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Abstracts

The present paper is a comprehensive report on Finsler geometry. In this paper, we

shall discuss on some topics in the differential geometry of Finsler vector bundles accord-

ing to Aikou [4].
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Introduction

The theory of Finsler spaces and generalized Finsler spaces have been studied by

many authors, and various important results have been obtained.

In Matsumoto [49-52] , the Finsler connection is defined as a connection of so-called

Finsler bundle and the geometry of Finsler spaces is developed by using it.

On the other hand, any Finsler metric or generalized Finsler metric is naturally

lifted to its tangent bundle TM by using an arbitary non-linear connection on TM, and

the lifted metric G becomes a Riemannian metric on TM. From this point of view, in

Miron [53-56] , a special linear connection on TM satisfying some conditions is intro-

duced as a Finsler connection and the differential geometry on ¥TM, G) is developed

with respect to this connection.

Also, in Ichijyo [31-36] , the geometry of tangent bundles over generalized Finsler

spaces is developed from the standpoint of G-structure on TM, and various important

and interesting notions are introduced and fruitful results are obtained. The connection

on TTM treated in Ichijyo's or Miron's theory is a special linear connection so-called

linear connection ofFinsler type in Matsumoto [51] , whose torsion are surviving.

In any point of view, it may be regarded as the geometry of some special vector bun-

dies over TM, and many of recent researches in this field are considered as the geometry

from this point of view (cf. Aikou [1-4] , Aikou-Hashiguchi [5-9] , Aikou-Hashiguchi-

Yamauchi [10] , Aikou-Ichijyo[ll] , Akbar-Zadeh [12] , Anastasiei [13, 14] , Asanov [15] ,

Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima, 890 Japan.
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Atanasiu-Hashiguchi-Miron [16] , Atanasiu-Klepp [17] , Cartan [20] , Hashiguchi [26-29] ,

Klepp[43], Nagano-Aikou[60], Oproiu[61] , Rund[62] , etc.).

The main purpose of the present paper is to study the geometry of Finsler vector

bundles, which are defined in the first section as some special vector bundles over TM,

and state some applications of it to conformal flatness of Finsler structures and in-

finitesimal automorphisms of some G-structures on TM.

The notion of Weyl structures on Riemannian manifolds has been studied by many

authors (cf. Folland[23], Higa[30]). As the analogy of it, we shall introduce the notion

of Fmsler-Weyl structures, and characterize the conformal flatness of non-Riemannian

Finsler structures in terms of it. Also we shall introduce a decomposition of TTM into

the Whitney-sum of Finsler vector bundles, which induce a natural G-structure on TM.

Then we shall consider infinitesimal automorphisms of some G-structures which are

obtained as the reductions of it, and characterize them in terms of Finsler connection.

Furthermore, in the last section, we shall consider the Lie algebras of them and state

some relations between the Lie algebras. The proofs of almost results are omitted.

The author wishes to express his sincere gratitude to Professor Dr. Radu Miron for

his scientific guidance and valuable suggestions. The author is also grateful to Professor

Dr. Mihai Anastasiei and Professor Dr. Masao Hashiguchi for their helpful comment and

encouragement. Lastly, the author wishes to express here his hearty thanks to "A. I.

Cuza" University of Iaァi for various supports during the author's stay in Iaァi.

1. Finsler vector bundles and Finsler connections

First in the present paper, we shall review the theory of connections on Finsler vec-

tor bundles, and state some basic notions in Finsler geometry. As to the general theory

of connections, we refer to Kobayshi [45, 46] , Kobayashi-Nomizu [47].

Let M be a differential manifold and K:TM-^M its tangent bundle. For an arbitrary

vector bundle E over M, the pull-back n*E is determined uniquely up to the isomorphic
classes. Then we shall define as follows:

Definition 1,1. A vector bundle F over TM is said to be a Finsler vector bundle

if it is isomorphic to the pulトback iz*E of a vector bundle E over M, that is, F⊆n*E.

We denote by iguv) the transition functions of E with respect to an open cover ¥U,

su) with local frame fields su- (si, '-,sn). We may consider any local frame field Su of

E as the one of Fon iz (U). Then the transition functions of Fwith respect to Su are

given by {guv -tt}.

Definition 1.2. A connection D on a Finsler vector bundle F is called a Finsler

connection on E.

We denote by F(F) the space of smooth sections of F. By definition, a Finsler con-

nection D on F is a linear mapping D:r(F)^>r(FョTTM*)satisfying the Leipnitz rule:

(1.1)　　　　　　　　　　　　D(婿) -df⑳M-ZW)
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foranyfunction/onTMandforany｣∈F(F).Theconnectionforma>u=(&>?)withre-

specttoSuisdefinedbyDsα-SβHereandinthefollowing,weusetheEinstein

summation.Then,foranysection｣∈F(F),thecovariantderivativeDqisgivenby

d^-weα+Eβ⑳Sα.

From(1.1),theconnectionforma)u-(fof)ofDsatisfiesthefollowingtransformation

law:

(1.2)(ov-guvdguv+guv(Duguv

Where[guv*isthetransitionfunctionsofE.

Conversely,aFinslerconnectionDonFisdefinedbythefamily¥a)u)oflocalI-

forms(ou-(o)<ァ)onTMsatisfying(1.2).

ThecovariantderivationDcanbeextendedtotheexteriorcovariantdifferential

D-T{FョAkTTM*)-+r(FョAk+1TTM*)by

D(E⑳甲)=(｣?)∧<p+?⑳dp

for?∈r(F)and<p∈r(AkTTM*).ThenthecurvatureformQu-{QS)withrespectto

su,whichisaEnd(F)-valued2-formonTM,isdefinedbyD2sα-SβQァ,andgivenby

(1.3Qf=da)1-0)冨<wg.

