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Abstract

The present paper is a complete version of the lecture [2] presented by the authors to
“Romanian-Japanese Colloquium on Finsler Geometry” held in Romania during 15-25 Au-
gust, 1984. We discuss non-symmetric generalized Finsler metrics, and especially consider
the problem of existence and arbitrariness of Finsler connections compatible with such a
metric.

Introduction

As a generalized metric a non-symmetric tensor field &;;(&,:;) has been treated by
some authors. For example, in order to obtain a unified field theory, A. Einstein [6]
started from a (complex) tensor field &;; with Hermitian symmetry g;;=8&,;. Also L. P.
Eisenhart [7] discussed a non-symmetric tensor field &;{(x) as a generalized Riemann
metric, and tried to solve a problem to find the set of all linear connections compatible
with such a metric. R. Miron-Gh. Atanasiu [16] considered the problem of existence and
arbitrariness of such connections, and solved Eisenhart’s problem in a natural case.

The purpose of the present paper is to-discuss a non-symmetric Finsler tensor fieid
8&:x,y) and to obtain the Finslerian results corresponding to [16]. As a generalization
of a generalized Finsler space (R. Miron [15], M. Hashiguchi [11]), we shall call a space
associated with such a generalized metric 8:5(x,¥y) a g. g. space or a supergeneralized Fins-
ler space, which is hoped to be interesting for physicists. The problem of existence and
arbitrariness of Finsler connections compatible with such a metric is reduced to the
study of a system of tensorial equations (Theorem 4.1), and in a natural case a condition
that such a Finsler connection exists is given (Theorem 4.2, Theorem 4.3), and
Eisenhart’s problem is solved (Theorem 4.3, Theorem 5.1). )

Our motive to the subject is a generalized Finsler metric &,(x,y)=e***¥y,,(x) con-
formal to a Riemann one 7;,(x) (S. Ikeda [12], S. Numata [19], S. Watanabe [21], S. Wata-
nabe-S. Ikeda-F. lkeda [22], etc.). If we take Eisenhart’s generalized Riemann metric as
%, we have an example of a g. g. space. And the research is in line with Gh. Atanasiu
[1], Gh. Atanasiu-B. B. Sinha-S. K. Singh [4], R. Miron [15], M.Hashiguchi [10, 11], and R.
Miron-M. Hashiguchi [17, 18]. For a non-symmetric tensor field &;; we have a symmet-
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ric tensor field 8;; and an alternate one &;; from the splitting 8;;=8:;+ 8:;. Thus the
study of 8, is reduced to the study of the pair (&, &:). The study of a complex tensor
field &;; with Hermitian symmetry is also reduced to the study of the pair (s;;, @:;) of a
symmetric tensor field S;; and an alternate one @;;, where &= Su+v/—1as;.
Interestingly, the method developed in the present paper is also applicable to the pair of
two symmetric tensor fields, which will be investigated in our appearing paper [3].

The terminology and notations are referred to M. Matsumoto’'s monograph [14].
And we also use some of notations in Eisenhart [7] and Miron-Atanasiu [16], under some
modifications. In matrix notations A=(a,), B=(b"), C=(c’) we always assume i and
J denote the respective positions of the row and the column of the component. Thus
b“a,;x=ck and a;;b’* =c} are expressed as BA=C and AB='C respectively, where
C denotes the transpose of C.

1. The notion of g. g. metric

Let M be an n-dimensional differentiable manifold of class C”, and x=(x%) and
y=(y") denote a point of M and a supporting element respectively. A non-symmetric
Finsler tensor field &:(x,y) of type (0,2) on M is uniquely expressed by the sum of the
symmetric part §:(X,¥) and the alternate part &i(x,¥) :

(1.1) 8i;i—=8ii+ 8ii (gn:gn, ng"gﬁ)o
The notations 8:;, 8is» which were originally written as 8, 8 by Eisenhart [7], will be
used in the following without comment.

We define a g. g. space (or a supergeneralized Finsler space) (M, &:;) as a space M
associated with a non-symmetric &;; defined by

Definition 1.1. A Finsler tensor field &:; of type (0,2) on M is called a g.g.metric
(or a supergeneralized Finsler metric) of index k, if it satisfies
1) det (8:)%0,
2) rank (8i)=n—k=2p,
where k, p are integers and 0 k<n.

