1) £+ £Lr(u), 2¢r(i)=n and any set A;€ A(i=1, -, u),

P(Y,€ A(i=1, -, u), (Xi, -+, X)ER(r(1), -+, 7(u) (3.3)
=M T QAN (KL (1), -, vV r(D)M™,

Proof. We take a symmetric function h such that hlx,, -+, x)=1 if (x;, -,
)€ R(r(1), -, r(uw), y;€A{i=1, -+, u) and =0 otherwise. Then EA(X;, -,
X)=P(Y,€Ali=1, -, u), (X, --, Xo)ER(r(1), ---, r(u)). Thus by nothing that a is

nonatomic, we have the proposition from Corollary of Theorem 2.1.

If we take A;=X for {=1, -
corollary, which is essentially as same as Proposition 3 of Antoniak [1].

u in Proposition 3.2, then we have the following

’

Corollary. If a is nonatomic, then

P(X,, -+, Xp)€R(r(Q), -+, r(w) (3.4)
=n!MY I (K(r1), =, r(u))IL, r(i))M™.

Theorem 3.1.  We suppose that a is nonatomic. Given (X,, ***, Xo)€ R(r(1), -, r(u)),
Y., ', Y, are independent and identically identically distributed with the distribution Q.

Proof. For any A,€ A(i=1, *--, u), by Proposition 3.2 and its corollary we have
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P(Y.€ Afi=1, -, wl(X, -, XJER(T(Q), -, 7(u)) (3.5)
=T~ Q(A)).

Note that the conditional probability given by (3.5) depends on a positive integer u
and is constant for all sequences of u positive integers 7(1), -+, r(u) satisfying
1£r()£- £ r(u) and X%, r(i)=n with fixed u and n. Thus

P(Y.€Ali=1, -, w)|UX(X,, -, XJER(r(1), -, r(u))=IL,Q(A)),
where U* is the union over all sequences of u positive integers 7(1), :--, 7r(u) suth that
1£r()L - Lr(u), 22, r(i)=n with fixed u, n. The event U¥(X,, -+, X,)€ R(7(1),
-+, 7(u))| denotes that the number of distinct observations in the sample X;, ***, Xy is u.
Therefore we have the following corollary, which is Theorem 2.5 of Korwar and Hollan-

der [3].

Corollary (Korwar and Hollander [3]). Given the number of distinct observations in the
sample, w, Y., =+, Y, are independent and identically distributed with the distribution Q.

Finally, by the use of Corollary of Theorem 2.1 we shall prove the following prop-
osition 3.3, which is essentially as same as Lemma 5 of Yamato [4].

Proposition 3.3. Let h(xi, -+, Xn) be a real-valued measurable function defined on
(X", A™) and symmetric in X\, ***, Xn. Let P be a Dirichlet process on (X, A) with parameter
a. Then

Elnh(xl, *cy xn)H?zldP(xi)

om W n!M*
_Zu=123121'ru)=n) ?:1(Ki('r(1), e T(U))!)H:'i:]’r(i)Mm) (36)

‘A‘uh(xly Tty xl, Tty xu s Ty xu)Hzt:ldQ(xt)’
provided all integrals of the right-hand side exist.

Proof. Let Xi, **, Xn be a sample of size n from a distribution P. Since given P,
Xi, ***, Xnare independent and identically distributed with the distribution P,

[ hai, ;2 dP@)=E[AX,, -, X| P

Taking expectation of the both sides of the above equation and applying Corollary of
Theorem 2.1, we get the desired result.
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