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Abstract

Formal Edgeworth expansion with remainder term o(IN ') is established for two-sample
U-statistics. And the conditions which ensure the validity of the expansion are also dis-
cussed.

1. Introduction

Let Xi, X5, ***, Xpand Yy, Y,, -+, Y, be independent random samples from dis-
tributions with c. d. f’s(cumulative distribution functions) F(x) and G(y), respectively.
Let A(xy, ***, Xr; Y1, ***, Ys) be symmetric in its &; components and separately symmet-
ric in its y; components, satisfying E[A(X:, -+, Xr; Y1, -, Yo]=0 with 7<m and
S=mn. his called a kernel and (7, ) are called its degree. We shall define a two-
sample U-statistic with a kernel of degree (7, s), h, by

-1 -1
Um,n=( m) (n) Z Z h(Xi,, oy Xips Yoy ooy Yj)
r S cm, T Cm s
where C;,T indicates that the summation is over 1< 7, <--<{,<n.

In this paper, putting N=m+n, we shall discuss an asymptotic expansion under

the assumption
(A) 0<A=lim mIN <1.

This assumption means that m=0(N) and n=0(N).

Callaert, Janssen and Veraverbeke[l] have obtained the asymptotic expansion of
one-sample U-statistic with a kernel of degree two. And Maesono[6] has obtained it
with a kernel of arbitrary degree.

In Section 2 we state a representation for Up, » in terms of forward martingales and
get the bounds of absolute moments of martingales. In Section 3, using the martingale
representation of Up, », we obtain formal Edgeworth expansion of Up,n with remainder
term o(N~'). In Section 4, we discuss the conditions for the valid expansion.

2. Preliminaries

We shall represent Up,n in terms of forward martingales. Hoeffding[4] (cf.
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Serfling[7] p178) has obtained the similar representation for one-sample U-statistics.
Under the assumption E|A(X,, -+, X,; Yy, -, Y| <co, let us define the following
notations :

for 0£a<7r and 0 b<s

Wa, ol X1y ***5 XTas Y1s "5 Yo)
:E[h(Xh Y Xr; Yl, '"Ys)lxlle’ Tty Xa:xa, Yl:yb ) Yb:yb]9

80,0=0, & olx))=1w1, o(x1), &0, 1(y1)=ws, (1),

&2, ol X1, XTo)=1wWs, (X1, X2)— 281 o(Xs), &1, 1(21 5 Yi)=1w1, (X1 5 Y1) — &1, o(X1)— &6, 1(Y1),

2
2
&, 2(Y1, Yo)=ws, (Y1, yz)_ggo, (¥5),

&r X1y vy Xy Yay oy YS)=Wr (X1, v, Xy Yy, Ys)

S—1 7—1
— 2020 8n o Xy s Xr s Yirs s y"”)_gcz‘ag"" s(Xis *ty Lia s Yis s Ys)
=0Cr,

b=0Cs, b

7-18-1

—ZZZ Zga, b(xin s Lias Yy yjb)s

a=0b=0cr, a Cs, b
for 0£a<r and 0<b<s
A(L b— E Z ga, b(Xin R Xia; YJ'n HY ij)-

CmyaCm b
Then Up, » can be rewritten as
m\'n\'a&/m—a\n—2>~
R (e
T s/ aoo=0\ r—a /\ s—b
It is shown in the proof of Lemma 2.3 that Ag » is a forward martingale for each a and

b (a=0, 1, -, 7;b=0, 1, -+, 3).
By the definition of 84 » Lemma 2.1 follows.

Lemma 2.1. Assume that E|h(Xy, =, Xr3 Yy, o+, Yo)|<oo. Ifone of | iy, ==+, igl
is not contained in { p,, =+, Dcl, or one of {J1, =+, Jolis not contained in {q\, -, qal,
then

(21) E[ga., b(Xin T Xia; Y.in T ij)lXPn D) ch; qu, Y YQd]=O-

Proof. By double induction on @ and b we can prove (2.1) directly.
Using Lemma 2.1, we can prove the useful two lemmas.