From(1.2),thecurvatureformsatisfiesthefollowingtransformationlaw:

Qv-guvQuguv-

IfthecurvatureformQuofDvanishesidentically,wesaythatDisflat.

AflatstructureinFisgivenbyanopencover{itl{U),su)suchthatthealltran-

sitionfunctions{guv-'TTjwithrespecttoSuareconstantmatrixes.AFinslervectorbun-

dieFwithaflatstructureissaidtobeflat.Thenthefollowingpropositionsareob-

●VIOUS.

Proposition1.1.AFinslervectorbundleFisflatifandonlyifitadmitsaflat

FinslerconnectionD.

Propositionl.2.AFinslervectorbundleF-7r*Eisflatifandonlyifthevector

bundleEoverMisflat.

Definition1.3.AFmslerstructuregonFisasmoothfieldofinnerproductsin

thefibresofF,thatis,itsatisfiesthefollowingconditions:

(1)gisapositive-definiteandbi-linearformoneachfibres,

(2)gG,り)isdifferentiablefunctiononTMforarbitrary｣,r?∈r(F).

Let(F,g)beaFinslervectorbundlewithaFinslerstructureg.AFinslerconnec-

tionDon(F,g)issaidtobemetricalorcompatiblewithgifitsatisfies

(1.4)dg(S,v)-g(Dァ,り)+g(S,Dり)

forarbitrary｣,r]∈r(F).
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Remark 1.1 (1) The principal bundle FM over TM associated to F is called a

Finsler bundle. As to the geometry of FM, we refere to Matsumoto [51].

(2) By our definition, Finsler geometry is considered as the geometry on the pulレ

back n*Eof E to TM. Of course, there are many discussions on Finsler geometry. For

example, in Kobayashi [44], for a hdIomorphic vector bundle over a complex manifold M,

the geometry of the pull-back p*E is considered, where p:P(E)-M is the projective
bundle associated E.

2. Non-linear connections

In the present section, we shall state the notion of non-linear connection and give
●

two usefull examples of Finsler vector bundles which give a decomposition of the tangent
●

bundle TTM into a Whitney-sum of them.

Let ¥U,(x{)} be a coordinate system on M and in 1(U), (x^yl)} the coordinate

system on TM induced from an open cover {[/, su) on TM. For the differential dit of

the projection it, we put
●

V-Ker dn- {｣∈ TTM; dit(｣)-O).

We see that Vis a vector sub-bundle of TTM, and that ltt l(U), Yu) is an open

cover of V, where we put Yu=(Fi,�"�"�", Yn), Yi-d/dyt. Then we see that Fis a Finsler

vector bundle of rank n. We call Fthe vertical sub-bundle of TTM. Then there exists

a vector sub-bundle Hof TTM such that

(2.1)　　　　　　　　　　　　　　　TTM≡H⑳ V.

We call H, which is uniquely determined up to the isomorphic class, the horizontal

subbundle of TTM. Then we can see easily the following:

Theorem 2.1. The horizontal and verical bundle H and Vare Finsler vector bun-

dies, and for any Finsler vector bundle F, F⑳TTM* is decomposed into the

Whitney-sum ofFinsler vector bundles.

We have an obvious exact sequence of vector bundles:

(2.2)　　　　　　　0- V｣- TTM-- 7C*TM- 0

Since H芸7T*TM, a splitting of the exact sequence (2.2) is equivalent to the existence of

an isomorphim TTM≡H⑳ V.

Definition 2.1. (cf. Miron-Anastasiei[58]) A non-linear connection N on TM is a

splitting of the exact sequence(2.2).

We see easily that there exist some well-defined local functions Nf(xf y) such that

the following ^-vector field XAl≦i≦n) consist a local frame field Hon 71 (U):

(2.3)　　　　　　　　　　　X,- ∂Vdx'-W∂Vdym.

The functions Nj are called the coefficients of the non-linear connection N on TM, and it
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is known that if the base manifold 〟 is para-compact, then there always exists a non-
linear connection on TM.

Let F be a Finsler vector bundle with a Finsler connection D:F(F)　>r(Fョ

TTM*). According to the decomposition (2.1) , the covariant derivation D is also de-

composed as follws:

D-D"+Dv,

where Dh-.r{F)-r(FョH*), Dv-.r{F)-r(FョV*) are called the /*-and v-covariant

derivation respectively.

For the local expressions of Finsler connections in the later, we shall give an open

cover {re l{U),Xu) of H, where Xu-(Xi,--,Xn) is given by (2.3) for the given non-

linear connection N. We denote by　{dx¥∂yl}　the dual frame of Af-frame {Xif Yi).

Hence xdxl} and {∂y%) are local frame fields of H* and F* respectively, where we put

dyi-dyi+Nidxm. Putting co芳-F"kdxk+CSicdyk, the h- and z;-covariant derviative Dht;

and Dvt are written as follows:

｣*｣- (**｣α+EβFBak)sα ⑳dxk, DvS- (YkSα+Eβwsα ⑳ayk

respetively, where we put f-｣αSα　The triplets (Nj, F&, Cft) are called the coefficients

of the Finsler connectionか.

3.FinslerstructuresandFinslermetrics

LetFbeaFinslervectorbundlewithaFinslerconnectionD.Inthepresentsection,

weassumethatafixednon-linearconnectionN,andsoafixedAf-frame{Xu,Yu)is

givenonTM.WealsodenotebythesamenotationDtheFinslerconnectiononany

FinslervectorbundleassociatedtoF.SinceanyFinslerstructuregonFisconsidered

asasmoothsectionofF*ョF*,thecondition(1.4)isequivalenttoDg-0,thatis,Dhg

=0,がg=0.Theseconditionsarewrittenlocallyasfollows:

Xkgαβ一g∂βFik-gαtFgk-O,Ykgαβ一g∂βC度k一gα∂k-O.

