Fermat の 問 題 に 関 し て

若 松 忠 道

On the Fermats Problem Tadamichi Wakamatsu

1 p を素数とする。法 p についての整数の剰余類より、0 に congrnent な物を除いた p-1 個の類は、乗法に関して巡回群を作る。それを

L: $l_0 = 1$, l_1 , l_2 , l_{p-2}

とする。この中の l_i の各数を p 乗すると, 法 p^2 について同一の剰余類に属する。その類を s_i と する。

 $S: s_0 = 1, s_1, s_2, \dots s_{p-2}$

は L と同型な群を作る事が分る。

全文を通じて l_i 、 s_i は夫々 p_i 、 p^2 に関する最小正剰余を以て表はし、同時にそれ等の文字はその数字をも示すとする。又 l_i 、 s_i 或はこれに類する文字の脚符が p-1 以上になる時は、脚符の数値は常に法 p-1 についての最小正剰余で置き換える。p-1 は 0 とする。 $q=\frac{p-1}{2}$ とすると

 $s_i + s_{i+q} = p^2$

$$l_i + l_{i+q} = p,$$

$$s_0 + s_a + s_b = p^2$$

2 S の 三 元 素 間 に

2

3

なる関係があると仮定する。この三項の代りに、それ等に同一の元素 s_j を乗じて得られる S の元素を用いると

$$s_j + s_{a+j} + s_{b+j} = k'_j \; p^2 \ k'_j は 1 又は 2 と なる。$$

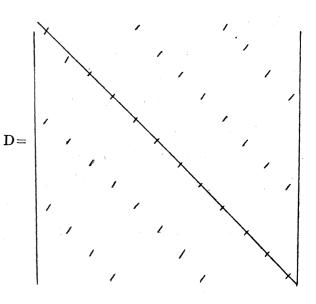
③の右辺は三項式であるが、これを、S の各元の一次式で、その三項以外の項の係数が 0 なるものと見做し、且項を s_0 、 s_1 、 s_2 ,……、 s_{p-2} の順に揃えて、j につき 0 より p-2 迄取つたp-1 個の一次等式を考え、その左辺の作る行列 D=式を D とする。

例 p=13 の場合

L: 1, 2, 4, 8, 3, 6, 12, 11, 9, 5, 10,7

S: 1, 80, 147, 99, 146, 19, 168, 89, 22, 70, 23, 150

$$s_0 + s_4 + s_8 = 1 + 146 + 22 = 169 = p^2$$



空所の文字は 0 である。

③ が成立てば

$$l_{j}+l_{a+j}+l_{b+j}=k_{j}p$$

も成立つ。③ より出発して上に考察したのと全く同様に、④ より出発して L の元素の p-1 個の一次等式が得られる。その左辺の係数の作る行列式はやはり D で、 k_i は 1 又は 2 であるが必ずし k_i' に等しくない。

D の第 i+1 列の各第 j+1 行元素に k_j を代入して出来る行列式と,D の第一列の各 j+1 行元素に k_{i+j} を代入して出来る行列式は,偶数回の行,列の互換で互に他に移るから,相等しい。これを D_i で表わす。その k を k' にかえたものを D_i' と書く事にする。

ここで,以下第6節迄る渉る帰謬法の仮設として

$$D \neq 0$$

とおけば

$$l_i = \frac{D_i}{D} p, \qquad s_i = \frac{D'_i}{D} p^2$$

更に又

$$\tau_i = 2k_i - 3, \qquad \tau'_i = 2k' - 3$$

とおきかえて、 D_i 、 D_i' の第一列元素 k_j 、 k_j' の代りに夫々 τ_j 、 τ_j' をおきかえた行列式を \overline{D}_i 、 \overline{D}_i' と書けば、5 より少し計算して

$$2l_1-p=\frac{\overline{D}_i}{D}p, \qquad 2s_i-p^2=\frac{\overline{D}_i'}{D}p^2.$$

3. 第 \mathbf{j} 分値が τ_{i+j} なる $2\mathbf{q}$ 次元 vector を \mathbf{v}_i , その τ_{i+j} の代りに τ'_{i+j} を用いたものを \mathbf{v}'_i とおこう。

 V_0 , V_1 , ……, V_{p-2} はすべて一次独立ではない。先づ①により次の関係を得る。

$$\mathbf{v}_{i+q} = -\mathbf{v}_i$$

 v_0 , v_1 , …… v_{r-1} は互に一次独立で、 v_r を入れると、その r+1 個は一次従属となる様な番号r がある。8 より r < q, 第3, 4, 5 節は r = q-1 を証明する事を目標とする。

rの条件より一意的に

$$\mathbf{c_0} \mathbf{v_0} + \mathbf{c_1} \mathbf{v_1} + \cdots + \mathbf{c_r} \mathbf{v_r} = \mathbf{0}$$

その各分値を考えると

$$c_0 \tau_j + c_1 \tau_{j+1} + \cdots c_r \tau_{j+r} = 0$$

$$(j = 0, 1, \cdots, p-2)$$

$$(9)$$

一般に 0 内至 p-2 の脚符をもつ p-1 個の数 z_i がある時,p-2 次の整式 f(x) の x^i に z_{j+1} を代入した式を $f(z_j)$ と書き,j の如何にかいわらず $f(z_j)=0$ が成立する事を f(z)=0 と書く事にして,(9) を次式で示す。

$$\varphi(\tau) = 0 \tag{10}$$

f(x) が $\varphi(x)$ の倍式なる時は $f(\tau)=0$.