LEmma 2.2. Assume the assumptions in Lemma 2.1. Then for any function f which
satisfies E| f8a »| <0, we have

(22) E[f(Xpn Y XPC; YQH T YQd)ga. b(Xin Y Xia; Y.in Tt Y.i )]:O-

Proof. Taking the conditional expectation, we have the desired result from (2.1).
Before describing the next lemma, we prepare notations. For 1=m,<---<m.=<m,
1= <<np=n, 0=a=7 and 0= b< s, let us define
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B, b(ml’ s Mas Ty °°°, M)

:izz'l... Za STew Y Ba ol Xis ) Xias Yo o0 Yy

ia=ia—1+1 j1=1 Jb=Jb-1+1

Then we have the upper bound of the pth absolute moment of By ».

LEmMa 2.3. Given the existence of the pth (p=2) absolute moment of kernel h, there ex-
ist a positive constant C such that

a b
<23) ElBa, b(mly **ty May My nb)|p§C(l_1;mi:I_Ilnj)g.

If the second moment of kernel h is finite, the inequality (2.3) also holds with p=1.

Proof. The latter part of the lemma immediately follows from the former.
Therefore we consider the case p=2. By double induction on ¢ and d, we shall prove
the following inequality : for 0=c<a, 0=d=<b, 1=u,;<--<uc<icy1, ***, lg and
120, <<qa<Jasr1s ***s Jos

Uy Uc [} dd
E[ 2] 25 21 3
i1=1 ic=ic-1+1 j1=1 Jd=Jd-1+1
(2°4) ga,b(Xiu Y Xic9 T Xia; an Y de9 ) Yib)|p
C d
§(Cp)c+dE|gm b(Xl, oy Xas Ya, ooy Yb)‘p (izluijIJIQj)%

where C,={8(p—1)max(1, 2°7%) .

When ¢=1 and d=0, let Zx=2_F-18a s(Xs» =y Xias Y5, =+, Y3,) for k=1, 2,
s, %;. Then we have Zx—Zx-1=8a¢ o{Xxs Xis **y Xia3 Ys, *oy Y3) and £<i,, -+,
lq, where Z,=0. Since Z,, ***, Zx_: are functions of Xi, -, Xx_1, Xi, ***, Xi and
Y, -, Y;, we find from lemma 2.1 that

E[Zk—Zk—-IIZh Y Zk—lsz[E’ ga. b(Xk’ Xiza D) Xia; an ) YJ)
IXI, Tt Xk—la Xizv Y Xia’ YJ‘n T Yinle Ty Zk~l]:0°

Therefore { Zx o<k<w, is a forward martingale. Applying an upper bound for moments
of martingale obtained by Dharmadhikari, Fabian and Jogdeo[2], we have the inequality
(2.4), when ¢=1 and d=0.

Using equation (2.1), the rest of the proof is similarly obtained.

3. Formal Edgeworth expansion

Let us define the following notations :
Ufn. nzvar( Um‘ n),
for 0<a<r and 0<b<s

resm, () (1) s ) 270,

5?1. sz[ga. b(Xl, oy Xay Yy, ooy Yb)]29
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2 2
T S
Tfn, n— m ff o+”‘ﬁ‘§§, 1y

=E(exp{ itg, o X)) 1), v(1)=El(exp{ (18, (Y]
Note that from the equation (2.2) in Lemma 2.2,

-2 -2, 5 a4 \2 _ 2
O FO R I S [ e [y VOE
T S/ aob=0\ r—qa /\s—b a/\b
In this section we assume the following condition
(Cl) E|h(X19 R Xr; Y19 "ty YS)!5<OO.

Before we obtain the expansion, we prepare the useful lemma.

LEMMA 3.1. If (C1) is satisfied, then there exist positive constants € and & such that for
0<t<eN? and fixed integers u and v,

3.1 o 1™ ()2 | o P(De-,
where P\(1)is a polynomial in t and
Iu, v:e_th[l_____z(;izn{ [ (Zm )] 52 0+[ ( )] EO )

ur’ vs’ ., (it} [ r?

+ mz z So,l]"' z_gn' l 2E[g;’ 0<X1)J+?E[gg, 1(Y1)J]
(i) [ r! s .

et | s Bl o X)) 3¢, o)+ (ELgh (Vi)-3¢1, )
(it)° 2

755t 2| 8L XD+ S )] )

Proof. By the same way of Lemma 2 as Callaert et al.[1], we have the desired result
easily.

