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Abstract

On his recent paper [14], M. Matsumoto showed that a slope of a mountain is a Finsler
surface with respect to a time measure. Suggested by this result, we discuss a Finsler space
with an (a, B)-metric of type @?/(a — ).

1. Matsumoto spaces

A slope of a mountain is represented as the graph § of a differentiable function B=
fG&h &%), where (x', 4%, xs) is a rectangular coordinate system in a three-dimensional
Euclidean space. We put =%, and 0,= 90 /9% Then a Riemannian metric @ is in-
duced on S by

(1.1) a (x,9) = 1) 2+ OB 2+ (1 y' +62 594 V2,
where x= (x'), y= ("), and 6,= 9, f. We put
(1.2) B (x,y) =b1y1+b2y2.
When a man can walk » meters par a minute on a horizontal plane, how many minutes
does it take him to walk along a road on S ?
Recently, Matsumoto [14] showed that the man will walk in s = fL(x (1), y(@)dt

minutes along a road x(f) on S, by taking L as

(1.3) L=a?/(va—wph),
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where 2w is the gravitational constant, and thus a slope of a mountain is regarded as a
Finsler surface with such a time measure L.

As was also pointed out by P. Finsler himself in his letter to Matsumoto (cf. [13,
14]), a time measure is thought to be a typical model of a Finsler metric. Moreover, it is
noted that (1.3) is an (@, B)-metric. The notion of (@, B)-metric was introduced
by Matsumoto [12] and has been studied in detail. As well-known examples, there are
a Randers metric @ + 8 [20], a Kropina metric @ %/ 8 [9, 10] and a generalized Kropi-
na metric a™ %!/ 8™ [3], whose studies have greatly contributed to the growth of Fins-
ler geometry, so the metric of type (1.3) seems to be interesting as a new example of
(a, B)-metrics.

Since L=a?/(va —wpB)=(a /v)%/ {(a /v) — (wB/v*)}, we shall normalize (1.3)
as

(1.4) L=a?/(a—p8),

and taking a general Riemannian metric @ and a general non-zero l-form B on a
general differentiable manifold M, we shall define as follows.

Definition 1.1. On an n-dimensional differentiable manifold M, an (@, B)-met-
ric L of type (1.4) is called a slope metric or a Matsumoto metric, and then a Finsler space
(M, L) is called a Matsumoto space.

In the present paper dedicated to Prof. Dr. Makoto Matsumoto, treating the above
space we shall introduce some of his great achievement in Finsler geometry. In §2 and
§3 sequent to this introductory §1 we shall give respective conditions that a Matsumoto
space be conformally flat (Theorem 2.2) and be projectively flat (Theorem 3.1). In §4
we shall treat the case of two dimensions and give a condition that a Matsumoto space
be a Landsberg space (Theorm 4.3). In order to obtain the condition, we shall reform
the expression given in [3] for the derivative I, of the main scalar 7, and give a condi-
tion that a Finsler space with general (@, B)-metric be a Landsberg space, in a more
convenient form (Theorem 4.1).

A Matsumoto space may be thought to have an intermediate position between a Ran-
ders space and a Kropina space. But, the conditions obtained in Theorem 2.2 and
Theorem 4.3 are the same as in the case of Randers space (Remark 2.1, Remark 4.1),
while the one in Theorem 3.1 is much stronger than in each case of Randers space and
Kropina space (Remark 3.1).

The terminology and notation are referred to Matsumoto [13] , and also to
Ichijyo-Hashiguchi [7] (in §2) , Matsumoto [17] (in §3) , and Hashiguchi-Hojo-
Matsumoto [3] (in §4, where Ao, A% and 412 are modified).

Throughout the present paper we shall effectively use the following Propositions.
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Proposition 1.1.  The derivatives of Matsumoto metric L with respect to @ and B are given

by
(1.5) a(a—PB)L,=(a—2B)L, (a—B)Lp=L,
(1.6) (a—B)%Leg=2L, (a —B)°Lpss=6L,

where La =0L/0 a,Lp=0L/0 B,Lpp=00Lp/0 B, Legsp=0Lps/ L.

Proposition 1.2. Let P(x, »), Q(x, »), R(x, y) be functions of x* and y' satisfying PR+ Q
=0. If P and Q are rational functions with respect to ¥', and R is an irrational function with re-
spect to y', such as @ and @ —2 f3, then we have P=0, Q=0.

