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Abstract

We study the explicit Runge-Kutta methods for stiff-equation y’=Ay, where the
methods are variable coefficients formulas depending on A. They are A-stable with
respect to the model equation y’=2y. The analysis of eigenvalue A for some schemes
are carried out. Finally, some numerical tests justifing the results are present.

1. Introduction

The present paper is concerned with the numerical integration of stiff system of ordinary
differential equation:

y’zf(l', y)v Z/(xa) =Zla~ (11)

A basic difficulty in the numerical solution of stiff system is the satisfying of the
requirement of stability. From the restriction of stability, implicit type methods have been
present and some explicit methods imposed the stability conditions have derived, however,
there still remain stability problem for the explicit methods, so it is the purpose of the present
paper to derive the explicit A-stable Runge-Kutta methods with respect to the model
equation. The outline of this paper is as follows: In §2, We consider two-stage of order one,
three-stage of order two and four-stage of order three explicit A-stable Runge-Kutta methods
for the fitting problem respectively. Stability analysis for arbitrary eigenvalue A are discussed
in §3. In §4, we propose some numerical tests.
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2. Derivation of the formulae

Consider the r-stage explicit Runge-Kutta methods:

Ynt1 = Yo+ h22 bi ki, 2.1)
i=1

kl =f(xn, yn)y
ki =f(-17n+0i h, Z/n‘H’lZazj /fj),
C,':Zaij (122, veey 7’).

The order conditions of the R-K methods which are discussed in [1], are listing up to
three order:

order 1: Z b, =1, 2.2)

order 2: El: bici=1/2, 2.3

order 3: Et: bic;=1/3, (24)
Z:] biai;c;=1/6.

Let us now apply the r-stage, p-th order Runge-Kutta methods (2.1) to the test equation
y' =2y, (2.5)
then we have

Yn+1 = S(Z)yn, (2.6)

and S(z) takes the form:

b r
S(2) =X %54+ X 1,25 (z=2h)
i=1 0o x=p+1

where 7 are the function of the coefficients of (2.1).

we shall study how the function S(z) of (2.6) with (p, ») =(1, 2), (2,3) and (3, 4) are
expressed.

Case (1) p=1, r=2: From (2.6) we obtain the difference equation:

Yni1 = (1+2z+bs as 25 ya, 2.7
here if we take b, @, in the form:

0

— 28)

by az =
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then from (2.7) and (2.8) we have

_at(at+p)zt+(B+0)2*
Yn+1 — a+,82 Yn.

(29)

From the stability condition, we have S+d=0, taking, for example, a=1, 3=—1 we have

1

Yni1 = 7 Yn (2.10)

which is A-stable algorithm. Solving (2.8) with =1, 8= —1 and the order condition (2.2), we
have

1

b= a7

1—b,. 2.11)
(¢y: free parameter)

Case (11) p=2, r=3: Proceeding the same way as the case (1), we have

2
Yn+1 = (1+Z+%+ bs as; as z31) Yn, (2.12)
setting

by ass axn = (2.13)

T
2! (a+pz)’

we have

_ 2at2(at+p)z+ 2B+a) 2+ (B+7) 2°
Yn+1 = 21 (a+B2) Yn-

From the stability condition, we have
28+a=0, B+7r=0,
which lead to the following A-stable algorithm:

242z
Ynt1r =5 Un- (2.14)

Solving (2.13) and order conditions (2.2) and (2.3), we have
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1 _ 11
b3 - - 2 Uy Aot (2_2) , bz = 62(2 b3 C3>, (215)

Q21 = C2, A31 = €37 A3z,
by =1—(by+bs). (c3 c3 as: free parameter)

Case (III) p=3, r=4: Finally in this section, we concern four-stage three order method,
integrating (2.5), we have

2 3
Ynr1 = <1+Z+§T+§T+ bs as3 az an Z4>Zln’ (2.16)
here we set
_ 7
by Qg3 Az A = W, 2.17)

putting (2.17) into (2.16), we have

_ 6at6(atp)zt (68+3a) 2"+ 38+a)2*+ (B+7) 2
Yn+1 3'(6[’"“82) Yn.