In order to obtain a formal Edgeworth expansion, we shall find the function )Zm, (1)
which satisfies

N%/IOEN ~
(3.2 [ )= Zm D] d = 0N
where Xn, o(2)=E[eXp(it0n nUn, n)]. (See Callaert et al. [1] and Maesono[6].)
Note that

Om, nUmn ZZka,b(m n)A

a=0b=0

Let
L) E[eXp{ it Z‘n ka.b(m, )Aa,b[lo

1sa+

Then from Lemma 2.3 and the fact kq o(m, n)=O(N7 ‘@) we have
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N%/logN
[ t Xm o B)— 1 XM E) | dE=0(N").

Furthermore let us define
x¥(t)=Elexp ! it(k. oAy, o+ ko 140, 1) 1+ itki \E[A, :exD | iT(ky, 04y, o+ Ko, 140, 1) 1]
+E[exp{ it(ky, oAr, o+ ko, 140, ) H i8ks, 0 Az, o+ iEKo, 2 A0, 2+ (i2) k1, 141, 1 K2, 045, 0
(3.3)  +(it)hi 1Ay 1ko, 240, 2+ (08) k2, 0 Az, 0o, 2 A, 2
P e o+ U0k an o U g a3
+itks 1 Ag 1t TEK 2Av, 2t TEKs, 0As, ot TEKo, 3 A0, s 1],

where kq b is an abbreviation of kq s(m, m). Then by the similar way of Callaert et al.
[1] and Maesono[6], we have1 :

N§ /108N
[ 1 o E)— xX(E) | dE=o(N ).

Since ki olm, n)=7/(Mmom ) and ko (m, n)=8/(nom ), from Lemma 3.1 the
approximation of the first term of (3.3) is L,o. And the second term of (3.3) is
approximated as follows. From Lemma 2.2, we have

itk \E[Ay, 1exp | it(ky, oAy, o+ Ko, 140, 1) 1]

. meaf T1 > n_,<'st )
=1itk, mnn <m0'm,n v .

XE[gl. (X5 Y.)exp | it(kx, 081, o X))+ Ko, 180, (Y)) H

which will be denoted by itk, mnI¥ ,E¥. From Lemma 3.1, I, is approximated by
I,.,. Taking the first few terms of the Taylor series for approximating E¥ and using
Lemma 2.2, we have an approximation E; such that

*232
%E[glv O(Xl)goy i Yl)gl, (X, ; Y,)]

.2\3 2
SV (TS gt (X,)go (Vg (Xs s VoS S ELgi (X088 (Y08 (X0 5 Vil

Since 0% n=1% A1+ O0N") and ki (m, n)=7rs/(mntm )1+ ON"), we can obtain
an approximation o(%) of the second term as follows :

E\=

P(t):e_%t2<m(”—E[g1 o X1) 8o, 1(Y1)g1 (X3 5 Yl)]

')} 2 o3

+6(i§n) {3r S E[g} o( X (Y8 (X 5 Y+ 372 ST S Bl gy, o X083 A Y1)81 (X 5 Yl)]]
2,2

+_.____6mn(Tm nE[gl 0 Xl 8o, 1( Yl)gl 1(X1 s Yl)] E[gl 0 Xl ]+ E[gg 1 Y'1 ]])

From the condition (C1) and oy »= O(N '), we have
|E;R_E1| éPz(t)O(N_Z)9
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where Py(1) is a Polynomial in . Then from (3.1) and above inequality, we have
NT /108N )
[ t' itk ymnI¥ E¥—o(t)|dt=0(N7").

