NacWillians Theoremfor Li near Codes with Group Actions

著者	ATSUM Tsuyoshi
j our nal or publ i cat i on titl e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	28
page range	$11-14$
別言語のタイトル	自己同型群を持つ線形符号についてのマックウィリ アム恒等式
URL	http：／／hdl ．handl e．net／10232／00004015

MacWilliams Theorem for Linear Codes with Group Actions

Tsuyoshi Atsumi*

(Received September 21, 1995)

Abstract

We prove MacWilliams theorem for linear codes with finite group actions. When acting group is trivial, our result becomes the ordinary MacWilliams theorem.

Key words: group, linear code, dual code, weight enumerator, MacWilliams identity.

1 Introduction and Summary

Yoshida [3] has given a version of the MacWilliams theorem [2] for codes with group action. In this paper we establish another version of the MacWilliams theorem. Our result seems to be a special case of Yoshida's. But we can not prove this.

Let V be the vector space \mathbf{F}_{q}^{n}, where \mathbf{F}_{q} is the field with q elements. From now on we assume that G is a finite permutation group on the coordinates of V and $|G|$ is prime to q. Then we can define a natural action of G on V as follows: If $\mathbf{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $g \in G$, we let $\mathbf{v} g=\left(x_{1}, \ldots, x_{n}\right)$, where for $i=1, \ldots, n, x_{i}=v_{i g^{-1}}$. In this way V becomes an $F G$-module. A G-code is an $F G$-submodule of V. As in [1], the operator θ is defined by

$$
\theta=\frac{1}{|G|} \sum_{g \in G} g
$$

Here we note that $C_{V}(G)=V \theta$ and $\theta^{t}=\theta$ (see [1]).
Let C_{1}, \ldots, C_{t} be the orbits of the coordinates of V under the action of G. Let m_{i} be the orbit length of C_{i}. Define \bar{C}_{i} as the vector of V which has 1 as its entry for every

[^0]point of C_{i} and 0 elsewhere. (This definition of the \bar{C}_{i} 's is slightly different from that in the proof of Theorem 4.3 in [1]). Then each of $\bar{C}_{1}, \ldots \bar{C}_{t}$ is in $V \theta$ and every element \mathbf{u} of $V \theta$ is of the form
$$
\mathbf{u}=\sum_{i=1}^{t} x_{i} \bar{C}_{i}
$$

This basis $\left\{\bar{C}_{1}, \ldots, \bar{C}_{t}\right\}$ of $V \theta$ is a key to our proof. The G-weight of a vector $\mathbf{u}=$ $\sum_{i=1}^{t} x_{i} \bar{C}_{i} \in V \theta$ denoted $w g(\mathbf{u})$ is defined as the number of non-zero x_{i}. So if G consists of the identity element, e, alone, then the G-weight $w g(\mathbf{u})$ of a vector \mathbf{u} is the ordinary weight $|\mathbf{u}|$. For vectors $\mathbf{a}=\sum_{i=1}^{t} a_{i} \bar{C}_{i}, \mathbf{b}=\sum_{i=1}^{t} b_{i} \bar{C}_{i}$ of $V \theta$, an inner product $(\mathbf{a}, \mathbf{b})_{G}$ of \mathbf{a} and \mathbf{b} is defined by

$$
\begin{equation*}
(\mathbf{a}, \mathbf{b})_{G}=a_{1} b_{1}+\cdots+a_{t} b_{t} \tag{1}
\end{equation*}
$$

Let D be a vector subspace of $V \theta . D_{G}^{\perp}$ is the dual of D in $V \theta$ with respect to the inner product (1). (Notice that if G consists of the identity element, e, alone, then $D_{\{e\}}^{\perp}$ is the ordinary dual D^{\perp} of D in V.)

We describe a weight enumerator of a vector subspace D of $V \theta$. The weight enumerator $W_{D}(x, y)$ of D is defined by

$$
W_{D}(x, y)=\sum_{\mathbf{u} \in D} x^{t-w g(\mathbf{u})} y^{w g(\mathbf{u})}
$$

Clearly if G is trivial, that is, $G=\{e\}$, then this weight enumerator becomes the ordinary weight enumerator. We shall prove the following:

Theorem 1 If C is a G-code, then

$$
W_{C^{\perp} \theta}(x, y)=\frac{1}{|C \theta|} W_{C \theta}(x+(q-1) y, x-y) .
$$

If G is trivial, that is, $G=\{e\}$, then our Theorem is the ordinary MacWilliams theorem [2, p. 146].

For notation and terminology, we shall refer the following book and paper: [2] for coding theory; [3] for codes with group action.

