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Abstract

The purpose of the present note is to derive certain combinatorial identities from the
evaluation of definite integrals. As an advantage of this method, we can obtain simultaneous-

ly two different identities from a definite integral as shown in the Theorem.

1. Evaluation of the integral I(n).
Let
3
Ip(n)=[ (1+cosx)'cos’xdx (n, p=0, 1, 2, ).
In this section we are exclusively concerned with obtaining the expressions of I(n)
(p=1, 2, 3, *-+)in terms of I(n). First of all we shall get explicit expressions for I(n)

itself in three forms.

Lemma 1. For any positive integer n,

(1) Io(n)zznln(z: )” on (2n )g (Zk(']::":)l)"
@ =2 (F ) 1L R
2 7] —1)*
B g 2 e B 2

where in (3) the square bracket denotes the integral part function.

Proof. In the case n=1, the validity of (2) is easily verified if we agree with the
usual convention that the empty sum means O, and in the same case it is easy to see that
(1) and (3) also hold. Hence, in the sequel, we may suppose n=2.
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By the integration by parts we have

V4

L(n)= _[ *(1+cosx)lcosxdx

b/
z

== [(1 + cosx)"sinx]j%— n [ (1+cosx)* 'sin‘xdx =1+ n{L(n)— L(n).

Thus
_n 1

(4) L(n)———n+llo(n)+——n+1.
On the other hand, it is clear that
(5) I(n+1)—I(n)=L(n).
From (4) and (5) we get

_2n+1 1
(6) Lin+1)= poprig L(n)+ i1
which implies

2"nl(n+1)! _ 2 n—1)n! 2"(n!)?
Gnt+1n Bt V="5 =3 bln)+ 5o Thp

which, in turn, implies

2" (n—1)!n! 2Rk k41)! _Zk_l(k—l)!k! _n=l 2K E1)
2n=1)! Lin)—L)=5| er+1 BTV 5 W= or 1

that is,

2 (n!)? _ no) MK xo, e 2K(k))?

el MW=+ 1+ L =5t 2ok
This completes the proof of (1).

In the meantime, from (4) it follows that
_n+1 1
(7) I(n)= P L(n) ot
Thus, substituting (7) into (5), we have
_n+2 _n+1 1

namely,
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1
n(n+2)°

(n+1)2n+1)

L(n+1)= n(n+2)

L(n)—

7, [] 2
Multiplying the both members of this equality by 2((72172—_(1_711_)*;2) we have

_2"Y(n—1)¥(n+1)

2“(7&!)2(n+2)I1(n+1)_ =T

_ 2n—1)!n!
@2n+1)

@2n+1)

I1(n)

Hence

2" Y n—D)W¥(n+1)
2n—1)!

L(n)—2IL(1)

% 2" k) (k+2)

_2MYE—1DW(k+1) _ =1 2¥k—1)k!
217 k+1 N s

Lk+1) Sy (O] L Cen e

Noting L(1)=1+%, we get

Pain4+1) ., n=19%(k— 1)1k
n@n) I‘(")_<izr‘+2>_,§ CE+1) °

that is,

n+l,, \_1(2n\ z .\ _1(2n\=i28k—1)k!
n I‘(n)_zn( n )<2 +2> 2"( n )k;l @k+1)1 -

Substituting this result into (7), we conclude (2).
Finally we shall prove (3). It is known that ([1], 222)

(2n ){1+2§n_‘. (nl) !coskx].

1 -|—cos.7c)"=l

2"\ n Sn—kn+k)
Therefore
_[? noo_1(2n\[x_ & (n))? . kx
Io(n)—[ (1+cosx)'dx= 2,,( n ){ 5 +2;€§(n—k)!(n+k)lk°ln 5 ]
1(2n\[x & (nl)? . krm
_2"( n ){ 2 +2k>;1(n—k)'(n+k)'k°m 2 }
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_1{2n () 2n \(Z] (—1)*
—5( n }72("" 2"”‘( n )::Z;'o (n—2k—1Nn+2k+112k+1)"

Thus we show the validity of (3).

Remark 1. In addition to the above three results (1), (2) and (3) we have one more
expression for I(n) which is obtained through the expansion of (1+cosx)" by the bino-
mial theorem. In this manner we have (see Lemma 3 on p.25)

Io(n)=£'.( Z )[I[cos"xdx

2k+1

B B )

The comparison of (1), say, and the fourth result thus obtained yields two identities

B0 ()

Y ) -1 2%(k1)
§0(2k+1 k+101 zn( )§(2k+1)

=%]( n )[ cos“‘xdx+[Z]( n )/ cos*"'xdx

=

(8)

However, this method to obtain two identities from the evaluation of I(n) in two ways is
what we wish to describe in this note from a general point of view. Thus we omit the
fourth form for I(n) in Lemma 1, and (8) is a special case of the results which will be
obtained later.