The Finsler tensor field 8;; determines a generalized Finsler metric on M. The
matrix (&;;) has the inverse (8’%), but the matrix (&;,) is not regular except for a remark-
able case k=0. So in general we shall define some matrix (&’%) such that (8’*)=(8,)""
for the case k=0. If k>0 and (&) is positive-definite, then on each local chart there
are exactly k independent Finsler vector fields &i, -+, &% with the properties
1.2) 8i;£4=0, 8i:€6ét=0a (a,b=1, -, k).

Introducing local Finsler covector fields

(1.3) ni=8uéa (a=1, -, k),

we define local Finsler tensor fields [% and m} of type (1,1) by
(1.4) li=¢€n%, mi=o8i—ELng (summed for a).

Remark 1.1. In case of k=0 we put /;=0, mi=4¢% In case of £>0, if (8) is not
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positive-definite, we assume that there exist exactly £ independent Finsler vector fields
g, -+, EL with the properties (1.2).

On the other hand, if (&;;) is positive-definite, then (&;;) is also so, but in case that
(8:5) is not positive-definite, (8;;) is not necessarily regular.

Then we have from (1.2), (1.3), (1.4)

(1.5) 8iili=0, &umi=gir

(1.6) ni€s=20% nilk=n% nimi=0,
(1.7) Bulx=2min%  Bumr=guw—Linink,
(1.8) lig"=2¢uba migt=g"—2¢uke.

The formulas (1.7), (1.8) show

Proposition 1.1.  g,;l%, 8iimx, 158" and mig’™ are symmetric with respect to the in-
dices L, Kk respectively.

Now, for the module X of Finsler vector fields on M, we consider two submodules
K and H:
(1.9) K={¢'€X|g,&'=01,
(1.10) H={{'€eX|g,;¢'=0for all §’EK|.
K is globally defined as the kernel of the mapping &:,: &’ — g:,;§’. H is orthogonal to
K, and is also globally defined. The Finsler distributions K and H are called the ker-
nel distribution of &:; and the orthogonal distribution to K respectively. Since K is gener-
ated by { €5}, we have the following Propositions.

Proposition 1.2. The following three conditions are mutually equivalent:

1)  ¢'€H, 2)  n93g’=0, (3) 1;¢7=0.
Proposition 1.3. The following system of equations has the trivial solution X’=0 only :
(1.11) ginj_—'O, U?Xj:() (a=l. tte, k)
Now we have from (1.5), (1.6) and Proposition 1.2
(1.12) X'eK, miX’€H for any X’€X,
and we have further
(1.13) li+mj=065,
(1.14) lili= Uk, mimi=mi, Limi=m;L=0,
(1.15) 8 lkmi=0.

It is shown from (1.12), (1.13), Proposition 1.3 and (1.10) that K and H are sup-
plementarily orthogonal:
(1.16) X=K+H, KNH=|0},
(1.17) 8,£'8°=0 for any §'€K, {'€EH.
Then (1.12), (1.13), (1.14) show that i, m’ are locally the projectors from X on K
and H respectively. From the uniqueness of the projections, however, they are inde-
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pendent on the choice of &5 Thus [5, m} are globally defined, and are the orthogonal
projectors from X on K and H.

In the following we shall sometimes use matrix expressions. Putting 8=(&ij),
g=(8:), &=(&h), n=(n9), (=3, m=(mj), and §=(0a), (87), etc., the formulas

(1.2) ~(1.8) are expressed as

(1.2 g&=0, '€g¢=y7,

(1.3) ‘n=8¢,

(1.4") =&, m=6—1,

(1.5") gl=0, gm=g,

(1.6") n§=0, nl=n, nm=0,

1.7) gl="mm, gm=g—"n,

(1.8) Ig7'=¢§'€, mg'=g—§'¢,

and (1.13) ~ (1.15) are expressed as

(1.13) l+m=2¢,

(1.14") I’=1, m’=m, Im=ml=0,

(1.15") tlgm=0.

And Proposition 1.1 is expressed by

(1.18) gl="'lg, gm="'mg, I1g7'=8g"l, mg'=g""
In order to get some regular matrix from &, we extend & to he alternate (n+ k&,

n+ k)-matrix

e )

, n 0

The following system of equations, with respect to unknown column vectors X, Y, has
the trivial solution X=Y =0 only:

T
n 0 Y T nX=0.

In fact, multiplying §X —'7Y =0 by ‘¢, we get Y=0 from (1.2'), (1.6'), and then we
get X=0 from Proposition 1.3. Hence & is regular. Since the inverse of an alternate

matrix is also alternate, the inverse & ' has a form ( g:A ) where the matrices &
- v

and v are alternate. From 8 '=4& we have

(1.19) g&=06—"(n), 18=0,

(1.20) gA—tqu=0, nA=24.

