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Abstract

On his recent paper [14], M. Matsumoto showed that a slope of a mountain is a Finsler

surface with respect to a time measure. Suggested by this result, we discuss a Finsler space

withan (α, β)-metricoftype α2/(α-β).

1. Matsumoto spaces

A slope of a mountain is represented as the graph S of a differentiable function x -

f(x , x ) , where (x , x2, x ) is a rectangular coordinate system in a three-dimensional

Euclidean space. We puty-i', and ∂i-∂/∂x¥　Then a Riemannian metric α is in-

duced on ∫by

1.1 α (x,y)- ¥(yl)2+(/)2+(bl/+b2/yを1/2

where x-(xi),y-(/'), and b(-∂,-/ We put

(1.2)　　　　　　　　　β (x,y) -b¥y +b2j2.

When a man can walk v meters par a minute on a horizontal plane, how many minutes

does it take him to walk along a road on S?

Recently, Matsumoto [14] showed that the man will walk in ∫- lL(x(t),y(t))dt

minutes along a road x(t) on s, by taking L as

(1.3)　　　　　　　　　　L-α2/(Vα-Wβ),
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where 2w is the gravitational constant, and thus a slope of a mountain is regarded as a

Finsler surface with such a time measure L.

As was also pointed out by P. Finsler himself in his letter to Matsumoto (cf. [13,

14]), a time measure is thought to be a typical model of a Finsler metric. Moreover, it is

noted that (1.3) is an (α, βトmetric. The notion of　α, βトmetric was introduced

by Matsumoto [12] and has been studied in detail. As welトknown examples, there are

a Randers metric α +β [20], a Kropina metric α2/β [9, 10] and ageneralized Kropi-

na metric α∽+1/β∽ [3], whose studies have greatly contributed to the growth of Fins-

ler geometry, so the metric of type (1.3) seems to be interesting as a new example of

(α, β)-metrics.

SinceL- α 7(vα -Wβ)-(α/vV召(α/*)-(wβhZ)上weshall normalize (1.3)

aS

1.4 L-a2/(a-fi),
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and taking a general Riemannian metric　α　and a general non-zeroトform　β　on a

general differentiable manifold 〟, we shall define as follows.

Definition 1.1. On an rc-dimensional differentiable manifold M, an (a , /3) -met-

ric L of type (1.4) is called a slope metric or a Matsumoto metric, and then a Finsler space

(Af, L) is called a Matsumoto space.

In the present paper dedicated to Prof. Dr. Makoto Matsumoto, treating the above

space we shall introduce some of his great achievement in Finsler geometry. In §2 and

§3 sequent to this introductory §1 we shall give respective conditions that a Matsumoto

space be conformally flat (Theorem 2.2) and be projectively flat (Theorem 3.1). In §4
●

we shall treat the case of two dimensions and give a condition that a Matsumoto space

be a Landsberg space (Theorm 4.3). In order to obtain the condition, we shall reform

the expression given in [3] for the derivative Is of the main scalar /, and give a condi-

tion that a Finsler space with general (α , β)-metric be a Landsberg space, in a more

convenient form (Theorem 4.1).

A Matsumoto space may be thought to have an intermediate position between a Ran-

ders space and a Kropina space. But, the conditions obtained in Theorem 2.2 and

Theorem 4.3 are the same as in the case of Randers space (Remark 2.1, Remark 4.1),

while the one in Theorem 3.1 is much stronger than in each case of Randers space and

Kropina space (Remark 3.1).

The terminology and notation are referred to Matsumoto [13] , and also to

Ichijyo-Hashiguchi [7] (in　§2) , Matsumoto [17] (in　§3) , and Hashiguchi-Hojo-

Matsumoto [3] (in弘where An, An and bu are modified).

Throughout the present paper we shall effectively use the following Propositions.
●
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Proposition 1.1, The derivative∫ ofMatsumoto metric L with respect to α and βare given

α(α-β)Lα-(α-2β)i (α-β)Lβ-L,

{a -p)2Lpf3-2L, (a -J3)3LB38-6L,

whereLa-3L/3 aJLp-dL/dfi,Lpp--3Lp/d/?,Lppp-3Lppl3/?.