Remark 2. As a by-product of Lemma 1, we obtain the following identity :

i ME+INE—1Y 2"
n

Because from (1) and (2) it follows that

L(zn)+1(2n)n-' 2%k’ _ 1 /Zn) 1 _1_(2n)"-*2"(k—1>!k1
o o @k+1t"2"\n ) n 28\ n [l @k+1) °

which implies
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_I_(Zn )n-lz"(k+1)!(k—1)! =_1_(2n )_L
2\ n )i Qk+1) 7\ n n’

From this result we obtain (9) at once.

Remark 3. By making use of the Stirling’s formula, we observe

2 __WVr (as n—>oo)
n(2")= nor ’
n

.. a .. . .
where @»= b, means lim>—=1. The combination of (9) and the last asymptotic relation
n )

yields

= 2"Mn+1)(n—1)!_
2 entr b

Remark 4. Similarly, the combination of (1) and (3), also that of (2) and (3) imply

() 2 ek —Din+ 2k + D2k +1)

2R 2t 1ok 1)k
= Q2k+1)! n(zn) 243 @Qk+1n -
n

Lemma 2. For any positive integer D, there holds the following relation

_ Aln) Bg(n)
1 L=t 2t "W e Mt 2yt
where AJn) and By(n) are polynomials in n and
@y deg An)=p, deg B(n)=p—1.

Moreover, the sequences of polynomials { A n)} and { B,(n)} satisfy the following recurrence re-
lations :

Apin(n)=2n+1)An+1)—(n+p+1)Aln),

19

Bo(n)=A n+1)+(n+1)Bn+1)—(n+p+1)Byn),
with
13 An)=n,  Bi(n)=1.

Proof. The proof of (10 proceeds by induction in . When p=1, (10 is clear from (4)
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and (13. Suppose (10 be true for some positive integer p. Then,

T

Ip+1(n)=[T(1 +cosx)'cos” ' xdx=I,(n+1)—I(n)

Aln+1)

_ Bsn+1)
" (n+2(n+3)-(n+p+1)

n+2)(n+3)---(n+p+1)

Io(n+1)+(

B Agln) Lin)—
(n+1)(n+2--(n+p) "™ T

Bg(n)
n+1)(n+2)-(n+p)

Therefore in view of (6) and (12 we have
(n+1)(n+2)(n+p+1)1p+1(n)

=(n+1)Axn+1)L(n+1)+(n+1)Bin+1)—(n+p+1)A(n)l(n)—(n+ p+1)Byn)
={2n+1)An+1)—(n+p+1)A,n) {I(n)

+A n+1)+(n+1)Bn+1)—(n+p+1)Byn)

=Ap+1Io(n)+Bp+1(n)-
Hence (10 is true for p+1. This completes the proof of (10).
Next we shall prove (11) also by induction in p. When p=1 (1) is clear from (3. Sup-
pose (11) be true for some positive integer p. Then we may put
Ayn)=a,n’+(lower terms ), a,*0,

B,(n)=ben® '+ (lower terms ), bo=0.
These relations together with (12 imply
Api(n)=2n+1)a.n’+ lower terms )—(n+ p+1)(a,n’+ lower terms )

=ao,n’*'+(lower terms ),
and
Boii(n)=(a,n®+ lower terms )+(n+1)(ben® '+ lower terms )
—(n+p+1)ben '+ lower terms)
= a,n°+(lower terms ).

Thus deg A,+1(n)=p+1 and deg B,.i(n)=p. Therefore (1) is proved and this completes
the proof of Lemma 2.

Remark. We may find the polynomials Ayn) and Byn) (p=1, 2, 3, -:*) on the
basis of (12 and (13. The first six polynomials Ay(n) and those of B,(n) are as follows :

An)=n, An)=n*+n+1, Ai(n)=n*+3n*+5n,
(14 (n)=n*+6n*+17n*+12n+9, As(n)=n*+10n*+45n°+80n*+89n,

A,
Ad(n)=n*+157°+100n"+315n°+574n*+345n+ 225,
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3 {Bl(n)=1, By(n)=n, Bi(n)=n*4+2n+4, B(n)=n*+5n*+13n,
15

Bs(n)=n'+9n°+37n*+48n+64, Bsn)=n’+14n'+87n*+238n°+389n.
2. Derivation of the combinatorial identities.
In this section we derive two combinatorial identities from a definite integral dealt

with in section 1. We require two simple lemmas.

Lemma 3. For any non-negative integer n

5 2n\ r«
[ cos’"xdx=( n )W’

T 2n
T 2
f cos™'xdx=——"""F—.
0

(2n+1)< 2:)

Lemma 4. Let a, b, c and d be rational numbers. If ar+b=cn+d, then a=c
and b=d.