Since (1.20) is equivalent to 8(A—§)—*pv=0, n(A—§)=0, in the similar way as stated
above we have v=0 and A=§, and (1.19) becomes g&=&—"én), 78=0, which is
equivalent to §&="'m, [§=0. Thus we have

8, ¢
—te 0

where the alternate matrix &=(8&’") is given by
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Proposition 1.4. Z=(&"") is uniquely determined by
(1.21) gg="'m, 18=0.

Since &’* is uniquely determined by the global equations, it is independent on the
choice of &6, and globally defined. Especially, if k=0, then /=0, m=¢ and §=g"".

Remark 1.2. In the papers [1, 16] & is given by §°8="m, I&=0 and differs in the
sign.

Remark 1.3. In Definition 1.1 it is assume that &;; is really non-symmetric (&:;%0,
i.e., k<n), but the above discussions hold still good for the symmetric case (gi,:O, ie.,
k=mn). Then n=¢£7', =6, m=0 and §=0.

On the other hand, the alternate case (8;;=0) was investigated as an almost sym-
plectic Finsler structure a;; (Miron-Hashiguchi [18], £=0) and an almost horsymplectic
Finsler structure (8, 7, &) (Atanasiu [1], £>0).

2. Obata’s operators with respect to a g. g. metric

For a g. g metric 8;; we have Obata’s operators /11, /21 ([15], [20]) with respect to
the corresponding generalized Finsler metric 8, :

(2.1) ' é§=i(b‘§5§—gsj5"), ?}:‘1‘(6\23;'*' gs,-g”).
1 2 2 2

ir__ i

These have the symmetry AY;=AJ (e=1,2), and act on a tensor field K of type (1,2)
a a
as

2.2) (AKYp=A5KSx (a=1,2)

Since (A{}K)ﬁ;;/lé?/ﬁl nr K'mx, the product A A is defined by
a a a
(2.3) (AA)G=AGA (2,8=1,2).
aBs a 8

Proposition 2.1. A, A are the supplementary projectors on the module T of the tensor
fields of type (1,2):
(2.4) /ll-l—/21=I ,
(2.5) A=A, AA=AA=0 (e=1,2),
a a 1 2 21

where I is the identity given by 6507 : IK=K.

Further, with respect to the alternate part §;;, we introduce the operators 915, Zﬁ :
i i i i i 1 i QT i i
(2.6) b= (D507 + 151 — 8o, $5=(050T— 1815+ Bos™.
These have also the symmetry ¢X;=¢J: (¢=1,2), and act on T in the same way as
a a
(2.2). If we define the product of the operators in the same way as (2.3), we have

2.7 ?+g=l,&
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2.8) $'=p—50, pp=pp=—0 (a=12),
a a 12 21
where 8 is the operator defined by
(2.9) 0 =—-lsm ]+ m1).
Since 6 satisfies
(2.10) $0=04=0"="0 (a=12),
if we modify ¢ by
(2.11) ¢ 0=¢—6, 0=¢+9,
we have

Proposition 2.2. O, O are the supplementary projectors on the module T’ :
1 2

(2.12) ?+9:I’
(2.13) 0229, (1)(2):9920 (@=1,2).
Cl), 9 are expressed as
0% =5 (0507 — 8515 — 1505 +315 15— .,8"),
(2.14) ]
08=—-0407+ 841+ 13073 141} + 8k,

which are the operators @ of the structure (8:» mf, &) of Atanasiu [1] (cf. Remark
a
1.3).

For later use it is noted
Proposition 2.3. Q satisfies

(2.15) Li8ssOnr =0, (2.16) limj 077 =0.
From (2.10) we have

(2.17) 06=60=0, 06=60=6.

6 is commutable with ¢ and O. Paying attention to Proposition 1.1, it is directly veri-
a a
fied that 6 is also commutable with A:
a

(2.18) /ah9=0/al (@=1,2).

Not gg nor 9 is necessarily commutable with {xl For example,
(2.19) HAS— BN =85:8" 8nrB" — 85s8" 88"
From (2.4), (2.7), (2.11), (2.12) and (2.18) we can show

Proposition 2.4. The following eight commutativities hold, if any one of them holds :
(2.20) A%S=¢ﬁ>A, AQZQA (a,8=1,2).
a a a a

We shall here give some results about the tensorial equations. Let X € T'; be un-
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known, and U, V and WE T, be given.