Proposition 1.2. Let P(x,y) , Q(x,y) , R(x,y) befunction∫ ofxl andメ∫atisfying PR+Q

-0. IfP and Q are rational functions with respect toy¥ and R is an irrational function with re-

spedtoyl, ∫uchas αand α -2β then wehaveP-0,負-0.

The authors wish to express here their sincere gratitude to Professor Dr. Makoto

Matsumoto for the invaluable suggestions and encouragement.

2. Conformally flat Matsumoto spaces

A Finsler space (Af, L) is called conformallyflat if for any pointp of M there exist a

local coordinate neighbourhood ¥U, x) of p and a differentiate function a [x) on U

such that e L is locally Minkowski. In order to get a condition that a Matsumoto space

be conformally flat, we shall find a condition that a Matsumoto space be locally Mink-

owski, by Kikuchi's method [8] in the case of Randers space.

In aMatsumoto space (〟,エ), whereエ- α2/(α -β), we put

(2.1)　　　　　　　α - (*,wyy)1/2. β -bi(x)y.

LetBF- (Gh, Glh 0) be the Berwald connection of (M, L) and T-(/A) the Rieman-

nian connection of the associated Riemannian space (M, a). The /z-covariant dif-

ferentiation with respect to βr is denoted by ". and the covariant differentiation with

respectto F by "▽　　Since BF satisfies L.k-Q and〆.｣-0, we have

L,-α;kLa+β:*｣/>-(2α rMW0-少) αLα+2(W)α2Lβ -0,

sousing (1.5) wehavefrom (α-β)Lk-0

(%*yy) (α -2β)+2(W) α2-0.

If (Af, L) is a Berwald space, G/k are independent ofy¥ so a^kfy and bitkメare

polynomials oiy¥　Thus from Proposition 1.2 we have %u>y-0 and bi-kyl-01 that is,

%｣=O and bi-k=O, which yield G/k: γjk and ▽ bi=O. Then the A-curvature tensor
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Khjk of BF coincides with the curvature tensor Rhljk of F. Therefore, if (M, L) is

locally Minkowski, then Khljk vanishes, so we have Rhljk-0. As was shown in [4], the

converse is true for general (α , β) -metrics. Thus we have the same result as

Kikuchi's Theorem for a Randers space.

Theorem 2.1. A Matsumoto space i∫ a Berwald space if and only if▽ i,-0 i∫ ∫atisfied.

A Matsumoto space i∫ locally Minkowski if and only ifRhljk-O and ▽kbi-O are ∫atisfied.

Recently, Ichijyo-Hashiguchi [7] showed that in a Finsler space with general (α ,

β)一metric there exists a conformally invariant symmetric linear connection 〟r -

(Mfk), and gave a condition that a Randers space be conformally flat in terms of MT'.

Weput (aサ)-(fly) ¥ #-0%, and b-(bj>r)1/2. MLis defined by

(2.2)　　　　　　　M/k- 7/k+ 8^+ d^Mj-Ma*,-*.

where M,- (l/bz) ¥br▽A- (▽y)bj/{n-¥)上Ml-airMr. We denote by章and Mhjk

the covariant differentiation with respect to MF and the curvature tensor of MF

respectively. Then based on Kikuchi's conditions RhlJk=O and ▽kbi=O it is shown that

a condition that a Randers space be conformally flat is

(2.3)　　　　　Mk'Jk-0,号kMj-^7jMk,号kbj- -Mkb;.

In the same way we have from Theorem 2.1

Theorem 2.2. A Matsumoto space i∫ conformallyflat if and only if (2.3) i∫ ∫atisfied.