2 Proof of Theorem

In order to prove Theorem we need the following proposition.
Proposition 1 Let V be the vector space \mathbf{F}_{q}^{n}. Assume that G is a finite permutation group on the coordinates of V and $|G|$ is prime to q. If C is a G-code and

$$
\theta=\frac{1}{|G|} \sum_{g \in G} g
$$

then

$$
(C \theta)^{\perp}=\operatorname{ker} \theta+C^{\perp} \theta .
$$

Proof See the proofs of Theorem 4.2 and Corollary 1 in [1].

We shall prove Theorem. If $\mathbf{x}=\sum_{i} x_{i} \bar{C}_{i} \in C \theta$ and $\mathbf{y}=\sum_{i} y_{i} \bar{C}_{i} \in C^{\perp} \theta$, by Proposition 1 we have

$$
0=(\mathbf{x}, \mathbf{y})=\sum_{i} m_{i} x_{i} y_{i}=\left(\mathbf{x}, \mathbf{y}^{\prime}\right)_{G}
$$

where $\mathbf{y}^{\prime}=\sum_{i} m_{i} y_{i} \bar{C}_{i}$. From this it follows that

$$
\begin{equation*}
(C \theta)_{G}^{\perp} \supseteq\left(C^{\perp} \theta\right) M, \tag{2}
\end{equation*}
$$

where

$$
M=\operatorname{diag}(\underbrace{m_{1}, \ldots, m_{1}}_{m_{1} \text { times }}, \underbrace{m_{2}, \ldots, m_{2}}_{m_{2} \text { times }}, \ldots, \underbrace{m_{t}, \ldots, m_{t}}_{m_{t} \text { times }}) .
$$

We shall show that

$$
\begin{equation*}
(C \theta)_{G}^{\perp}=\left(C^{\perp} \theta\right) M \tag{3}
\end{equation*}
$$

By Proposition 1, we have

$$
\begin{equation*}
\operatorname{dim} C^{\perp} \theta=\operatorname{dim}(C \theta)^{\perp}-\operatorname{dim} \operatorname{ker} \theta \tag{4}
\end{equation*}
$$

From linear algebra theory,

$$
\begin{align*}
\operatorname{dim} V & =\operatorname{dim} V \theta+\operatorname{dim} k e r \theta \tag{5}\\
\operatorname{dim} V & =\operatorname{dim}(C \theta)^{\perp}+\operatorname{dim} C \theta \tag{6}\\
\operatorname{dim} V \theta & =\operatorname{dim}(C \theta)_{G}^{\perp}+\operatorname{dim} C \theta \tag{7}
\end{align*}
$$

From (4), (5), (6) and (7) we see that

$$
\begin{equation*}
\operatorname{dim}(C \theta)_{G}^{\perp}=\operatorname{dim}\left(C^{\perp} \theta\right) \tag{8}
\end{equation*}
$$

Since M is a non-singular matrix, we have

$$
\begin{equation*}
\operatorname{dim} C^{\perp} \theta=\operatorname{dim}\left(C^{\perp} \theta\right) M \tag{9}
\end{equation*}
$$

From (2), (8) and (9) it follows that

$$
(C \theta)_{G}^{\perp}=\left(C^{\perp} \theta\right) M
$$

Here notice that MacWilliams theorem [2, p. 146] for the ordinary weight enumerator of the code $C \theta$ in $V \theta$ holds in this case, too.

Now we shall finish the proof of Theorem. By MacWilliams theorem and (3), we obtain the following:

$$
\begin{equation*}
W_{\left(C^{\perp \theta) M}\right.}(x, y)=\frac{1}{|C \theta|} W_{C \theta}(x+(q-1) y, x-y) \tag{10}
\end{equation*}
$$

Since $W_{\left(C^{\perp}\right) M}(x, y)=W_{C^{\perp}}(x, y)$, it follows from (10) that

$$
W_{C^{\perp} \theta}(x, y)=\frac{1}{|C \theta|} W_{C \theta}(x+(q-1) y, x-y) .
$$

Remark. Generalizing a result of Thompson, Hayden [1] has proved the following proposition.

Proposition 2 Using the notation of Proposition 1, then with an appropriate orthonormal base for $V \theta$, (extending \mathbf{F}_{q} if necessary) we have where $(C \theta)_{V \theta}$ is the dual in terms of this basis

$$
(C \theta)_{V \theta}^{\perp}=C^{\perp} \theta
$$

So our result (3) is a generalization of Proposition 2 in a sense.

References

[1] W. G. Bridges, M. Hall, Jr. and J. L. Hayden, Codes and Designs, J. Combin. Theory Ser. A 31(1981),155-174.
[2] F. J. MacWilliams and N. J. A. Sloane, The Theory of The Error-Correcting Codes, North Holland, Amsterdam-New York-Oxford, 1977.
[3] T. Yoshida, MacWilliams Identities for Linear Codes with Group Action, Kumamoto J. Math.,6(1993), 23-45.

[^0]: * Department of Mathematics, Faculty of Science, Kagoshima University, Kagoshima 890, Japan.