IfaFinslerconnectionon(F,g)satisfiesDhg-o(resp.Dvg-0),itissaidthatDish-

(resp.v-)､metrical.

Inthepresentsection,weshallinvestigateFinslerspacesfromthestandpointofdif-

fernitialgeometryofFinslervectorbundles.Henceweshallrestrictourdiscussionsto

thecaseofF-H(-7r*TM).Inthiscase,wesometimescalltheFinslerstructureonH

ageneralizedFinslermetriconM.

WeassumethataFinslerstructuregisgiveninHandputg(Xi,Xf)-gtjwithre-

specttoXu=(Xi,--,Xn).Thenthesymmetricmatrix(gu)ispositive-definite.Thenwe

introducetwotypicalFinslerconnectionson(H,g)whichareusefullinthelaterdis-

cussions.Inthefollowing,wedenote¥DXt)(Xj)byDxjXj.

Wedenotebyc｡i
j-F/kdxk+CjkdyktheconnectionformofD.Then,from(1.3),the
curvatureQjformofDisgivenby
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91-喜R*

mdxk∧dx'+PLdxkA∂yL･喜w∂y'Adyl,

RL-@an{X,F k+F}IFll} + CLR都,

Pjkl- YiFfic XkCh CfiFmk-^-CjmYiN�",

SL-@ikly{Y,CJk+ CJiCふf).

Hereandinthefollowing,thenotationゥ<*/>meansthealternativesummationwithre-

specttokand/.

Firstwehave

Proposition1.1.IfaFinslerstructuregisgiveninH,thenthereexistsa

〟
uniqueFinslerconnectionDsatisfyingthefollowingconditions:

!捌捌m^^^^^^Bwi
(1)Z>ismetrical,(2)DxIXi=DxiXh(3)DyIXi-DyiXj.

〟
WecallDtheMiron-typeconnectionon(H,g)andalsodenotebyMF.Thecon-

nectionformo)}-Fjkdxk+CjkdykofMrwithrespecttoiXu)isgivenby

(3.2)F/k-gim(Xjgmk+Xkgjm-Xmgjk)/2,Cjk-gim(Yjgmk+YkgJm-Ymgjk)/2

ThecurvatureformQjofMFwithrespectto{Xu¥isgivenby(3.1)and(3.2).

Thefollowingpropositionisalsoeasy.

Proposition1.2.//aFinslerstructuregisgiveninH,thenthereexistsa

R
uniqueFinslerconnectionDsatisfyingthefollowingconditions:

RRRRR
{I)Dish-metrical,{2)DxiXi=DxIXh(3)DyiXi-DyiXj-0.

R
WecallDtheRund-typeconnectionandalsodenotebyRF.Theconnectionform

cotj-F/kdxk+CjkdykofRFwithrespectto{Xu)isgivenbyFjk-thecoefficientsFAin
(3.2)andCjk===0.From(3.1)thecurvatureformQ]ofRFwithrespectto{Xu)is

●givenby

haj喜RjkldxkAdxl+pjkldxkAdul,

whereweput

Rjki--ゥ(ki)¥XiFjicH-Flu瑞f/,P}kl--YiFh*

Becauseofdga-Xkgtjdx+Ykgady,weseethatthereexistsanopencover

¥7tl(U),xu)suchthatdgij-Ooneachtzl(U)ifandonlyifgisaflatRiemannian

metricon〟｣Soweputthefollowingdefinition.

Definition3.1.AFinslerstructuregonHissaidtobeN-flatifthereexistsan

opencoverinl(U),Xu)ofHsuchthatdhgij-{Xkgij)dxk-oissatisfiedoneach

Tt~l(U).



Differential geometry of Finsler vector bundles

Then we have

Theorem 3.1. Letg be a Fmslerstructure on H, Then we have
〟

(1) The connection D on {H,g) is flat if and only ifg is aflat Riemanman metric
onM.

(2) The connection D on {H,g) is flat if and only ifg is a N-flat Fmsler structure.

Remark 3.1. (1)ルflatness depends on the choice of non-linear connection. For

the change of non-linear connections, we have some formulas in Nagano-Aikou [61].

(2) Because of Theorem 3.1 and Proposition 1.2, we see that if Hadmits a iV-flat

Finsler structure, then the tangent bundle TM is flat, that is, the base manifold M is

locally affine.

We assume that a positive function L(x,y) on TMwhich is smooth on TM-¥Q} and

continuous at y-0 is given, and furthermore L(x, y) satisfies the following conditions:

(1) L(xy y) is (l)/>-homogeneous in y, that is, L(x, Xy)-XL(xy y) for any /l>0,

(2) The following nX n-matrix (gij) is positive-definite:

(3.3)　　　　　　　　　　　　gij- (YjYiL2)/2.

The function L(x, y) is called a Fmsler metric or fundamental function on M and the

pair (M, L) is called a Finslerspace (cf. Matsumoto[51]).

If a Finsler metric L(x, y) is given on M, we_ can always define a Finsler structure

g on H by g(XiyX}) -gu for the matrix (ga) defined by (3.3) and an open cover

{it-1{U),Xu} oi H

A Finsler space (M,L) is said to be locally Minkowski if for each point p of M,

there exists a coordinate system {[/, (xl)} of p such that on each it 1(U) the fun-

damental function L depends only on y. The following theorem is usefull in the later dis-

cussions.

Theorem 3.2 (Ichijyo [36] ) Let g be a Finsler structure on H derived by (3.3)

from a non-Riemannian Finsler metric L. Then g is N-flat if and only if (M, L) is

locally Minkowski and the following condition is satisfied:

(3.4)　　　　　　　　　　　　(Ymghi)Prkyk - o

where we put Pf,= Y,W-Fi% for the coefficients FR ofRF.