Remark 2.1. It is remarkable that the condition (2.3) is given in the tensorial

form expressed in terms of the given metric itself. Furthermore, the condition (2.3) is

sufficient in order that a Finsler space with general ( α , β) -metric be conformally flat

(cf. [6]), but it is also necessary in Finsler spaces with (α , β)-metric of type that

locally Minkowski spaces necessarily satisfy Kikuchi's conditions Rhljk=O and ▽A=0.

Recently, Matsumoto [18] called a locally Minkowski space satisfying Rhljk-0, ▽kbi

-Oflat-parallel, and based on his recent research [16] of the Berwald connection of a

Finsler space with　α, β)一metric he gave a useful method to verify if a Finsler space

with (α , βトmetric be flaトparallel. It is shown there that a locally Minkowski

Matsumoto space is flaトparallel and contained in more general examples.

Locally Minkowski spaces constitute a single but quite wide class in Finsler spaces.
●

It is interesting to find a special subclass closely related to the given metric, such as the
●

class of Finsler spaces with flat-parallel ( α , β)-metric. As another interesting exam-

pie the notion of T-Minkowski space is discussed in Matsumoto's recent paper [15] in re-

lation to theトfrom metric due to Matsumoto-Shimada [19].
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On Matsumoto's Finsler space with time measure

3.ProjectivelyflatMatsumotospaces

AFinslerspace(M,L)iscalledprojectivelyflatorwithrectilineargeodesic∫ifforany

pointpofMthereexistsalocalcoordinateneighbourhood(｣/,*)of/?inwhichthe

geodesiescanberepresentedbyn-¥linearequations`ofxl.AconditionthataRanders

spacebeprojectivelyflatwasgivenbyHashiguchi-Ichijyo[5],wherediscussionswere

basedonthebehavioroftheequationsofgeodesiesunderthechangeα-α+β,but

usingabeautifulmethoddevelopedinMatsumoto'srecentpaper[17]weshallherefind

aconditionthataMatsumotospacebeprojectivelyflat.

InaFinslerspacewith(α,β)-metricwedefinefurther

rォ-(Vi+▽A-)/2,∫u-(vA-
ri▽ib,)/2,

Sj-aSrj,Si-t)Sri,/jhk-O'hr'jh

Then,by[17,Theoreml]aFinslerspace(M,L)with(a,ft)-metricisprojec-

tivelyflatifandonlyifforanypointpofMthereexistsalocalcoordinateneighbour-

hoodofpinwhichγjksatisfies

(3.1)(>V｡-γ｡O｡flα2)/2+(αLa/Lαs｡

+(Lαα/La)(C+αroo/2β)(αwβ一夕)-O,

whereasubscript0meansacontractionby/andCisgivenby

(3.2)C+(a2Lp/pLa)so+{c*Laa/P2La)(a2bz-t3z){C+aroo/2P)-O.

SinceaLaa-ftLpp,theformula(3.2)isrewrittenintheform

＼
(3.3)ii+aββ/αLα)(αV-β蝣)¥(c+αroo/2β)-(α/2β)Irno-(2αL-b/Lα)∫o巨

Now,let(Af,L)beaMatsumotospace.Then(3.3)becomesfromProposition1.1

(3.4)2β¥(l+2b2)α-3利(C+αroo/2β)-(α-β)i(α-2β)nx)-2α2∫｡i.

Substitutingin(3.1)from(3.4)wehavefromaLaa-ftLbbandProposition

1.1

(3.5) i(i+2r)α-3β=(α-2β)(α2γ｡｡-　γ｡｡｡メ)+2αVol

+2α 1(α-2β)ro0-2α2∫｡を(α蝣v-βメ)-O,

which is written in the form Pα+0-0, where
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p--(5+4r) β (α2γ00-　γoooy)+2(l+2｣2) α4∫i｡-4(α2∫.+βr｡｡) (α2bLβ/),

0- ¥(l+2b2) α2+6β2f (α2γO｡-　γ｡｡｡/')-6α :/?/｡+2α r｡｡< α2b｣βメ).

Since P and Q, are polynomials oif, if (3.5) is satisfied, we have P-0, <2,-0 from

Proposition 1.2.