The authors wish to express here their sincere gratitude to Professor Dr. Makoto
Matsumoto for the invaluable suggestions and encouragement.

2. Conformally flat Matsumoto spaces

A Finsler space (M, L) is called conformally flat if for any point p of M there exist a
local coordinate neighbourhood (U, x) of p and a differentiable function & (x) on U
such that ¢? L is locally Minkowski. In order to get a condition that a Matsumoto space
be conformally flat, we shall find a condition that a Matsumoto space be locally Mink-
owski, by Kikuchi’s method [8] in the case of Randers space.

In a Matsumoto space (M, L), where L= a?/(a — B), we put

(2.1) a = (a;(x) )2, B=b;(x)y'

Let BI' = (G}}, G%, 0) be the Berwald connection of (M, L) and I'=(7};) the Rieman-
nian connection of the associated Riemannian space (M, @) . The k-covariant dif-
ferentiation with respect to BI" is denoted by “” and the covariant differentiation with
respect to I' by “v” . Since BT satisfies L. ;=0 and y’. ;=0, we have

Li=a Lo+ B Le=2a? (g ,y¥) a Lo +2(b;4y) a’Lgl =0,
so using (1.5) we have from (@ — f)L ;=0
(ag, 12) (@ =2 8) +2(b; 1 »") a *=0.
If (M, L) is a Berwald space, Gj; are independent of y', so a; ;)% and b, ;" are

polynomials of . Thus from Proposition 1.2 we have ay ;»'¥ =0 and b; ;y'=0, that is,
az+=0 and b; ,=0, which yield Gj4= 7 and V;b;=0. Then the h-curvature tensor
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Ky of BI' coincides with the curvature tensor R, of I'. Therefore, if (M, L) is
locally Minkowski, then K, vanishes, so we have R, ;x=0. As was shown in [4], the
converse is true for general (a@ , B) -metrics. Thus we have the same result as
Kikuchi's Theorem for a Randers space.

Theorem 2.1. A Matsumoto space is a Berwald space if and only if 7 1b;=0 is satisfied.
A Matsumoto space is locally Minkowski if and only if R} ;=0 and ~7;b,=0 are satisfied.

Recently, Ichijyo-Hashiguchi [7] showed that in a Finsler space with general (@,
£) -metric there exists a conformally invariant symmetric linear connection MI" =
(M), and gave a condition that a Randers space be conformally flat in terms of MI.
We put (a¥) = (a5) 7, b’=d"b,, and b= (b)) 2. My is defined by

(2.2) Aljik—: yjik+ 81]Mk+ 8ikA4j—Mdjk,

where M;= (1/6%) "7 b;— (V') b;/ (n—1)} , M'=a"M,. We denote by %/ and M,
the covariant differentiation with respect to MI" and the curvature tensor of MI
respectively. Then based on Kikuchi’s conditions R,l"]-k=0 and V;b;=0 it is shown that
a condition that a Randers space be conformally flat is

(2.3) My =0, N7 My=<7 ;My, 7 ih,=— Myb;
In the same way we have from Theorem 2.1
Theorem 2.2. A Matsumoto space is conformally flat if and only if (2.3) is satisfied.

Remark 2.1. It is remarkable that the condition (2.3) is given in the tensorial
form expressed in terms of the given metric itself. Furthermore, the condition (2.3) is
sufficient in order that a Finsler space with general (@, B )-metric be conformally flat
(cf. [6]), but it is also necessary in Finsler spaces with (@, B)-metric of type that
locally Minkowski spaces necessarily satisfy Kikuchi's conditions R,%=0 and ¥ ;6,=0.

Recently, Matsumoto [18] called a locally Minkowski space satisfying R, =0, Vb
=0 flat-parallel, and based on his recent research [16] of the Berwald connection of a
Finsler space with (@, ) -metric he gave a useful method to verify if a Finsler space
with (a , @) -metric be flat-parallel. It is shown there that a locally Minkowski
Matsumoto space is flat-parallel and contained in more general examples.