Proposition 2.5. AX 0 has solutions, and its general solutions are given by X = AY
where YE T3 is arbttmry

Proposition 2.6. The following two equations are mutually equivalent

(1) ?XZW, (2) (2)X=W+20W.

Proof. Multiplying each of (1) and (2) by 8 we have 8X=26W. Thus the proof of
Proposition 2.6 follows from (2.11).

Theorem 2.1. Let us suppose AQ: Q/ll The system of equations

(2.21) ‘ /21X=U, QXZV

has solutions if and only if

(2.22) AU 0, OV 0, OU AV
and then its general solutions are given by

(2.23) X=U+AV+A0Y,
or equivalently

(2.24) X:V+QU+(I)/11Y,

where Y € T is arbitrary.
Proof. The necessity (2.22) is obvious from (2.5), (2.13) and (2.20). Now, let us
assume (2.22). Since /21X= U is equivalent to /zl(X— U)=0, so /21X= U has the solu-

tions X=U+AY by Proposition 2.5. X is also a solution of (2)X= V if and only if
QU+(2)AY= V, as follows from (2.12) which is equivalent to U+ AY= V+ ?U +
QA Y. Thus X should have a form (2.24). In consequence of the last of (2.22) this is

also expressed as (2.23). And it is evident from the forms of (2.23), (2.24) that such
a tensor field X satisfies (2.21) really.

3. Natural g. g. metrics

In the proof of Theorem 2.1 the assumption AQ= OA is essential, and it seems
11

natural to continue our discussions under the assumption.
Definition 3.1. A g. g metric is called natural if the commutativities (2.20) hold.

Theorem 3.1. A g. g. metric &;; is natural if and only if there exists a non-vanishing
Finsler function p such that
(3.1) 8ii= 18
where 8i;=8ir8is8'".

Proof. Because of (2.19) it follows that A¢ ¢A is equivalent to &s;8"" &nr&™" =
858" 8nr&"", whose contraction by gin&n 1mp11es
(3.2) 8is8in=Bn&us.
Since Zm&"=mi=n—k=+0, if we contract (3.2) by &, we have (3.1) with u=
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(Zwm8™)/(n—k). Then u=+0. In fact, =0 implies &;;=0, i.e., £"°=0, which means
m%=0 and contradicts £<n.

Conversely, if (3.1) holds good for some u(#0), then we have (3.2), which is
equivalent to /11?=q15/11

Remark 3.1. The generalized Finsler metric 8;; serves for lowering of indices.
Then (3.1) means that the tensor field & associate to " is proportional to &;,. (3.1)
is also expressed as

(3.1) 888= 8.

Suggested by D.E.Blair-G.D.Ludden-K.Yano [5] and S.I1.Goldberg-K.Yano [8, 9] we shall
give typical examples for natural g. g. metrics.

Definition 3.2. In a generalized Finsler space (M, &), let a Finsler tensor field
F=(F%) (resp. P=(P%) of type (1,1), k Finsler vector fields £, (a=1, ..., k) and k
Finsler covector fields 7¢ (a=1, ..., k) be given.

The set (F¥, &4 nf, &) is called an (F, &, 1, §)-structure of index k on M, if it
satisfies
(3.3) F’=—6+¢&n, nF=0, F§=0, né=06, 'FEF =g—"n.

The set (Pj, &a 7i, 8i) is called a (P, &, 1, §)-structure of index k on M, if it
satisfies
(3.4) P*=6—¢&n, nP=0, P§=0, né=¢0, ‘PgP=—g+"'n.

Remark 3.2. In case of k=0, (3.3) and (3.4) are understood to be F’=—¢,
'FgF =g and P?’=¢, "PgP=—g respectively. In the former case we have a Finsler
almost Hermitian structure. In the latter case we have a Finsler almost product struc-
ture. Hence there exists an eigen-vector u such that Pu=eu (e==1). Then ‘PgP=
— & yields ‘ugu=0. Thus &, is not positive-definite, which was noted by Y.Ichijyo.

In general case F and P satisfy F’=—F and P*=P respectively, and give exam-
ples of a Finsler almost f-structure and a Finsler almost product structure.

Theorem 3.2. Let an (F, &, 1, 8)-structure (resp. a (P, &, 1, 8)-structure) of index k be
given on M. If we define §=(&:;) by

(3.5) g=~i—gF (resp. g=%gP)

for some non-vanishing Finsler function c, then §;; is alternate, and 8;;= 8+ 8 is a natu-
ral g. g. metric of index k on M. In this case u=— c® (resp. u=c?).