First, it follows from Q,-0 that β2γ｡ooy has a factor α　so we can put

(3.6)　　　　　　　　γ000-リoα2 (リ0-リォ�"ォ/蝣).

Substituting in Pfrom (3.6) it follows from P-0 that β ro｡メhas a factor α　so we

can put

3.7 700-P (x) a<

Substituting in (Mrom (3.6) and (3.7) we have from Q-0

(3.8)　¥(l+2b2) α2+6β2‡ (γOO-リo/)-6α2β∫<｡+2α2p(α2bLβy)-O,

fromwhichitfollowsthat β2(γOO-リoyl) hasafactor α　Wecanput γoV yof

A '(*) α　but contracting this byyi-airf we have from (3.6)

3.9　　　　　　　　　　　　　　　γ00-リo〆,

thatis,

(3.10
>y*=*�",〟-+3¥v.

which shows that the associated Riemannian space (〟, α ) is projectively flat.

Next, from (3.8), (3.9) we have Pαv-β (3∫ ,+pメ). Since α2 is positive

definite, we have P -0, and so ∫*o=0. Hence, we have rfv=O, ^-0, from which V7-^

-0 follows.

Conversely, if Vi-0, then we have ro0-0, ∫*0-0, and ∫0-0, so (3.5) follows from

(3.9) and VyA,--O. Thus we have proved

Theorem 3.1. A Matsumoto space ¥M, L) is protectively flat if and only if the a∫∫ociated

Riemannian space ¥M, α ) is protectively flat and V/^-O i∫ ∫atisfied.

Remark 3.1. A Randers space (〟, α + β) is projectively flat if and only if the

associated Riemannian space (A/, α) is projectively flat and s^ - 0 is satisfied

(Hashiguchi-Ichijyo [5] , Matsumoto [17]). On the other hand, a Kropina space (M,
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a I/?) is projectively flat if and only if for any point ofp of M there exists a local

coordinate neighbourhood ofp in which 7jk is written in the form

(3.ll)　　　　　　>?*- ∂J vk+ ∂'* "/- (∫V+A'Vj*)/*2,

where sl=alrsr, and the condition

3.12
b2∫ij - biSj - bjSi

is satisfied ([17]). It is noted that the condition of Theorem 3.1 is stronger than the

one for a Randers space and is also stronger than the one for a Kropina space.

4. Two-dimensional Landsberg Matsumoto spaces

A Finsler space (M, L) is called a Landsberg space if the second curvature tensor

Phjk of the Cartan connection CF of (M, L) vanishes. Such a space of two dimensions

was first considered by Landsberg [11] , in the process of a trial to generalize the

Gauss-Bonnet theorem in the surface theory of Gauss to a general two-dimensional

variation problem. In this last section, by the method treated in Hashiguchi-Hojo-

Matsumoto [3] we shall find a condition that a two-dimensional Matsumoto space be a

Landsberg space.

A condition that a two-dimensional Finsler space (〟,エ) be a Landsberg space is

generally given by /j-0, where Is is the derivative of the main scalar / with respect to

the are-length ∫ of a geodesic (Berwald [1, 2]). We shall first give a convenient

expression for圭in the case of general (α , βトmetric上　Around any point of 〟we

refer to an isothermal coordinate system, with respect to which　α is written in the form

(4.1)　　　　　α -a(x)M, where M- ¥(/)2+(/):巨/2.

Letzlbez; -j2, z --yl. Putting γ-biz¥ and
l;i

(4.2)　　　　　　　　　　　E- aLaJc 7｣Lpp,

the main sea･lar ∫ is given in [3, Proposition l] by

(4.3)　　　　　　I-- ¥SELu) +LEu)¥召2(Z｣3)1/2巨

whereL(y)-γLβ ｣ォ-γEβ-βEγ sowehave

(4.4) /--γ 13(αLαLβ-βLLββ)十γ :(3LsLββ+LLβββ)I/12(LE>)1/2|.