Locally Minkowski spaces constitute a single but quite wide class in Finsler spaces.
It is interesting to find a special subclass closely related to the given metric, such as the
class of Finsler spaces with flat-parallel (@, B8)-metric. As another interesting exam-
ple the notion of 7-Minkowski space is discussed in Matsumoto’s recent paper [15] in re-
lation to the 1-from metric due to Matsumoto-Shimada [19].
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3. Projectively flat Matsumoto spaces

A Finsler space (M, L) is called projectively flat or with rectilinear geodesics if for any
point p of M there exists a local coordinate neighbourhood (U, x) of p in which the
geodesics can be represented by n-1 linear equations of x. A condition that a Randers
space be projectively flat was given by Hashiguchi-Ichijyo [5], where discussions were
based on the behavior of the eqﬁations of geodesics under the change @ = a + 3, but
using a beautiful method developed in Matsumoto’s recent paper [17] we shall here find
a condition that a Matsumoto space be projectively flat.

In a Finsler space with (@, B)-metric we define further

ir

[p— — L7 — r
s5=a"sy, si=b's, Vik=an ¥k

Then, by [17, Theorem 1] a Finsler space (M, L) with (@, B)-metric is projec-
tively flat if and only if for any point p of M there exists a local coordinate neighbour-
hood of p in which 7 /; satisfies

(3.1) (7 o'o— 7000y @?)/2+ (a Lg/La)s
+ (Laa/La) (C+ (1’7’00/2/8> (azbi/ﬂ_}’i) =0,

where a subscript 0 means a contraction by »' and C is given by
(3.2) C+(a’Lg/BLa)sot (@ Laa/B?La) (a?— B2 (C+ ar0/2B)=0.
Since a@®Lao= B?Lgp, the formula (3.2) is rewritten in the form
(3.3) 1+ (Lop/ @ La) (@ B9 (C+ ana/2B) = (a/28) oo (2@ Lg/La)sl.
Now, let (M, L) be a Matsumoto space. Then (3.3) becomes from Proposition 1.1

(3.4) 2B 1(1+26%) a =3B} (C+ ano/2B8)=(a—B) {(a —28)r0—2 a 5.

Substituting in (3.1) from (3.4) we have from @?L o = B %L sp and Proposition
1.1

(3.5) [(1+26%) @ =3B} {(a —28) (a7 oo— 7 000)") +2 a*sio}
+2a {(a—28)rp—2a’s (ahi— By) =0,

which is written in the form Pa + Q=0, where
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P=—(5+45%) B (a*7 go— 7 000y") +2(1+26°) a*so—4(a’so+ Broo) (@'~ By),
Q=1(1+26%) a®+6 B (a®7 go— 7 o00y) —6 a* Bs'o+2 a’rpy (a®bi— By).
Since P and Q are polynomials of ', if (3.5) is satisfied, we have P=0, Q=0 from
Proposition 1.2.
First, it follows from Q=0 that 827 o0y has a factor @ so we can put

(3.6) Y 000=Yoa® (vo=v,(x)y).

Substituting in P from (3.6) it follows from P=0 that 8 %7y has a factor a? so we
can put

(37) 700 — P (x) az.
Substituting in Q from (3.6) and (3.7) we have from Q=0
(3.8)  {(1+26%) a®+6B2% (7 oo— voy) —6 a®Bso+2a?P (ai— By) =0,

from which it follows that B2(7¢o— Y05’ has a factor a® We can put ¥¢o— Voy'=
A#(x) a@? but contracting this by y;=a; y we have from (3.6)

(3.9) Yo'o= Yo',
that is,
(310) 7jik= 33 le+ Sik Vj,

which shows that the associated Riemannian space (M, @) is projectively flat.

Next, from (3.8), (3.9) we have P a?'= B (3so+ £ )). Since a? is positive
definite, we have © =0, and so s%5=0. Hence, we have r;=0, 5;=0, from which ¥V,
=0 follows.

Conversely, if ¥;6;=0, then we have rp0=0, s'%9=0, and so=0, so (3.5) follows from
(3.9) and v;5;=0. Thus we have proved

Theorem 3.1. A Matsumoto space (M, L) is projectively flat if and only if the associated
Riemannian space (M, @) is projectively flat and 7 6;=0 is satisfied.

Remark 3.1. A Randers space (M, a + B) is projectively flat if and only if the
associated Riemannian space (M, a) is projectively flat and s; = 0 is satisfied
(Hashiguchi-Ichijyo [5], Matsumoto [17]). On the other hand, a Kropina space (M,
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a?/ B) is projectively flat if and only if for any point of p of M there exists a local
coordinate neighbourhood of p in which 7 j; is written in the form

(3.11) 7jik: 89 Vk'i" Sik Vj'_ (Siajk+birjk)/b2,
where s'=4'"s,, and the condition

2 _
(3. 12) b Sg'j—bisj_bjsi

is satisfied ([17]). It is noted that the condition of Theorem 3.1 is stronger than the
one for a Randers space and is also stronger than the one for a Kropina space.