From the stability condition, we have
68+3a=0, 38+a=0, B+r=0,
which lead to
a=p=0.
It follows that the assupution (2.17) is unsuitable. We now consider the following further case:

0+pz
31 (a+pzt+7zd)’

(2.18)

biass az an =

putting (2.18) into (2.16), we have

_ u
Yny1 = Yn,

3! (a+Bz+7rz?H)

with
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u=6a+6(a+p)z+ 6y+65+3a) 2+ (67y+3B+a)2?
+ @r+p+d) 2+ (r+p) 2°

From the stability condition we have
r+0=0, 3r+B+d=0, 67+3B8+a=0,
which lead to
a=30—30, =306, 7=—0p. (219

If we take 6=1, p=—1 in (2.19), we have following L-stable algorithm:

s = —6—%%. (2.20)
Solving (2.18) and order conditions (22), (23), (24), we have

" 0132 ax 6~14_zj-z2 ’ @2

b, = cz(cgl——cz) {%—(I—m cs) Cs_%“l_ by cf],

bs = Clg {%—In ca— b, Cz},

A = b41c2 {%— bs as; cz—-i—za43],

A1 = C3 3= b1t b3y, a1=cs— (aetaw).
(6132, a31, A43, C2, C4. free parameters).

3. Stability properties of the schemes (2.11), (2.15) and (2.21)

In this section we are concerned with the analysis of eigenvalue of schemes (2.10),
(2.14) and (2.20). Let us set A’ be the approximation of A, replacing z by z2’=2" h in (2.8), the
algorithm (2.10) is then

22
g = (L+ 2+ 2= ),

or

Yni1 =1 (2, 2°) Yn,

ZZ

1—2

w(z 2)=1+2z+ 3.1
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we may write (3.1) in the form

n_ (1 22 2
2z 2) =(7—+ 55— 1). G2

so if 2z’ satisfies the equation

izl

1
— |, (33)

then the algorithm (3.1) is A-stable. Setting z=7e"(1/2<6<37/2), and using the inequality

|1—z|<1+7,
in (3.3), we have

Z—z 1

’z’—l <r+2’

which lead to the following result.

Theorem 1. The algorithm (2.11) with z=2" is A-stable if z’ satisfies the inequality:

’ z2'—z 1

s (34)

The region z’ satisfying (3.4) lies in the interior of the circle with the center m; and the
radius 7,

y (3.5)
with ¢=1/(r+2). Taking the value of » large enough, we have the following result:

Corollary. For large value of z the algorithm (2.11) with z=2" is A-stabe if z’ satisfies the
inequality:

| z—2"|<1.
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Carring the same argument to the algorithm (2.15) and (2.21), we have the following results:

Theorem 2. The algorithm (2.15) with z=2z" is A-stable if z' satisfies the inequality:

] Z’_; l<é(~/2 —Jz). 36)

z'—
with
z; = 7?—4rcos () +4,
2, = 72+4rcos(6) 14,
The region 2z’ satisfing (3.6) is in the interior of the circle with the center m, and the radius 7,

2—z
1—¢?

_fz
1—¢?

7’2—(;‘

, 3.7

my =

with ¢=2 (/21 —vz) /7’

Theorem 3. The algorithm (2.21) with z=2z" is A-stable if 2’ satisfies the following inequality:

(z—2) (z2"— (z4+2)—2) < 6 { 1 6+22] ]
(6—42'+22)(6—4z+72) | | 2] | 6—4z+22])

4. Numerical Examples

In order to test the method (2.1), we wish to present some numerical results. The described
methods are programmed in FORTRAN and run on the Personal Computer 9801RA (NEC).
The computations are done in double precision.

(1) y’=—1000y, y(0) =1,
2 Y'=AY, Y(0)=(Q1,1,1),
with
—0.1 0 0

A= 0 —50 0 1,
0 0 —120

@ YV'=AY, Y(O=1,1,1),

with
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Table 1

Result using (2.11) with #=1/2% and 1/2°

Problem 1
Absolute error
x 0.125 0.500.. 1
h=1/23 0.793E—2 0.396E—8 0.157E—16
h=1/2¢ 0.171E—9 0 0

Comparison with the methods order 1 (2.11), order 2 (2.15)

and order 3 (2.21).