Tadashi Aikou, Masao Hashiguchi and Kazunan Yamauchi

It is noted that ∫ is a (0)p-homogeneous function of α , β and γ , and the relation

aIa+ pia+ 7ly-0 is satisfied.

Denotingby "　the differentiation by xl, we put

A- α,jy-Aoα , where Aq- (a,j/a)y,

A*- α,i*-A%α , where A*0- (a,j/a)i?,

B- β,jy-bi,j/y, c- γ,jy-bi,jZy, x-B-Aoβ,

b- l(*i)2+ (b2)2( V2, b12- ^,0-b2<1)/a2

c-b/a, C0-cc,jy,

where the notations Aq, A%, and b¥2 differ with the definition Ao=a,jy, Ao=a,jどサb¥2-

6i,2-^2,i in [3]. Then the derivative L of/is given in [3, Proposition 4] by

(4.5)  (LEγ)/,-¥e{aγ-Cα)+Hαβ Ia+¥E(Bγ-Cβ)+Hczα　h,

where 打is given by

4.6 H-AlaLa-bi2g'Lb-X7Lbs.

We shall reform the expression (4.5) for圭in a more convenient form. It is noted

that α, β and γ satisfy

(4.7 pz+72-c a2.

Differentiating the both sides of (4.7) by xl and contracting by /, we have Bβ +Cγ -

Ac a+Co<*2. Multiplying this by ex and ft respectively, and paying attention to (4.7)

we have

(4.8)　7 (A7-Ca)-a (Z/?-Coォ2), 7 (B7-CP)-a2(c2x-cop).

Substituting in (4.5) from (4.8) we have

(4.9)

where we put

4.10)

(LEY2/a)ll- (EX+H7)U+CoEariy,

I*-Pla+cala.
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From (4.2) and (4.6) wehaveEX+H7- a {YLa-b12a7La), where

(4.ll)　　　　Y-X+A% γ - I U,-,了0>jbi)/y+aijbiZ^] /a.

Thus we have obtained a new expression for L

4.12) (LE72/a2)ls- (YLa -b12a7LB)l*+CoE7Iy.

9

Thus we have

Theorem 4.1. A two-dimen∫ional Fin∫lex space (M, L) with (α , β) -metric i∫ a Land-

∫berg space if and only if with respect to the referred i∫othermal coordinate sy∫tem, the following con-

dition is ∫aisjied:

4.13 (YLα-^12αγL8)I*+CoE7Iγ-0.

It is noted that (4.13) is satisfied by Y-0, b¥z-0, Cb-0. But we can show that

Cq-O follows from y-0, bu=0. In fact, evaluating 7as a formula of〆, we have from
Y-0, b12-0

(4.14)

α,1∂1-α,2∂2=α∂Ill-　-α∂2,2,

α,1∂2+α,2∂1=α∂1,2-　α∂2,1-

If we solve (4.14) with respect to a,1,0,2* we have a,j-ab,j/by from which we have c,j

-0 andso Cb-O. Thus we have proved

Poposition 4.1. (4.13) is ∫atisfied if7-0, blz-0.

From (4.14) it is shown that if 7-0, ｣12-0 then besides Cb-O we have #1,1+｣2,2

-0. Conversely, if Cq-0, bi2-0, ｣i,i+#2,2-0 are satisfied, then we have (4.14) and

so 7-0. Thus we have

Proposition 4.2. 7-0, *i2=O i∫ equivalent to C0-0, b¥z=0, b¥,1+^2,2=0,

which mean∫ locally that c i∫ con∫tant and there exi∫ts a differentiable function f∫atisfying bi= ∂ if

∂1∂1′+∂2∂2′=0.