4. Two-dimensional Landsberg Matsumoto spaces

A Finsler space (M, L) is called a Landsberg space if the second curvature tensor
P)} of the Cartan connection CI" of (M, L) vanishes. Such a space of two dimensions
was first considered by Landsberg [11], in the process of a trial to generalize the
Gauss-Bonnet theorem in the surface theory of Gauss to a general two-dimensional
variation problem. In this last section, by the method treated in Hashiguchi-Hojo-
Matsumoto [3] we shall find a condition that a two-dimensional Matsumoto space be a
Landsberg space.

A condition that a two-dimensional Finsler space (M, L) be a Landsberg space is
generally given by I,=0, where I is the derivative of the main scalar / with respect to
the are-length s of a geodesic (Berwald [1, 2]). We shall first give a convenient
expression for I, in the case of general (a, B)-metric L. Around any point of M we
refer to an isothermal coordinate system, with respect to which @ is written in the form

(4.1) a =a(x) #, where 2= {(!)%+ (%)% 12
Let 2 be 22 =)% z°=—)'. Putting ¥ =b, 7, and

(4.2) E=aL,+7%Lgg,

the main scalar 7 is given in [3, Proposition 1] by

(4.3) I=—3ELo)+LE} / 12(LE®) %,

where L(y=7Lg, E,)=7 Eg— B Ey, so we have

4.4) I=—7 3(aLalg—BLLpg)+Y?BLaLpg+LLpgp)l/2(LE})YVY
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It is noted that 7 is a (0) p-homogeneous function of @ , 8 and 7, and the relation
ale + BIs+ 7 I, =0 is satisfied.
Denoting by “,;” the differentiation by #, we put
A= a,jyf——*Ao a , where Ap= (a,j /a))*j,
*=a,d=A%a, where AY=(a,/a) 2,
b=1{(b1) %+ (b2) 4 %, b1o= (br,2—b21) /d’,

c=b/a, Co=cc,;y,

where the notations Ag, A%, and b1z differ with the definition Ao=a,jy7, Ab=a,; 2, bio=
b1,2—b2,1 in [3]. Then the derivative I, of / is given in [3, Proposition 4] by

(4.5) (LEY)I,=|E(AY —Ca)+HapBlI.+ E(BY —CB)+HF a% I,
where H is given by
(4.6) H=A%aLa—biza’Lg—X7 Lpp.

We shall reform the expression (4.5) for I, in a more convenient form. It is noted
that @, B and 7 satisfy

(4.7) B2+ 7vi=Fa’

Differentiating the both sides of (4.7) by ' and contracting by ', we have BB +C7 =

Afa+Cya’. Multiplying this by @ and B respectively, and paying attention to (4.7)

we have

(4.8) YyAY—Ca)=a (XB—Coa?), v (BY —CB)=a*(*X—CoB).
Substituting in (4.5) from (4.8) we have

4.9) (LEY%/ a)l,.= (EX+HY?)I++CoEa?ly,

where we put

(4.10) I«=PBlo+fals.
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From (4.2) and (4.6) we have EX+HY = a (YLa—b1z@7 L), where
(4.11) Y=X+A4%7 = {(ab;,;—a,;b;) y¥ +a, b2} /a.

Thus we have obtained a new expression for I,

(4.12) (LEY?/ a®)I,= (YLa —biz2a@VYLg)Isx«+ CoEY Iy.
Thus we have

Theorem 4.1. A two-dimensional Finsler space (M, L) with (@, B) -metric is a Land-
sberg space if and only if, with respect to the referred isothermal coordinate system, the following con-
dition is saisfied:

(413) (YLa—b1zayLﬁ)I*+CoE717=O.

It is noted that (4.13) is satisfied by Y=0, b12=0, Co=0. But we can show that
Co=0 follows from Y=0, b12=0. In fact, evaluating Y as a formula ofyi, we have from
Y:O, b12=0

a,1b1—a,2b2=ab1,1=—abz, 2,
(4.14)
a,1bsta,200=ab1,2=abz,1.

If we solve (4.14) with respect to a,1,a,2, we have a,;=ab,; /b, from which we have c,;
=0 and so Cy=0. Thus we have proved

Poposition 4.1.  (4.13) is satisfied if Y=0, b12=0.