— 3
Absolute error (h=1/2°
x 0.125 0.5 1
order 1 (2.11) 0.793E—2 0.396E—8 0.157E—16
order 2 (2.15) 0.968E0 0.879E0 0.774E0
order 3 (2.21) 0.248E—1 0.379E—6 0.1443E—12
Problem 2
h=1/2°
Absolute error ( /29
x=0.0625 % Y2 Ys
order 1 (211) 0.484E—5 0.553E—1 0.140E—1
order 2 (2.15) 0.126E—8 0.706E—2 0.552E—3
order 3 (2.21) 0.329E—12 0.770E—3 0.247E—3
x=0.5 Y Y2 Ys
order 1 (2.11) 0.371E—4 0.946E—8 0.210E—14
order 2 (2.15) 0.967E—8 0.104E—10 0.875E—26
order 3 (2.21) 0.251E—11 0.183E—11 0.868E—26
x=1 " Y2 Ys
order 1 (2.11) 0.706E—4 0.898E—16 0.443E—29
order 2 (2.15) 0.184E—7 0.181E—21 0
order 3 (221) 0.479E—11 0.475E—22 0
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Problem 3
h=1/2°
Absolute error ( /29
x=0.0625 " Y2 Ys
order 1 (2.11) 0.491D—5 0.055E+0 0.014D+0
order 2 (2.15) 0.127D—8 0.706D—2 0.552D—3
order 3 (2.21) 0.333D—12 0.770D—3 0.247D—3
x=0.5 Y Y2 Y3
order 1 (2.11) 0.411D—4 0.946D—38 0.210D—14
order 2 (2.15) 0.106D—7 0.104D—10 0.875D—26
order 3 (2.21) 0.278D—11 0.183D—11 0.868D—26
z=1 % Yo Y3
order 1 (2.11) 0.864D—4 0.898D—16 0.443D—29
order 2 (2.15) 0.224D—7 0.181D—21 0.0
order 3 (2.21) 0.585F—11 0.475D—22 0.0

19

Finally we consider a variable step algorithm. Let y, and #, denote the approximation to the
i-th component at x=ux, using step size & and h/2 respectively.
Defining

EST=| yn—a |

=max | yr(ti)_g;z“ "
i

we use the following step size control policy for a given local accuracy requirement e.
1. If EST>¢, reject the solution and half the step size h.
2. e> EST, accept the solution and keep the step size i fixed.
3. EST<¢/50, accept the solution and double the step size &.
To test our automatic step control policy, we consider the problem (II) and (III) with
¢=0.1E—4. and the initial step size h=1/16.
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Problem 2
number of steps Absolute error
2=0.00244... Y1 Y2 Y3
order 1 (2.11) 12 0.588D—8 0.685D—3 0.050D—1
order 2 (2.15) 12 0.480E—13 0.449E—5 0.888E—4
order 3 (2.21) 12 0.138E—16 0.276E—7 0.120E—5
x=0.051... " Y2 Y3
order 1 (2.11) 112 0.122E—6 0.124E—2 0.282E—3
order 2 (2.15) 112 0.100E—11 0.821E—5 0.532E—5
order 3 (2.21) 82 0.971E—16 0.680E—6 0.765E—6
x=0.107... Y Yo Y3
order 1 (2.11) 255 0.255E—6 0.588E—3 0.687E—6
order 2 (2.15) 226 0.362E—11 0.214E—5 0.354E—7
order 3 (2.21) 102 0.167E—14 0.884E—6 0.410E—7
Problem 3
number of steps Absolute error
x=0.0024... " Yo Y3
order 1 (2.11) 12 0.603E—8 0.685E—3 0.050E—1
order 2 (2.15) 12 0.489E—13 0.449E—5 0.888E—4
order 3 (2.21) 12 0.227E—16 0.276E—7 0.120E—5
x=0.051... % Y2 Ys
order 1 (2.11) 112 0.127E—6 0.124E—2 0.282E—3
order 2 (2.15) 107 0.103E—11 0.821E—5 0.532E—5
order 3 (2.21) 82 0.194E—15 0.680E—6 0.765E—6
x=0.107... Y Yo Ys
order 1 (2.11) 212 0.249E—6 0.209E—3 0.147E—5
order 2 (2.15) 197 0.416E—11 0.185E—5 0.218E—7
order 3 (2.21) 102 0.185E—14 0.884E—6 0.410E—7
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