Proof. First, multiplying ‘F§F =g—"‘7m by &, we have ="'y, and so ‘Fgé=
nF)=0. Thus, multiplying ‘F§F =g—"nm by F and making use of F’=—&+ £, we
have 'Fg=—gF, ie., ‘g=—g&, which shows & is alternate.

Now, let X=(X") be any solution of gX=0, ie, FX=0. From F’=—08+£&n we
have X=¢&(nX). Hence X' is a linear combination of &, (a=1, ..., k). Because of
né=4¢, &L are linearly independent. Thus rank g&=n—k, and so 8,;=8:;+ 8 is a g
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g. metric of index k. Then F’=—m, ‘FgF =gm, where [=§n7 and m=6—[.

If we put p=—cFg', then it is shown from the second of (1.18) that o satisfies
go="'m, lpo=0. By Proposition 1.4 this o is nothing but the matrix 8. Thus we have
&=—cFg', from which the naturality §88= — c*g follows.

In the other case the proof is given in the similar way. Then we have &= ch‘l,
from which the naturality §88= c*g follows.

It is noted that the converse of Theorem 3.2 is true. Paying attention to the second
of (1.18) again, we can easily show

Theorem 3.3. Let & be a natural g. g. metrvic of index k on M with some non-
vanishing Finsler function u= — c* (resp. u=c?*). If we put

(3.6) F=cg'g (resp. P=cg'8),
or equivalently
(3.7) F=—8 (esp. P=-E§)

then the set (F3, &6, ni, 8) (resp. the set (Pj, &a, 1%, 8is) is an (F, &, 1, 8)-structure
(resp. a (P, &, 1, 8)-structure) of index k on M.

4. Finsler connections compatible with a g. g. metric

An important problem concerning with a g. g. metric &;; on M is to determine the
existence and arbitrariness of Finsler connections with respect to which &;; is covariant-
ly constant. Here a Finsler connection FI' is defined as a triad of a V-connection I'y
on the linear frame bundle L(M), a non-linear connection N on the tangent bundle T(M)
and a vertical connection I'” on the Finsler bundle F(M). A Finsler connection having

- N as the non-linear connection is denoted by FI'(N)=(Fjx, C:ix), where Fx and Cix

are the respective coefficients of I'v and I'*. And the respective A- and v-covariant dif-
ferentiations of a Finsler tensor field areodenoted by a short Line and a long line, e.g.,
8isns 8is|x (With respect to FTI7), 8%, 8] (with respect to FI), etc.

For later use it is noted

o
Proposition 4.1. With respect to any Finsler connection FI a g. g. metric 8;; satisfies

(4.1) L151%0,=0, LI =0,

2) ML= 15153 milsf =171,
(4.3) M3 Lon= 15180 m3lsf =14 ﬁ‘l’k,
(4.4 17158rx=0, l’lsgrs

) =
(4.5) gSjgiTfork—o gSJg"ZSTk
( ) lfgirgfs?k: slk, lsg”gTsT - lle | ke

Proof. For a fixed subscript /i: we put [9%=(l%%), etc. Then from *=1 we have
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0 14 1%= 1% 1] nl+ 10 x= 1]+, which imply

(4.1) 1, 1=0, 11],i=0,
4.2) m =10, mife=1]4l,
4.3) Bem= 1%, 1[xm=11]

In the same way we have from g/=0
(4.4) Uge, =0, '1g] =0,
(4.5) glo5=0, glf =0,
(4.6) Bgl=—I0xl, 88 xl=—1]4l.

These are the matrix expressions of (4.1) ~ (4.6).

Definition 4.1. Let &;; be a g. g metric. A Finsler connection FI is called com-
patible with &;; if &;; is covariantly constant:

(4.7) 8iw=0, 8ilr=0,
or equivalently
(4.8) &iiwx=0, 8in=0, (4.8) gu|x=0, gwlk:O.

Proposition 4.2. With respect to a Finsler connection FI" compatible with a g. g. metric
8ij» the tensor fields 15, mj, 8" and BY are covariantly constant :

(4.9) Lix=0, m5x=0, 4.9) l§|k=09 mﬂk:O,
(4.10)  g“x=0, BY»=0, (4.10) g”1x=0, &“|x=0.