Thus, we have a sufficient condition that a two-dimensional Finsler space with

general (α , β)-metric be a Landsberg space.
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Theorem 4.2. A two-dimen∫zonal Fin∫ler space (M, L) with ( α , β) -metric i∫ a Land-

sberg space if with respect to the referred i∫othermal coordinate sy∫tern ¥xl) , b/a i∫ locally con∫tant

and bt ∫ locally a gradient vector ofa harmonicfunction ofx¥

Now, let (〟,エ) be a Matsu皿oto space. Using Proposition 1.1 we have from (4.4)

(4.15) /--(3γ/2) α2-5αβ+4(β2+γ2)を召α2-3αβ+2(β2+γ:)(3/2

Calculating from (4.15) and using (4.7) we have

(4.1.6) UIa-a (a-0)/i, UIa-a(a-fi)l2, U7Iy--2a(a-/?)2/3,

where we put

U-(4/37) |a2-3a/?+2(/?2+72)i5/2

h-2(l+8c) α-15β 72-(l-16c2) α+12β h-(l+Sc2) α-6β.

Then we have

(4.17) uI*-a (a -/?)(/>!a/?+P2),

where />i-2(1+14c2)..pa^d-16c2) a2-15/?
Since (a -fi)2E- a j(l+2c2) a -sfi¥L, if (M, L) is a Landsbergspace, we

have from (4.13) and (1.5)

(4.18) IFα-(27β+^12α2γ)I Cpiαβ+P2)-2Coα2(aαβ+&)-O,

where払--9(1+4c2), <%-(l+2c2)(1+Sc) α　+18β　Thecondition (4.18) is
written in the form Ri a +R2-0, where

(4.19

Ri-YP2-(2Yβ+b12α2γ)plβ-2C｡払α2β,

R2-YPia2p-(27/?+bi2a27)p2-2CoQ2a.

From Proposition 1.2 we have /?i-0, /?2-0. 0n the domain D- ¥¥x, y)¥ c≠1/4 ,

we have 7-0, because YP? has the factor /? from /2i-0, and has the factor a from R2

-0. Then from (4.19) wehave



4.20)
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bizPi γ +2Cn払=0,

b12P2 y +2CoQ2=0.

Ill

Since PIQ2-P2払≠0, we have J12-0, C0-0. By the continuity the conditions 7-0,

#12=0, Co-0 are also satisfied on the boundary of D. On the exterior ofD we have P2

-15fi2, co-0. Then fromRi-0 we have (15+2P{)Yp+bxzPxa27-0. Since

^12Pia y has the factor /?, we have b¥2-0, which yields 7-0.

The converse is true from Proposition 4.1. Thus we have proved

Theorem 4.3. A two-dimen∫ional Matsumoto space ¥M, L) is a Landsberg space if and

only if with respect to the referred i∫othermal coordinate system (xl) , b/a is locally con∫tant, and b{ i∫

locally a gradient vector of a harmonicfunction of x¥

Since a-b/c, we can express I of a two-dimensional Landsberg Matsumoto space

(M, L) a∫ L- (b/c)zju2/ ¥(b/c) M - β仁　Thus by the transformation xl-xllc of the

isothermal coordinates, on a domain where c is constant and b{ is a gradient vector, we

have

Theorem 4.4. A two-dimen∫ional Matsumoto space (M, L) i∫ a Landsberg space if and

only if around any point ofM there exists a coordinate sy∫tern (xz) , with respect to which L ∫ written

in the form

(4.21)　　　エ-
k*i)2+ (*2)2i ¥(jy+ (fy

l(*l)2+ (62)2) 1/2脇y+レ2¥21 1/2- -c(blyl+b2.γ2)

where c i∫ a constant and bi i∫ a gradient vector ofa harmanicfunction ofxl.

Remark4.1. It is noted tbat Yis staged in (4.13) instead of〃in (4.5), and then

(4.13) is expressed as a linear equation with respect to Y, bu, Co, whose vanishment

characterizes Landsberg spaces. By Theorem 4.2 Finsler spaces with (a , /?) -metric

satisfying the condition given in Theorem 4.2 constitute a special class of Landsberg

spaces. Landsberg Matsumoto spaces belong to this class together with Landsberg Ran-

ders spaces.
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