Remark 3.2. If we take the non-linear connection N as the one defined by Cartan

or Berwald (cf. Matsumoto[51]):

(3.5)　　Nf- ∂G'/dy', Gl-gir{{∂ 'G/dyr∂xm)yri -∂G/dyr), G-L2/2,

then the condition (3.4) is always satisfied.

If we give a non-linear connection N by (3.5) , then the Miron (resp. Rund) -type
C        R

connection of (M,L) is the so-called Cartan (resp. Rund) connection D (resp. D).

With respect to these connections, Theorem 3.1 can be written as follows:

Theorem 3.3, Let g be a Finsler structure on H derived from a Fmsler metric L
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by (3.3), and N the non-linear connection on TM defined by (3.5). Then we have
C

(1) The connection D on (H, g) is flat if and only ifg is aflat Riemannian metric
onM.

(2) The connection D on (H, g) is flat if and only ifg is locally Minkowski.

4. Finsler-Weyl structures and conformal flatness

The notion of Weyl structures on a differentiable manifold 〟 was first introduced

by Weyl[68] from a physical viewpoint and has been studied by many authors and va-

rious interesting results have been obtained (cf. Folland[23] , Higa[30], etc.). In the pre-

sent section, we shall generalize the notion to Finsler geometry and characterlize confor-

mally flat Finsler structures in terms of it (cf. Aikou-Ichijyo[ll]).

First we shall review the Weyl structures on 〟. We assume that a Rimannian met-

ric a-aij(x)dxi⑳dxj on Mand a global 1-form 6-6i{x)dxl on Mbe given, and denote

by FFthe set of all the pairs (tf, 6). Then we shall introduce an equivalent relation

in Was follows. For any (a, 6) and (a, 6) in W, we define as {a,6)-(a, 6) if there

exists a function α(∫) on 〟 satisfying
EiZl

a-g2ate>　e-d-do.

Then we denote by [a, 6] the equivalent class of W/-admitting {a, 6) and call it a

Weyl structure on M.

Let [α, β] be a Weyl stucture on 〟 Then we see easily that there exists unique

symmetric connection D on TM satisfying the following condition:

βαニー2β⑳α

for an arbitrary representative {a> 6) of [a, 6]. This connection D is called the Weyl

connection of [a, d¥. The connection form O)-rh(x)dxk of D with respect to the natu-

ral frame {∂Vdxl} is given by

rA- {/* }+∂iek+∂idj-d'ajt,

where we put 6t-atrdr. It is clear that D is independent on the choice of a representa-

tive elemet {a, 6). Then the curvature form Q}=z-^W/ki(x)dxkAdxl of D with respect to

the natural frame {∂/dxl} is given by

WAl-Rhl+ョikn{∂iB,,+♂ B,kl-anBl),

where Rjki is the curvature tensor field of i/k) and we put
γ

Bl{-▽jOi- did)+ (aォ0,00/2, Bj-airBrJ.

Then we have

Theorem 4.1. Let M be a differentiable manifold admitting a Weyl structure [a,

6]. The Riemannian manifold (M, a) is conformally flat if the following conditions

are satisfied :
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(1) The 1-form 6 is closed,

(2) The Weyl connection D of [a, 0] is flat.

Noting that a Riemannian metric α on 〟 is a inner product of the tangent bundle

TM and the 1-form 6 is a section of TM*, we shall generalize the notion of Weyl struc-

ture to Finsler geometry, and we shall consider the conformal flatness of Finsler struc-

tures. From the above discussions, it is natural to consider the case of H-tt'TM with a

Finsler structure g.

We denote by FWthe set of all the pairs of a Finsler structure gon Hand a global

section 6 of H*. Then we introduce an equivalent relation "-" in FW as follows. For
EP                                                                                  EiZl

',6), (倉, 0)∈FW, we define as (g, 6)-(倉, 6) if there exists a function o(x) on M

such that

亡iコ

(4.1)　　　　　　　　　　　倉-e2a{x)a, d-d-do.

where we consider the 1-form da as a section of H*. Here we assume that the given non-

linear connection N is invariant by the change(4.1).

Definition 4.1. An equivalent class of FW/-is called a Finsler-Weyl structure on

H

We denote by [g, 6] the equivalent class of FW/-admitting a pair (g, 6). Then we

have

Proposition 4.1. We assume that a Finsler-Weyl structure [g, 6] be given on H.

Then there exists a unique Finsler connection D on H which satisfies the following

conditions for any representative (g, 6).

(¥)Dhg- -26ョg,  (2)DxiXi-DxiXj　(3)DyiXi-DyiXj-0.

We see that the above connectionかis invariant under the change(4.1), that is, it is

independent on the choice of the representative (g, d). We call it the Fmsler-Weyl con-

nection of [g, 6] and denote by WF. The connection form c｡i-WA(x, y)dxk of WTwith

respect to ¥Xu) is given by

WA-Ffk+∂wk+βid.- d'gik

for the coeficients Fjk of Rfand d'-g"′dr. The curvature form Qj of WFwith respect

to xXu), which is a End(H)-valued 2-form on TM, is given by

Dj-喜K/k,(x, y)dxkAdxi+F/k,(x, y)dxkAdyl,

where we put

K/kl-Rjkl+ョIkn{∂iB,,+∂jBici gjkB}}, F}ki-P}ki+蝣Yi(∂}dk+∂ie,- 61glk)

for the curvature tensor fields Rjki and Pjki of the Rund-type connection and
R

Bu-▽iei- didi+ (giidmdm)/2, Bj-gimB,mi
R

for ▽A-Xjdi- dmF,f.
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A Finsler structure g is said to be conformally N-flat if, for any pointp of M, there

exists a coordinate system ¥U, {xl)s of 6 and a function a(,r) on [/such that the Fins-

ler structure g- β2α(∬g isルflat. Then, from Theorem 3.1, as a generalization of
EZI

Theorem 4.1, we have a sufficient condition that a Finsler structure g be conformallyル
flat as follows:

Theorem 4.2. A Finsler structure g on H is conformally N-flat if there exists a

Finsler- Weyl structure [g, 6] satisfying the following conditions:

(1) 6 is thepull-back ofa closed 1-form on M,

(2) The Finsler-Weyl connection Wf of [g, 6] is flat.