Proof. Since 8:;64=0, 8i;§af5=20a, we have 8i;60x=0, 8i;€anfs+ 8isEaétn=0.
Hence &x is expressed as &hx=haét, and it holds hgk+ hsx=0. Then nf=g,.£;
implies 75x=&;réax=8srhaxrEs=—hexn3. Thus we have lix=E&Lxni+ E4n5x=0, and so
m)lk'— - lJIk'—O

8”x=0 is evident. &”x=0 is also evident, since &rs&¥=m7 and [}&8%=0 imply
ms8%x=0 and [:8%x=0 respectively.

(4.9") and (4.10") are similarly proved.

In order to determine the existence and arbitrariness of Finsler connectiong com-
patible with a g. g. metric &;;, we start from an arbitrary Finsler connection FI’, and
generalize the so-called Kawaguchi method [13] to the supergeneralized case as follows.
In the following we fix an arbitrary non-linear connection N.

0 o o
Theorem 4.1. Let FI'(N)=(F%., Cis) be a fixed Finsler connection. For a g. g. met-
ric 8i; we define the Finsler tensor fields U, V, U 174 by

@.10)  Ule=—18"8rstn @.11) Uh=—58"8n

(4.12) k= “%(g”grj?k'*‘:; Lsl3Se— 1550, (4.12)) y k= _‘l”(g”gn | k+3lsl8| x— Uil
Then a Finsler connection FI'(N)=(F"’x, C}) is compatible with &, if and only if the dif-
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ference tensor fields B and D given by .

(4.13) Fix=Fix— B, (4.13) Cix=Cix—Di
are solutions of the following system of tensorial equations :

(4.14) /le=U, 4.14") /21D=U,

(
4.15) QB= Vv, (4.1%") 9D= Vv,
(4.16)  118o;De=—L1&rs| uy

(
(4.16) li8siBrx=—1:8rk
(

4.17)  BmiBi=— L5150, (4.17)  BmiDs=— 115
Proof. The conditions (4.8) are equivalent to

(4.18) 8%+ 8rsBik+ 8ssB7x=0,

(4.19) 8rsix+ 8rsBik+ 8ssB7x=0.

Contracting (4.18) by g, we have (4.14). And contracting (4.19) by &' and I], we
have
(4.20) méB}?k‘i'gsjg” ﬁk:“‘g”grﬁk
and (4.16) respectively. Conversely, we have (4.18) from (4.14), and also we have
(4.19) from (4.20), (4.16).

Now, if FI'(N) is compatible with &;;, then from 05l5x=0 we have (4.17). The
addition of (4.17) to (4.20) implies
(4.21) ?B= W,
where W is given by
(4.22) = ‘"%(girgrﬂk+ 15155,
Conversely, we have (4.20) from (4.21), (4.17). By Proposition 2.6, (4.21) is equiva-
lent to (4.15), where
(4.23) V=W+26W.
Paying attention to (4.1), (4.6), Vi is easily reduced to (4.12).

The arguments on D are quite similar.

A g. g metric 8;; does not necessarily admit a Finsler connection compatible with
itself. In fact, we have

Theorem 4.2. Let 8;; be a natural g. g. metric : By;= 18:;. If there exists a Finsler con-
nection FI' compatible with &;;, the function u is a non-zero constant.

Proof. By Proposition 4.2 we have wx8:;=0, m #8:;=0, which are reduced to
1x=0, u|x=0 because of 8:i;8"*=n—k=0. Hence the non-vanishing function x is con-
stant.

From the above theorem we are led to consider the two structures (F, &, 7, g) and
(P, & n, 8 in which c=const.=0.

Definition 4.2. A natural g. g. metric &;; is called elliptic if u=— c® and hyperbolic
if 4= c?, where ¢ is a positive constant.
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We shall show that the converse of Theorem 4.2 is also true.

Proposition 4.3. Let &;; be a natural g. g. metric in which ¢=const.#+0. Then U and
V (resp. U and V) given by (4.11) and (4.12) (resp. (4.11") and (4.12")) satisfy

(4.24) AU=0, (4.24") /110=0,
(4.25) ov=0, (4.25") 917:0,
(4.26) oU=AV, (4.26") 91)=1le.

Proof. (4.24) is directly shown from (2.1), (4.11). Since from (2.17), (4.23) we
have QV=0W, so (4.25) is also directly shown from (2.14), (4.22) if we pay atten-
1

tion to (4.1).

If for X and W of Proposition 2.6 we substitute U and /21W respectively, it is
shown that ?U=/21W is equivalent to 9U=/21W+20/21W=/21 V. So we shall show
(4.26) by proving ZSUZ/}W.