(証) $f(x) = \varphi(x) \cdot h(x)$, $h(x) = b_0 + b_1 x + \cdots \cdot b_m x^m$

とすれば、jの如何にかくわらず

$$\begin{split} f(\tau_j) = & (b_0 \varphi(x) + b_1 x \cdot \varphi(x) + \cdots \cdot b_m x^m \varphi(x)) x^i \rightarrow \tau_{j+i} \\ = & b_0 \varphi(\tau_j) + b_1 \varphi(\tau_{j+1}) + \cdots \cdot + b_m \varphi(\tau_{j+m}) = 0 \,. \end{split}$$

となるから

逆に $f(\tau)=0$ ならば、f(x) は $\varphi(x)$ の倍式である。

(証) $f(x) = \varphi(x) \cdot h(x) + R(x)$ (R(x) は r より低次)

とおけば、上述より $\mathbb{C} \varphi(\mathbf{x}) \cdot \mathbf{h}(\mathbf{x})$ $\mathbb{I}_{\mathbf{X}^i \to \tau_{j+1}} = 0$, $\mathbf{f}(\tau) = 0$ (仮設)より $\mathbf{R}(\tau) = 0$.然る時は \mathbf{v}_0 , \mathbf{v}_1 ,…… \mathbf{v}_{r-1} が一次従属となり,矛盾,故に $\mathbf{R}(\mathbf{x}) = 0$ でなければならぬ。証終

 $F(x)=x^q+1$ とおけば $F(\tau)=0$

(証) ① と ④ より $\mathbf{k}_{j}+\mathbf{k}_{j+q}=3$, 故に ⑥ より $\tau_{j}=-\tau_{j+q}$ となるから、 証終以上の事から $\varphi(\mathbf{x})$ は $\mathbf{x}^{q}+1$ の約式である。

$$\varphi(\mathbf{x}) \cdot \mu(\mathbf{x}) = \mathbf{x}^{\mathbf{q}} + 1$$

4. 1の原始 d 乗根のすべてを零点とし、且つその外に零点をもたぬ整式を $\theta_d(x)$ と書けば、 $\theta_d(x)$ は有理数体において既約で、而もその係数はすべて整数となる。又 $\theta_l(x)$ 以外は係数が対称的である。即ち $\theta_d(x)$ を n次とすれば x^k と x^{n-k} の係数は相等しい。又任意の整数 h に対し

$$\mathbf{x}^{\mathbf{h}} - \mathbf{1} = \underset{\mathbf{d} \mid \mathbf{h}}{\pi} \boldsymbol{\theta}_{\mathbf{d}}(\mathbf{x}). \tag{1}$$

 $\varphi(\mathbf{x})$ は前節の最後により $\mathbf{h}=2\mathbf{q}$ とおいた場合の $\mathbf{x}^{2\mathbf{q}}-1=(\mathbf{x}^{\mathbf{q}}+1)(\mathbf{x}^{\mathbf{q}}-1)$ の右辺第一因数の中に含まれる $\boldsymbol{\theta}_{\mathbf{d}}(\mathbf{x})$ の積となるわけである。

q が含む最大の2の幕因数を 2^m とする時、 x^q+1 の因数たる $\mathcal{O}_d(x)$ は x^{2m} の整式である。

(証) ⑪によれば、d が q の約数であれば $\boldsymbol{\theta}_d(\mathbf{x})$ は \mathbf{x}^q-1 の因数となるので、d が 2q の約数で且 q の約数でない時、即ち 2^{m+1} の倍数なる時、且その時のみ \mathbf{x}^q+1 の因数と なる。而 $\mathbf{\theta}_d(\mathbf{x}) = \frac{\pi}{e/d} (\mathbf{x}^e-1)^{\mu(\mathbf{d}/e)}$ における Möbius の函数 $\mu(\mathbf{d}/e)$ が $\mathbf{0}$ にならない為には \mathbf{e} が 2^m の倍数でなければならない。証終

 $\mathbf{x}^{\mathbf{q}}+1$ の因数たる $\boldsymbol{\theta}_{\mathbf{d}}(\mathbf{x})$ の中で、 $\boldsymbol{\theta}_{\mathbf{2}^{\mathbf{m}+1}}(\mathbf{x})$ のみ二項式で、他はすべて係数の和が1となる。