We say a Finsler-Weyl structure [g, 6] to be flat if it satifies the conditions (1)

and (2) in Theorem 4.2. In the following, we shall characterlize the conformalルflat-

ness of non-Riemannian Finsler metric L(x, y) in terms of a Finsler-Weyl structure on
H

If a Finsler metric L(x,y) is given on M, then a Finsler structure g is defined

naturally on H. We give an arbitrary non-linear connection N on TM. In the case of non-

Riemannian Finsler metric, we constuct a Finsler-Weyl structure [g, 6] on H as follows.

Let L(x, y) be a non-Riemanninan Finsler metric on M. We introduce the natural

Finsler structure g on H by (3.3) from L(x,y). Then the left-hand-side of (3.4) is

changed by (4.1) as follows:
EZI

(Yjg )PTryr-e2a{Yjgim) (P?r-or∂k Ou∂?+omgkr)yr,

where we put a*-∂a/dxk and al-gtror. Then we define a global function B on TMby

B- CmPfsCrys/C¥

where we put Cj-grsYigrs, C'-g'rCr and C2-cmCm. For this function B, the 1-form 6

- di(x, y)dxl defined by 0,-- Y¥B is a global section of i/* and satisfies the condtion

(4.1) (cf. Inchijyo [36]). Thus the Finsler structure g and the 1-form 6 define a

Finsler-Weyl stucture on H. Then we have

Theorem 4.3. Let L(x, y) be a non-Riemannian Finsler metric on M and N a

non-linear connectionon TM. With repspect to the Finsler-Weyl structure [g, 6] de-

fined in the above, the Finsler structure is conformally N-flat if and only if the

Finsler-Weyl structure [g, 6] is flat.

Example 4.1. (ichijyo-Hashiguchi [37] , Aikou-Ichijyo [11]) We shall show an ex-

ample of Finsler-Weyl structures. Let L(x, y) -α(x,y) +β(x, y) be a Randers space

on〟　whereweput

α(x, y)-aij(x)dx'⑳dxi β(x, y)-bi{x)yi

for a Riemannian metric a-aij{x)dxl⑳dxj and a 1-form b-bi{x)dxl on M. It is known

that a manifolld M admits a Randers metric if and only if M admits an O(n-1) x {1}-

structure (ichiiyo [32] ).

For the Riemannian connection ▽ of {My a), we define a 1-form 6-di{x)dxt by
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ok-読(bm▽h-

muk晋h),W-al%bi.

Thenweseeeasilythatthepair(α,♂)definesaWeyl-structureon〟underthecondi-

tion≠0.FortheWeylconnectionF/k(x)of[a,6],wedefineanon-linearconnection

NbyN}=rjk(x)ykwhichisinvariantunderthechange(4.1).IfwedefineaFinsler

connectionDonHbyo))-7r*(r/k(x)dxk)-r}k{x)dxk,weseethatDistheFinsler-

Weylconnectionof[L,6].Then(M,L)isconformaltoalocallyMinkowskispaceif

andonlyif♂isclosedandpisflat.

5.G-structuresontangentbundles

Inthepresentsection,westatesomeG-structuresontangentbundleswhichplayan

importantroleinthetheoryofFinslerspaces.AG-structureonamanifold〟isare-

ductionofthestructuregroupofitslinearframebundleLM,thatis,itisaprincipal

bundlewhosestucturegroupisG.FirstwestatetheG-structuresdefinedbytensor

fields(cf.Fujimoto[24]).

LetVbeafinitedimensionalvectorspaceandp:G-+GL(V)arepresentationofa

linearLiegroupG.ThenafunctionT*onaprincipalG-bundlePgMoverMiscalled

anassociatedfunctionof(p,F)-typeifitsatisfiesthefollowingconditions:

(1)T*isafunctiononPgMwhichvaluesinV,

(2)ForanyrightactionRgofGonPgM,wehaveT*-Rg-p(gl)T*.

InthecaseofLM,ann-frameZinLMisconsideredasalinearisomorphismZ:v^

RnーTxM.ThusforatensorfieldTonM,thereexistsauniqueassociatedtensorfunc-

tionT*,andtheconverseisalsotrue.Forexample,letT-T/(x)dxJ⑳(∂Vdxl)beaten-

sorfieldof(1,l)-typeonM,andV-Rom(Rn,Rn).Thentheassociatedtensorfunction

T*:LM-+Visgivenby

T*(Z)(v,v*)-Tx(Zv,Z~lv*),

whereweputZv-Zl
mvm(d/dxx)andZ~lv*-vm(Z-1)fdx'forv-v'e.∈Rnandy*-
vmem^(Rn).HenceT*isgivenby

T*(Z)-((Z~l))¥TIZnei⑳e¥

SomeG-structuresonMaredefinedbytensorfieldsonM.ForaG-structurePdefined

byatensorfieldT¥alinearconnectionDisa^-connectionofPifandonlyifitsatisfies

DT-O(cf.Fujimoto[24]).