From (4.14) it is shown that if Y=0, 5;2=0 then besides Co=0 we have b1,1+b2,2
=0. Conversely, if Co=0, b12=0, b1,1+bs,2=0 are satisfied, then we have (4.14) and
so Y=0. Thus we have

Proposition 4.2. Y =0, b12 =0 is equivalent to Co =20, b12=0, b1,1 + b2,2=0,
which means locally that ¢ is constant and there exists a differentiable function f satisfying b;= O ; f,
8181f+ 8282f=0

Thus, we have a sufficient condition that a two-dimensional Finsler space with
general (@, B)-metric be a Landsberg space.
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Theorem 4.2. A {wo-dimensional Finsler space (M, L) with (@, B)-metric is a Land-
sberg space if, with respect to the referred isothermal coordinate system (x'), b/a is locally constant,
and b; is locally a gradient vector of a harmonic _function of x'.

Now, let (44, L) be a Matsumoto space. Using Proposition 1.1 we have from (4.4)
(4.15) I=—37/2) {a?—5aB+4(B2+ 73} /{a?—3a B +2(B2+ 7?3} %2

Calculating from (4.15) and using (4.7) we have
(4.16) Ule=a (a—B), Ulpg=a (a—B)L, UYIy=—2a (a — )%,
where we put

U= 4/37) {a?=3a B +2(B%+ 72)}5?
L=2(1+87) a =158, I,=(1—16¢%) a +128, I;= (1+8/) a —6 3.
Then we have
(417) U1*=a(a—,3)(P1a,3+P2),
where P1=2(1+14¢%), P,=#(1—16°) a?—158°%

Since (¢ — B)2E=a {(1+2%) a —3 B} L, if (M, L) is a Landsberg space, we

have from (4.13) and (1.5)

(4.18) Ya—QYB+b2a?7 )} (PraB +P;) —2Coa?(Qr a B +Qz) =0,

where Q1=—9 (144, Qo= (1+27) (1487 a?+18 8% The condition (4.18) is
written in the form R; @ +R;=0, where

R1=YP,— (2YB +b12a%7 )P, B —2CoQ; a? B,
(4.19)
Ry=YP,a*B — (2YB +b15 a®7 ) P,—2CoQ; @®.

From Proposition 1.2 we have R;=0, R,=0. On the domain D= {(x, y); c#1/4},
we have Y=0, because YP; has the factor B from R;=0, and has the factor a? from R
=(0. Then from (4.19) we have
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b12P1 14 +2C’0Q1=0,
(4.20)
b12P2 4 +200Q2=O

Since P1Qz — P2Q1#0, we have 612=0, Co=0. By the continuity the conditions ¥=0,
b12=0, Co=0 are also satisfied on the boundary of D. On the exterior of D we have Ps
=—1582 Coy=0. Then from R;=0 we have (15+2P)) Y + b1, P, @27 =0. Since
b2 P1 a 27 has the factor B, we have b12=0, which yields ¥Y=0.

The converse is true from Proposition 4.1. Thus we have proved

Theorem 4.3. A two-dimensional Matsumoto space (M, L) is a Landsberg space if and
only if, with respect to the referred isothermal coordinate system (x'), b/a is locally constant, and b; is
locally a gradient vector of a harmonic function of x'.

Since a=1b/c, we can express L of a two-dimensional Landsberg Matsumoto space
(M, L) as L= (b/c)?#?/ {(b/c) # — B}. Thus by the transformation x'—x/c of the
isothermal coordinates, on a domain where ¢ is constant and b; is a gradient vector, we
have

Theorem 4.4. A two-dimensional Matsumoto space (M, L) is a Landsberg space if and
only if around any point of M there exists a coordinate system (x), with respect to which L is written
in the form

_ [0+ (6 1697+ D)
@I TG G 0N T 09 el )

where ¢ is a constant and b; is a gradient vector of a harmanic function of x".

Remark 4.1. It is noted that Y is staged in (4.13) instead of H in (4.5), and then
(4.13) is expressed as a linear equation with respect to Y, 12, Co, whose vanishment
characterizes Landsberg spaces. By Theorem 4.2 Finsler spaces with (@, 8)-metric
satisfying the condition given in Theorem 4.2 constitute a special class of Landsberg
spaces. Landsberg Matsumoto spaces belong to this class together with Landsberg Ran-
ders spaces.
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