Lemma 4 gives us a clue to conclude two identities from an identity.

Theorem. Let D be any even positive integer. Then

3, \(2EtDY 1(2n) Agn)
9 éo(zk X k+%)W = A Jar e
[’n‘f‘l‘] n \ 92k+p
1 k=o(2k+1 ) 2k+p
(2k+p+1)( k+%)
_ L(Zn\ cndgn) 4 Bg(n)
— o\ n [(n+1)n+2-(n+p) (n+1)n+2)--(n+p)

Furthermore, let D be any odd positive integer. Then

S YL S A 1 (2n) Alln)
ua k=o(2k+1)( 1s+£'2tl Joe = 2\ n [(n+ D(n+2)-(n+p)
%] n\ 22k+p—1
19 kgo( 2k | 2k+p—1
(2k+p)( k+p—2—1 )

2n \ CnAp(n) Bp(n)

1
on T nt2--(ntp)

- 2"( n [(n+1)(n+2):-(n+p)
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where A n) and By(n) are given by (12 and (13 in Lemma 2, and Cyn is given by

n-1 9 (k|)
on= Sk + 1T

Proof. We shall prove the first part only of the theorem, since the proof of the
second part can be carried out in a similar fashion.

Let p be an even positive integer, so we may put p=2m, say, where m is a posi-
tive integer. Then, in view of Lemma 3, we have '

I{n)= f (14+cosx)'cos’xdx= Z‘.( k ) l T cos™ ™ pdx

2 z
= (272 )[ cos“‘””‘xdx-i-Z( n )chos”‘””‘“xdx

2k+1
___”%( n)(2htem) ] +[21( \ geveim
=0 2k+2m+1
=\2k\ k+m |2 2k+1 / 2k+2m+1)(21’§+2m)
+m

S

. ] n 2k+p 1 [ ] \ 22k+ﬂ
“”M(zk )( k+g )22k+ﬂ+1+ 2 (2k+1/ 2k+p\"
(2k+p+1)( k+%)

On the other hand, by (1) and Lemma 2

Aln) (2n )”
(n+1)(n+2)-(n+p2*'\ n

I{n) =

CrAn) 1 IZn) By(n)

+(n+1)(n+2)-"(n+p)2"\ n /| (n+1)n+2)(n+p)

Taking into account of Lemma 4 and the last two equalities, we get (16) and (17 im-
mediately.

Remark 1. We mention the following results which are easily obtained from (14), (15
and the Theorem.

AN ot - 2 ittt oz

7 2k+4 1{2n\n'+6n°+17n*+12n+9 .
Z(2 )( k+2 )2 ( n [+ Dn+2kn+3fn+ap  (P=4in09)

—
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g/ \ Q2+t _caf2n\ n’+n+1l n .
k=o(2k+1/ 2k+2 ( n [niDn+2  nidmtz: (P=2inl?)
(2k+3)( b1 )
[n'%l]( no 2%k =_C_g(2n\n‘+6n3+17n2+12n+9
=o\2k+1)/ 2k+4\ ¢\ n [(n+1)n+2(n+3)n+4)
ek+5)| 2,
n’+5n°+13n .
T Dn+2nt3nts), P=4inl)

2k+2\ 1 _ 1 (2n) =
k+1 Ezkﬂ 2n—1\ n /n+1,

(p=1 in (19)

2k+4\ 1 1

(2 n\ n*+3n’+5n (p=3 in 18)

2 [zn+3 1 / n+l n+2(n+3)
[—'%]( n 92k c (2n n )
7 (p=1 in 09)
A2 gy (2] Thn InET AL
%( n \ 92k+2 zﬂ(zn\ n+3n2+5n
= 2k}(2k+3)( 2If+2) 2"\ n J(n+1)n+2)(n+3)
+1
n’+2n+4 L
T+ 2 +3) (p=3 in (19).

Remark 2. When p=0, taking into account of (10, it is natural to interpret

Ap(n) =1 d Bp(n)
m+1Dn+2)—(n+p) - 2 a+rDn+2)-(n+p)

0 =0,

in other words,

A n)=1 and BJn)=
Under these conventions @0, (16) and (17 in the Theorem still hold when p=0, since in
this case (16 and (17 reduce to (8), which were established earlier. Thus, as already men-
tioned in section 1, (8) is a special case of the Theorem.

Remark 3. In the proof of the Theorem, if we use (2) or (3) instead of (1), we obtain
similar results. But we omit the details here.

Remark 4. Along the same line of arguments, we are also able to derive simul-
taneously four identities from a definite integral. The details will be published elsewhere.
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