Asiswell-known,thetangentbundleTMoverMadmitsthestandardalmosttan-

gentstructurePo,andthenaturalframeisanadaptedframetoPo.Furthermorewesee

that,ifanon-linearconnectionNisgivenonTM,thenTMadmitsaD(GL(n,/2))-struc-

turePiasareductionofPo,andtheAf-frame{X,約isanadaptedframetoPi,

where we put D(GL(n,R))- {層AO± AJ GL(n,R)}. The most important fact is

that these G-structures are defined by some tensor fields on TM. In fact, if we define the
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(1,1)-tensorfieldsQandPNonTMbyQ(X{)-YhQ(Y{)-0andPN(X{)-YhPN(Yt)

-Xi,thenwehave

Po-{Z^LTM;Q*(Z)-Qo},

Pi-{Z∈LTM-Q*(Z)-Q｡,PN*(Z)-P｡),

(vu¥(Inu¥

whereweputQo-(),^0-l).TheG-structuredefinedbyQisthestan-

^In¥J'^(JIn
dardalmosttangentstructureandthetensorfieldPnortheG-structurePndefinedby

PniscalledthealmostproductN-structure.ThestructuregroupofPnisgivenby

GL(n,R)XGL(n,R).HencewemayexpressasPi-PqRPn.

SinceD{GL{n,R))<^GL(n,C),ifanon-linearconnectionNisgivenonTM,then

TMadmitsaG-structureFNcalledalmostcomplexN-structure,whichisdeterminedby

the(1,1)-tensorfieldFNonTMdefinedbyFN{Xi)-YuFN(Yd--Xt.Thenwehave

A-(ZePo;Fm(Z)-Fo}-{Z&LTM;PN*(Z)-Po,FN*(Z)-Fo},

where we put Fo=
(

0　-In

ln 0 ) Then we can express as Pi=PjvHPf=PoHPf.

Furthermore, if a Finsler structure g is given on ｣打and V, then a Riemannian metric

Gn on TMis definefd by

GN-gijdxt ⑳dx'+gijdy* ⑳dy>,

and it defines a D(O(n))-structure P2 as the reduction of Pi:

P2-{Z牀EPi; (V(Z)-Go},

where Go denotes the identity matrix of rank 2n, and Z)(O(n))- {
AO^

OA'
蝣A^Oin)).

On the other hand, as we showed in the second section, if a non-linear connection N

is given on TM, the tangent bundle TTMover TMis written in the form (2.1). Thus, if

a Finsler connection D is given on H and V, then a linear connection Z)* on TTM is

defined by the 1-form
co'-{a)

¥nt｡t
with respect to the N-frame {X,田. It is obvious

that D* preserves the sub-bundle Hand V. Then we see easily that D* satisfies D*Q-

O and D*Pn-0, that is, Z)* is the ^-connection of the G-structures Pi (cf. Proposition

5.1). The connection D* is called a linear connection ofFinsler-type (cf. Matsumoto

[51]). Then, because of Pi-Por¥PN-PNr¥PF, we have

Proposition 5.1. Let a non-linear connection N be given on TM. A linear con-
●

nection D* is a linear connction ofFinsler-type if and only if the one of the following

conditions is satisfied:

(1)Z>*Q-O, D*PN-O,　(2)D*Q-0, D*FN-O,　(3)D*PN-0, D*FN-O.

The linear connection of Finsler type derived from the Miron-type connection 〟rof

g is a ^-connection of the D(O(n))-structure P2. But, it is not the Riemannian connec-

tion of G〃. In fact, the torsion tensor fields of p are given as follows which are surviv-

ing in general. For anyァ,り∈F(TTM), the torsion form Tis defined as a r(TTM)-
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valued2-formTonTMby

TG,り)-D?T)-Dft-[｣,17],

whereweputDfri-(Z)*り)(?)�"IfweputT-Tixi+TU)Yi,wehavethefollows:

･i-一言T}kdxiAdxk-Chdxj/¥∂yk,

･rd)--喜Ri

jkdxlf¥dxk-pjkdxi/¥∂yk-jSjkdy'Adyk,

wherethefivequantitiesT/k,Cjk,Rh,P}kfS}karecalledthetorsiontensorfieldsofD*

(or(pN)),andgivenasfollows:

T}k-Fjk-FjklCh-theconnectioncoefficients,

Rj^XtNf-XM,Ph-YkNf-Fij,Sk-Qk-Qk.

6. Infinitesimal automorphisms of some G-structures on tangent bundles

In the present section, we shall state some results on the infinitesimal automorph-

isms of some G-structures introduced in the previous section (cf. Aikou[2]).

Let X be a vector field on M, and [ft) the local 1-parameter group of local trans-

formations ft generated by X. Then we can consider the natural lift {/J of {/J to the

frame bundle LM. A vector field Jon M is an infinitesimal automorphism of a G-struc-

ture P on M if for any adapted frame ¥Z) to P the local frame {ft(Z)} is also adapted

to P. The following proposition is usefull.

Proposition 6.1. Let P be a G-structure on M defined by a tensorfield T. Then

a vector field X on M is an infinitesimal automorphism ofP if and only ifLxT=O.

In the present section, we also assume that the given non-linear connection N is (1)

^-homogeneous in y and satisfies the following condition:

YjNi = YkN/.

First we shall state infinitesimal automorphisms of the G-structures Po and Pi de-

fined in the previous section. The following proposition is fundamental in the present

section.

Proposition 6.2. (Due [22] , Ichijyo [34] )i4 vector field V on TM is an infinitesim-

at automorphism of the standard almost tangent structure Po if and only if it is e*坤-

ressed as V-AC+Bv, where the symbols "c" and "v" mean the complete and vertical

lift ofvectorfields A and B on M respectively.

From Proposition 6.1 and the relation Pi-PoC¥ PN-PoC¥PF-PNf) PF, we have

the following characterizations of infinitesimal automorphisms of the G-structure Pi.