Similarly we can obtain the approximations of the rest terms of (3.3). Hence we
have an approximation of y¥(%) as follows :

~ _1l; K3 . K4 K
_ t A3 34 3
Xm all)=€77%{ 14 5 (it);+ 24(Lt) +72( t)]
where
3 3 2.2
Ki=—i | L3ELg% o X1+ 25EL8 (Yl + ST 2Kl o X8 (Vg (Ko s Vi)
3 —
+3 g, (X0, o X8 o(Xsy Xo)
+WE[8'O, (Y1)8&6, 1(Y2)8&0, o Y1, Yz)]]
and
Ki=ri—| (gt ol X1- 3¢t + S5 (Elgi (vI—363..)
3.2 2,3
+ 137: S E[gl 0 Xl gO I(Yl)gl I(Xl 9 Yl)] lzr S E[gl 0 gO I(Yl)gl I(Xl ’ Yl)]
l27.7(niE[g1 0 X1 g1 o(Xz)gz O(Xl Xz)] l‘2—'%‘(7?_”I—E[go 1 Yl go 1(Y2)go 2( Y1 Yz)]

127‘(
mn

X 8o 1(Y2)8y, o Xy 5 Yy, Vo)l + 4

4o . .
4s's n13)(8 2)E[go. 1(Y1)80,1(Y2)80,1(Y3)8o, s( Yy, Yy, Y3)]+

X &, 1( Xy 5 Y18 ol Xu, Xo)]+

12’)’284

E[& o X181, ol X2)80, 1(Y1)82 (X, Xz s Y]+ I—Z%—I—E[& ol X1)&, (Y1)
r'(r—1Nr—2)
m

E[8:, o X1)&:, ol X281, ol X3)&s, ol X1, Xz, X3)]

+ )]ET_(_____

E[8:, o(X.)80,1(Y1)

1 E[gl, o(Xl)go, 1(Y2)g1, 1(X1 s Yl)go, 2( Y, Yz)]
12r's®
m

247r%s%(s—1)
mn’

E[&o,1(Y1)8, 1(Y2)81, (X, ; Y8, (X, Vo)l +
127r4(r—
m

==K, o X1)81, o X2)

Xgl, I(Xl H Yl)gl, 1(X2; Yl)] E[gl 0 XZ gl 0(X3)g2 O(Xl XZ)gZ O(Xl X3)]

+123(
n

E[go 1(Y2)80,1(Y3)80, o Ys, Y2)80, o Yy, Ys)]}

This XYm o(t) satisfies the equation (3.2). Inverting Xm (%), we have a formal Edge-
worth expansion Qm, »(X) such that

K,

Qn, Ax)= D(x)— ¢(x)|:_ 2 K, K;

1)+ 24(3: —3x)+ 72( 5—101:3-{'-15.%‘)]

6 (x*—
where ®(x) and ¢(x) denote the distribution function and density of the standard normal
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"distribution. Note that Ks=O(N"%) and Ks=O(N""). Then Qm ) is the expansion
with remainder term o(N™").

4. Conditions for the valid expansion

In order to prove the validity of the formal Edgeworth expansion Qum, »(X), we shall

apply Esseen’s smoothing lemma[3]. From smoothing lemma, we have

NIOgN -
Sup| P07 nUn n= %)~ Qm @) S [0 1817 | 2 ol B)— Fm (D) d2 4 0(N )
x T J-NogN
where Qm n(X), Xm (t) and ¥m o(%) are defined in the previous section. Since the proof

for the negative part of ¢ is similar to that for positive one, we shall find the conditions
which ensure

N1OgN -
[ ) T D dE= 0N,
Let us define

.xMt)=Elexp| it Zlgka oM, 1n)Ag »l]

1sa+bs
and

3XN(t E[exp{ I’t ls&mbe ka, b(ms n)I4aﬂ b[l.

Then from Lemma 2.3 and kq o(m, n)=O(N#"*¥) we have

N{ /108N
[0 )= s D] = 0N
N4 /108N
and
N1OgN
A%/W £ X n(E)—sxME) | dE=0(N"").

Then putting

N'}/logN -
=f t—1|an(t)_Xm,n(t)'dt9

(1) .//10 _l|2XN(t)|dt, (M)zﬂ%iii:Nt_l|3XMt)|dt

and

W)= 7 FmnlDldt,

we have

[ )= m B d (1) + (D + (I + (V) + 0N .

In Section 2, we have proved that (I) is o(N™!

~') under the condition (C1).
mediately follows that (IV) =0(N ") under the same condition (C1).