We have directly
_4(?U)§k:(é\f98;— lsli+ gsfg")(gs'gw‘.’k)
:_ZUi _li TgStgtrm‘f‘gtsgmg”grt?m
(AW)J;;——(a 87+ 85:8 NB et 1 13%)
= "‘ZWLk‘l‘gtsgSJg”gmk‘*‘ 8s:8 I LS.

First we shall treat the elliptic case. From (3.6) we have cg'°gs;=Fj. Multiplying
(3.7) by g we have cgF =—"'mg, ie, §='lg§— cgF, from which we have &r=I78m:
— c8mF7T. Thus we have

gtsgsjg"gn‘fﬁ gtsgsjg”( 178mi— C&mF T
=g’sgsjg”( l’r"gmz)?k—Fﬁ-g"(ng”‘)m
. :‘gsjgir ot msgwgrsm sF Ftlk»
where the first term vanishes owing to (4.5), the middle term becomes &° gmk-f- 15159,
owing to (4.6), and the last term becomes — F:FXx+ 1515 owing to [5F:=0 and
(4.3). Consequently, from (4.22) we have '
"““?U)ﬁ'k: —2AUx+ Wi — FiF 8+ 1515%%— 15178° 82k

On the other hand, from (3.7) we have &°gs;=—cF% And from (3.6) we have

gn— g,st Thus we have

gtsgsjgwgrtcl)k:"Fﬁ'gir(grsF‘tg)(l)k: mfg”grs?k_FgFg?k,
that is,
(4.27) gtsgsjg"gn‘?ﬁg”gn‘l’k—g"’lfgrs‘rx FiF 8.
Consequently,

—4AW )= =2U'xt Win)— FiF 55— 8" 1i8rstx+ 8s8" L .
Then, paying attentlon to Proposition 1.1, we have
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“4(?U_/_}W)§'k=g”l}?( égn— l’rgst)‘?k=0.

In the similar way ?U=/21W is proved in the hyperbolic case. (4.24") ~ (4.26)
are now evident.

Theorem 4.3. For a natural g. g. metric &:; m which u=const.#+0, there exists a Fins-
ler connection FI'(N) compatible with &:;. o

Let FI'(N) be a fixed Finsler connection, U, V, U, V be the Finsler tensor fields de-
fined by (4.11), (4.12), (4.11"), (4.12"),and Y, ZE T be arbitrary. The set of all Finsler
connections FI'(N) compatible with 8, is given by (4.13), (4.13"), where the difference ten-
sor fields B and D are given by

(4.28) B=U+AV+40Y, D=U+/1117+/1192,
or equivalently
(4.29) B=V+0U+04Y, D=f/+(l)0+cl)/lxz.

Proof. By Theorem 2.1 and Proposition 4.3, the system of equations (4.14), (4.15),
(4.14"), (4.15") with respect to B and D has a solution, and the general solutions are
given by (4.28) or (4.29). Thus, the theorem follows from Theorem 4.1, if we show
that B and D satisfy the conditions (4.16), (4.17), (4.16"), (4.17"), which are directly
proved by using the expression (4.29) as follows.

(4.16) follows from (2.15) and

—21i8s; Vir= li'gsj(g”gn‘?k-l—Blfli‘?k— n)
= 1im58rsx— 1185 17
=2178,4% (owing to (4.4)).
(4.17) follows from (2.16) and
—21em Vo= lem (8% et + 31 I0h— 17%)
=2lsmjl¥n
=210i1%, (owing to (4.1)).
(4.16"), (4.17') are similarly verified.

5. Solutions of Eisenhart’s problem in the natural g. g. spaces

Eisenhart’s problem, to find the set of all Finsler connections compatible with a g. g.
metric, is already solved for the natural case in Theorem 4.2 and Theorem 4.3. We shall
give here other expressiors for the solutions.