Theorem 6.1. On the tangent bundle TM with a non-linear connection N, a
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vector field V on TM is an infinitesimal automorphism of the D(GL(n, Restructure

¥ if and only if

(1) V is an infinitesmal automorphism of the standard almost tangent structure Po,

(2) V is an infinitesmal automorphism of the almost product (resp. almost com-

plex) N-structure Pn {rest. FN) ,

Theorem 6.2. On the tangent bundle TM with a non-linear connection N, a vec-

tor field V on TM is an infinitesimal automorphism of the D(GL(n, Restructure Pi

if and only if

(1) V is an infinitesimal automorphism of the almost product N-structure PN,

(2) V is an infinitesimal automorphism of the almost complex N-structure FN,

Next we shall consider infinitesimal automorphisms of almost product (resp. almost

complex) JV-structure Pn (resp. Fn). From Proposition 6.1, we consider the condition

LvPn-0 (resp. LvFn-0). By direct calculations, we see that a vector field V- V*Xi+

V Yi on TMsatisfies the condition LvPn-0 if and only if it satisfies

(6.1)　　　　　　　YjV^O,与jV　-V Kmj,

where the c｡variant derivation ▽ is defined by苗jVU)-xiVw+V<m)YMN/.
β

The first condition of (6.1) means that V preserves the vertical sub-bundle V.

Hence, if we consider the case of Po, it is always satisfied because of Proposition 6.2.

Furthermore we see that the second condition of (6.1) means that Vpreserves the hori-

zontal sub-bundle H. Hence we have the following characterizations from Theorem 6.1

and6.2.

●

Theorem 6.3. Assume that a non-linear connection N be given on TM. Then a

vector field V on TM is an infinitesimal automorphism ofD (GL(n, Restructure Pi if

and only if the following conditions are satisfied:

(1) V is an infinitesimal automorphism ofPo,

(2) Vpreserves the horizontal vector bundle H,

Theorem 6.4. Assume that a non-linear connection N be given on TM. Then a
●

vector field V on TM is an infinitesimal automoゆhism ofD (GL(n, Re structure Pi if

and only if the following conditions are satisfied:

(1) V is an infinitesimal automorphism of the almost complex N-structure FN,

(2) Vpreserves the horizontal vector bundle H,

From Proposition 6.2, it is enough to consider the case where Vis the completet lift

or vertical lift of a vector field on 〟 We consider the only case of complete lift in the

following. In this case, the components of V-vc are given as follows Vi-v(x), V{i)-

ym^7mvl. Then, the second condition of (6.1) is written as follows:

(6.2)　　　　　　　　y"量,･量i-7,mpi.

Example 6.1. Let M be a manifold with a symmetric linear connection r/k(x).

Then we get natural non-linear connection Nf -Fjk{x)y'. In this case, the connection
β

▽ is given by a))- 7[*(rjtk(x)dxk), and the curvature tensor of N is given by Rjk-
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里‰jk{x)ym for the curvature tensor field里mjk{x) of r/k(x). Also the complete lift of a

vector field v- vi(x)(∂ydx{) is given by vc-v'Xt+ (y*阜tv*)Yi. Then the condition
(6.2) is written as

▽k▽jvt+vmmkm-Q

where ▽ is the covariant derivation with respect to F/k(x). Thus vc is an infinitesimal

automorphism of Pi if and only if v is an affine Killing vector field of the given symmet-

ric affine connection Pjk(x) on M.

Next we investigate infinitesimal automorphisms of the D(O(n))-structure P2. A

vector field Kon TM is an infinitesimal automorphism of P2 if and only if V^Pi and it

satisfies

(6.3)　　　　　　　　　　　　　　　LvGN-O.

For the calculations of this equation, we use the following notations:
●

DUV'xd-(V¥,)Xu DUVwYd-(V{%)Y¥

for the Miron-type connection D-D JtDv. Then we have

Theorem 6.5. On the tangent bundle TM with a non-linear connection N, a vec-

tor field V- V*Xi+ V{i)Yi on TM is an infinitesimal automorphism of the D(O(n))-

structure P2 if and only if

(1) V is an infinitesimal automorphism ofD (GL(n, Restructure Pi,

(2) V satisfies the following equations:

(6.4)　　　　　　　　　　Vm+ Vm+ V^YMgi^O,

(6.5　　　　　　　　　　K(,)ly+ VwU- VmPimi- VmPjmi=O,

The equations (6.4) and (6.5) are similar to the so-called Killing Equation. In

fact, in the case of V-vc, the condition (6.4) is written as

vm (∂<gii/dxm) +ym (∂v'/dxnd idgi/dy^ + i∂vm/dxt)gm,+gim (∂vm/dxJ) - O.

According to Yano[64], this condition is written as Lvgij-0, that is, the vector field v is

a Killing vector filed on the generalized metric space (M, ga). In the case where the

given g is a Finsler metric: ga-∂2L2ノ軸jdy¥ we see that the condition (6.5) is equiva-

lentto (6.4). Sowe have

Theorem 6.6. Let (Af, gv) be a generalized metric space and N a non-linear con-

nection on its tangent bundle TM. Then the complete lift vc ofa vector field v on M is

an infinitesimal automorphism of D(O (n))-structure P2, if and only if it satisfies the

following conditions :

(1) v is a Killing vector field on (M, ga),

(2) vc preserves the horizontal sub-bundle H.

We state about almost Hamilton vector fields. If TM admits a D(O(n))-structure

P2, it also admits a Riemannian metric Gn, and an almost complex Af-structure Fn. We

see that the pair ¥Gn, Fn) defines an almost Hermitian structure on TM. Then we define
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a2-form Won TMby

･(V, W)-GN(V, FN(W)).

A vector field Kon TM is said to be an almost Hamilton vector field of Wif it satisfies

(6.6)　　　　　　　　　　　　　　　Lv･-0.