To obtain an order of (I[), we shall consider following decomposition. For
0=us=m—a+1and 0=v=n—>b+1, let us define

It im-
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Do u, v)=Bg u, m—a+2, =, m;v, n—b+2, -, n),

u m-—-a+2 m n-b+1 n—-b+2

Holu, 0)=3 25 =+ 2 20 20 o 3 &aolXuy s Xias Yoy s Vi)

h1=1liz=i1+1 ia=ig—1t1J1=0+1j2=J1+1 Jjb=Jb—1+1

m—-a+1m-a+2 m v n-—-b+2 n
La,b(U, U): Z Zn Z Z 2 2 ga,b(Xin 0y Xias Yo ooy ij)

h=u+liz=i1+1 ia=ia—1+101=li2=J1+1 Jp=Jb-1+1

and
m—a+1m—-a+2 m n-b+1 n—-b+2 n

Ra.b(u, v)= 2] 20 2 2 2 2 ga.b(Xin oty Xigs Yoy ooy Y5 ).

hi=u+liz=i1+1 ig=la—1+1/1=v+1j2=51+1 Jjp=Jjb—1+1
Then Aqv=Dq bolu, v)+Heolu, v)+Losu, v)+Rqslu, v). Here Hgu, v) and
{Yy, =, Y,} are independent. Similarly Lq (%, v)and { X;, :**, Xu| are independent.
Furthermore Rg o(u, v) and { X1, -, Xu, Y1, *-*, Yol are also independent. From
Lemma 2.3, we have
E|Dqg o(u, v)|°<0(uv)EN¥E+>-2),
And we get

E|H, o(u, v)|°’<E|Hqs o(u, v)+Ds s(u, v)—Dg olu, v)|?
<2°"YE|Hg ou, v)+Dg slu, v)|"+E|Dg blu, v)|°|
=0(uFNFaro-Y),

Similarly we have
E|Lq ou, v)]°<0(vENF),

Hence we can obtain an appropriate upper bound for ,Xs{ %) by the similar way of Lemma
4 as Callaert et al. [1] and Lemma 3 as Maesono[6]. The bound and the proof of it are
rather complicated, and will be omitted here.
In addition to (C1), we assume that
(C2) .11‘2‘ n(t)] <1 and %Hﬂ' u(t)] <1.
Then by the same arguments which have been described in Callaert et al. [1] pp308—
309, we can prove that (II) is o(N") under the conditions (C1) and (C2).
Let us define
;(xl, Xy)= W, O(xh xz)_{ (r—2)/(r—1) } [wl, olacy)+ W, o(x2>]
ﬂ(yl, y2)= W, 2(y1, Z/z)_" (s—2)/(s—1) * [wo, 1(y1)+ W, 1(3/2)]-
Then if we assume the following complicated condition, it will be possible to show that
(M) is o(N7Y).
(C3) There exist positive constants ¢;<1 and ¢,<1 such that for u=[m®? and
v=[n"], where 0<a<1/8 and 0<8<1/8,

P(IE[epr it(ks, ojil{(xl, X))
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+k1, 1j=Zv;Hgl, 1(X1; Yj))HXuH, oty Xmy Yoir, -0 Yn]l§cl,
or, |E[exp{ lt(ko, 2j=§4|r1'u(yl’ YJ)

+k1, 1j=§+1g1, 1(Xj; Yl))” Xut1s St Xm, Yo, =00 Yn]' §62>

21—0<7V~1-(}g—N>

uniformly for all t€[Ni/logN, NlogN].
This is an extension of the conditions which are given in Callaert:-et al. [1] and
Maesono[6]. It may be hard to check the validity of (C3) in most of the examples en-
countered in statistics. Then it is desirable to obtain simple condition which ensures
(I) =o(N7Y).

From the discussion above, we have
THEOREM. If the conditions (C1), (C2) and (C3) are satisfied, then
Sgp I P(U;n,anm, n.S_x)“ Qm, n(x)| = O(N_l)-

Remark. Instead of condition (C1), the asymptotic expansion may be valid under the
existence of a fourth moment of kernel A. Lin[5] has proved it in the case of one-sample
U-statistics with kernel of degree two.
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