If we put Y=Z=0 in (4.28), we have an example FI'*(N)=(F*,, C*.) of a
Finsler connection compatible with an elliptic or hyperbolic g. g. metric &;; :

F*i’k:Fﬁk‘*‘%{gwgrﬂk‘*’ /}Z(g“gn‘fﬁ%ilf r— IR0l
(5.1)

o (o]

C*i\ = c§k+—%~{ 88|kt /'llgz(g“gnl k30— 1301

Making use of (4.27), in the elliptic case, (5.1) is also expressed as
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F*m—Fﬁ'H‘% | g”(gn-‘?ﬁ- 1580+ g”grﬂk

(5.2) o 1 . 0 0 )
o= Cﬁ'k"‘?igw(gwlk‘** l}?grsl +g"8n-|k

+F Ft|k+2A CTH A L
In the similar way, in the hyperbolic case, (5.1) is also expressed as
F*m—sz+ {8 (&rs it 1581+ B 8rsK

—P Pt|k+2A (3lsl’rlk TIk)L
(5.2 o 1 ) 0 0 )
= C;k‘f‘”4_’ g”(gn-| kt l}?grsl K+ g”grj| K

0 . 4 [
— PiPi[x+245B 1 1 [0
Then Theorem 4.3 is restated as follows.

Theorem 5.1. The set of all Finsler connections FI'(N)=(F%x, C'x) compatible with
an elliptic or hyperbolic g. g. metric 8;; 1S given by

(5.3) ﬁk—F*,k+A;:0 s Cix=C*int AS0% Z s

where FI'*¥(N)=(F *m C*%y) is the Finsler connection given by (5.1) (equivalent to (5.2)
or (5.2)), and Y., Z%xare arbitrary Finsler tensor fields.

There are some particular important cases. One of them is given by

Definition 5.1. A g. g. metric g&;; is called regular, if the symmetric part 8ij 1s regu-
lar, that is, 8;; satisfies the regularity conditions of Miron [15]:

1) (o8u/2y"y'y’=0, (2)  det (A0,
where Ay=0%+8""(98+/2y")y’

In the regular case, the matrix (A% has the inverse (Bj}), and the equations of the
geodesics with respect to &;; are expressed in the from

(5.4) d’x'/ds*+ Biyidx’/ds)dx"/ds)=0,
where
(5.5) iy 8" (981 "+ Ogr/ O’ — Bgyn/ L")

C C . .
Thus we can take N given by széa( Lyay®y")/9y” as a canonical non-linear con-

. c
nection. It is noted that NV is determined by &;; only. Then a canonical Finsler connec.

c cC C c

tion FI'(N)=(Fix C} is defined by
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Jk_ ; g"(@gn/ﬁx +b\gkr/6\x 8g1k/b\x )

(5.6)

= ; 8'"(08r/ OY"+ O8xr/ Oy’ — O8ir/ BY "),
where 8/0x*=09/0x"* —Nic (9/0yY. FF(N) was introduced by Miron [15], and was
called the Miron-Cartan connegtiim by Hashiguchi [11]. It is also noted that this connec-

tion is characterized as FI'(N) satisfying the Cartan-like conditions:

(5.7) 8:;5x=0, guln=0, Fi=F4%, Cix=Ck;.
If we take Flc"(lfl') as FIQ'(N) in (5.1) (equivalent to (5.2) or (5.2")), we have a re-
Q cC

markable example FI'(N), which we shall call canonical.

C C
Theorem 5.2. Let 8 be a regular elliptic or hyperbolic g. g. metric, and FI'(N) be the
2 ¢ Q.
Miron-Cartan connection with respect to &:;. The following Finsler connection FI'(N)=(F x,

Q .
C’x) is compatible with &;;:

Q . C .
w=Fit— 1 AZ g“gmk-*'i’»ls Pk L5,
2

(5.8)
_'Cjk+ gSlgtr|k+3lslt‘k |n

which is expressed in the elliptic case as
Q

F:’-k=F§k+—1—ig"’gn?k+F§Ft.k+2A B I LS 17,
(5.9)
Cjk—cjk_’-—*g”g'rJ'k"'F F |k+2A 3lslt|k | }

and 1 the hyperbolic case as

g- Ca s

Fix=Fixt | 8785 PPl 2531 15— 15501,
(5.9

Cjk—cjk_i— {g”gmlk PP|1:+2A 3lslt|k |k L

Theorem 5.3. For a regular elliptic or hyperbolic g. g. metric 8;, the set of all Finsler
c

connections FI'(N) compatible with &;is given by
(5-10) FJk ij+A Osm gl.ka C;k+ Afscarsl mk9

2 ¢ e @ ; '
where FI'(N)=(F%., C}x) is the canonical Finsler connection, and Y'ix, Zix are arbitrary
Finsler tensor fields.

Remark 5.1. As is noted in Remark 1.1, for a remarkable case k=0 (det(g:;)*0),
we put [’=0. Thus (4.1) ~ (4.6), (4.16) and (4.17) become trivial, and the formulas
given in this section are simplified.
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