The left hand-side of (6.6) is written as LyW- (LvGn)Fn+Gn{LvFn). Hence, if is an

infinitesimal automorphism of P2, it also satisfies (6.6).

Conversely, if an almost Hamilton vector field V is an infinitesimal automorphism of

Pi, it satisfies (6.3). Thus we have

Theorem 6.7. Let (M, gu) be a generalized metric space and N a non-linear con-

nection on TM. Then any infinitesimal automorphism of P2 is an almost Hamilton

vector field of W.

Conversely, if an almost Hamilton vector field of W is an infinitesimal automorph-

ism ofP¥, then it is an infinitesimal automorphism of Pi.

Lastly we also consider the case of V-〃　Then by direct calculations of (6.6), we

get (6.4) and

(6.7)　　　　　　　　@<W {gir(vmR,mj -ym^j^7mvr)} -0.

Theorem 6.8. Let (M, gy) be a generalized metric space and N a non-linear con-

nection on TM. Then the complete lift ofa vector field v on M is an almost Hamilton

vector field if and only if

(1) v is a Killing vector field on (M, gij),

(2) v satisfies (6.7).

7. Lie algebras of infinitesimal automorphisms of G-structures

In the present section, we shall consider some Lie algebras of infinitesimal aut0-

morphisms of some G-structures on TM investigated in the previous section. We denote

the set of all infinitesimal automorphisms of Po, Pi, P2, Pn, Fn and Wby Ao, Ai, Ai,

Ap, Af and Aw respectively. It is easily seen that these sets are Lie algebras under the

usual Lie bracket. First, from Proposition 6.1, we see that Ao= (x(M))c+x((M))v for
the Lie algebra x¥M) of all vector fields on M. Furthermore, from the discussions in the
previous section, we have

Proposition　7.1. The Lie algebras of all infinitesimal automorphisms in the

above satisfy the following relations :

Ai-AonAp=AonAF-ApnAF, A2-AinAg

A vector field 5 0n TM is called a semi-spray if it satisfies diz{S{y)) -y for y-

(x¥ yl)∈TxM. Then S is expressed as

(7.1)　　　　　　　　S(y) -yi(∂>/dx') +Fi(x, y) (d/dyi)
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forafunctionFl(xyy)onTM.Asemi-sprayiscalledasprayifthefunctionFl(x,y)

is(2)^-homogeneousiny,orequivalentlythefollowingconditionissatisfied:

(7.2)LcS-[C,S]-S

fortheLiouvillevectorfieldC-ymYm.Foragivensemi-spray5,avectorfieldKon

TMiscalledaninfinitesimalautomorphismofSifVsatisfiesLvS-[V,S]-0.Wede-

notebyAstheLiealgebraformedbyallinfinitesimalautomorphismsofsemi-spray5:

As-{VeAo:LvS-O).

Bytheassumptionforthegivennon-linearconnectionN,ifweput

(7.3)F'(x,y)-N<n(x,y)yr'

thesemi-spraydefinedby(7.1)becomesaspray,anditisexpressedas

(7.4)S-ymXn

fortheTV-frame¥X}onH.Bydirectcalculation,wegetthefollowingpropositionwhich

isoriginallyduetoGrifone[25].

Proposition7.2.LetNbeanon-linearconnectiononTMwhichis{¥)p-homoge-

neousiny,andSthespraydefinedby(7.4).ThenthealmostproductN-structurePN

isexpressedas

(7.5)Pn--LsQ

forthestandardalmosttangentstructureQonTM.

Bythisproposition,wegetthefollowingproposition(cf.Klein[42])

Proposition7.3.LetSbethespraydefinedby(7.4).ThentheLiealgebraAsis

aLiesub-algebraofAi.

Inthefollowing,weshallconsiderthefollowingLiealgebras:●

Ai-{v∈x(M);vc∈Al},Ap-{v∈x(M);vc∈Ap),As-iv∈x(M);vc∈As},

IfweputV-〃foravectorfield〃on〟thenVisanelementofAo,andthecondition

(7.2)iswrittenas

(7.6)サV(∂vk/dxidxi)-vm(∂Fk/dxm)-Fm(∂vk/dxm)+ym{∂vr/dxm)(∂Fk/dyr)

Then,fromtheassumptiononthenon-linearconnectionNandTheorem6.1,we

haveAi-Ap,andalsobyProposition7.3,wehaveAs⊂41.

0ntheotherhand,bydirectcalculation,weseethatthecondition(7.6)isequiva-

lentto

(7.6′v'ym苗,･苗1)%-1/Jl)mJ?1
mV-yvKn

Hence,ifv∈Aiorequivalentlysatisfies(6.1),thecondition(7.6)or(7.6′)isalso

satisfied,thatis,visanelementofAs.SowehaveA¥⊂As,andhencewehaveAi-As.
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Consequently we have

Proposition 7,4. The three Lie algebras Ai, Ap, As in the above coincide with

eachother.

Ai=Ap-As.

In Loos[49], the Lie algebra As for an arbitrary semi-spray 5 is studied and showed

that dim. As≦n(n+l) under the condition that each element of As is complete. Especial-

ly, in the case of dim. As=n(n+1), it is proved that the base竺anifold M is isomorphic
to Rn and the function Fl{x, y) is written in the form Fl-Xyl for a unique constant X

^R. Applyingthis result to our case, we have

Theorem 7.1. Let N be a non-linear connection satisfying YjN｣- YkNf, and Ai be

the Lie algebra defined in the above. Then dim. Ai≦n(n+l). Especially, if dim. Ai-

n(n+l), then the base manifold M is ismorphic to Rn, and the given non-linear con-

nection N vanishes identically: JV- O. In this case, A¥ is the set of all affine vector

fields on Rn.
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