(証) $\mathbf{x}^{2^{\mathbf{m}}} = \mathbf{y}$ とおくと $\boldsymbol{\theta}_{d}(\mathbf{x}) = \boldsymbol{\theta}_{d'}(\mathbf{y})$ $\left(\mathbf{d'} = \frac{\mathbf{d}}{2^{\mathbf{m}}}\right)$ この $\boldsymbol{\theta}_{d'}(\mathbf{y})$ について考えればよい。 $\mathbf{d'} = 2 \cdot \mathbf{o}_1 \cdot \mathbf{o}_2 \cdot \dots \cdot \mathbf{o}_{\mathbf{m}}(\mathbf{o}_1 \cdot \dots \cdot \mathbf{o}_{\mathbf{m}})$ は奇素数). $\boldsymbol{\theta}_{d'}(\mathbf{y})$ はそれ等を算出する過程からすぐ分る様に

 $1-y^{o_1}+y^{o_1}\cdots\cdots+y^{to_1}$

の形の式(即ちその係数の和は 1)の若干個の乗除によつて得られる。y=1 として考えると,積の係数の和は,各因数の係数の和の積に等しい。 従つて除法を行つた結果も同様になる。故に $\mathbf{0}_{2}^{m+1}(\mathbf{x})=\mathbf{x}^{2m}+1$ 以外の $\mathbf{x}^{q}+1$ の因数の係数の和は 1 に等しい。

故に若し $\varphi(\mathbf{x})$ が $\boldsymbol{\theta}_{2^{\mathbf{m}+1}}(\mathbf{x})$ を因数に持たなければ、 $\boldsymbol{9}$ における τ_1 は ± 1 であり、奇数個の 1 又-1の和が $\boldsymbol{0}$ になる事はないので、 $\boldsymbol{0}$ に矛盾する。従つて

 $\varphi(x)$ の係数の和は2である。 $\varphi(1)=2$

5. $\gamma < q-1$, 即ち $\mu(x) = \frac{x^q+1}{\varphi(x)}$ が定数1でないとすると、 $\mu(x)$ に因数 $\boldsymbol{\theta}_h(x)$ が存在する。 $L_{i}(x) = l_{i} + l_{i+1}x + \cdots + l_{i-1}x^{2q-1}$

に $\varphi(\mathbf{x})$ を乗ずる時、 $\varphi(\mathbf{x})$ の係数の対称性から、 \mathbf{x}_i の項の係数は $\varphi(l_{\mathsf{j-\gamma+i}})$. 但し $\mathbf{x}^{2\mathsf{q}}$ 以上の高 次の項は $\mathbf{x}^{2\mathbf{q}}=1$ を用いて $2\mathbf{q}$ よりも低次の項に直す。この事は普通の整式で書けば

$$L_{j}(\mathbf{x}) \cdot \varphi(\mathbf{x}) = \sum_{i=0}^{2q-1} \varphi(l_{j-\gamma+i}) \mathbf{x}^{i} + (\mathbf{x}^{2q} - 1) \cdot \mathbf{H}(\mathbf{x})$$
(3)

ここに H(x) は或る整係数の整式

所が ⑦, ⑩, ⑫ を用いると

$$\varphi(l_i) = p$$

故に $^{\odot}$ の右辺は $\mathbf{x}-1$ 以外の $\mathbf{x}^{2\mathbf{q}}-1$ の因数を、すべて因数として含む。

∴
$$L_i(x) \cdot \varphi(x) = \emptyset_h(x) \cdot Q(x)$$
 (Q(x) は整式)

 $\varphi(\mathbf{x})$ は $\mathbf{0}_{\mathbf{h}}(\mathbf{x})$ を含まないから

$$L_i(x) = \Phi_h(x) \cdot R(x)$$

(14)

然るに①を用いて

$$\begin{split} \mathbf{L}_{\mathbf{j}}(\mathbf{x}) &= l_{\mathbf{j}} + l_{\mathbf{j}+1}\mathbf{x} + \dots + l_{\mathbf{j}+q}\mathbf{x}^{q} + l_{\mathbf{j}+q+1}\mathbf{x}^{q+1} + \dots + l_{\mathbf{j}-1}\mathbf{x}^{2q-1} \\ &= (1 - \mathbf{x}^{q})(l_{\mathbf{j}} + \dots + l_{\mathbf{j}+q-1}) + \mathbf{p} \cdot \mathbf{x}^{q}(1 + \mathbf{x} + \dots + \mathbf{x}^{q-1}) \\ &= (1 + \mathbf{x} + \dots + \mathbf{x}^{q-1})\{\mathbf{M}_{\mathbf{i}}(1 - \mathbf{x}) + \mathbf{p} \cdot \mathbf{x}^{q}\}\dots \end{split}$$

 $\boldsymbol{\phi}_{\mathbf{h}}(\mathbf{x}) = 0$ の根 $\boldsymbol{\rho}$ は $\mathbf{x}^{\mathbf{q}} + 1$ の根であつて、 $\mathbf{x}^{\mathbf{q}} - 1$ 従つて \mathbf{w} の右辺第一因数の根とはならない。又 $\rho^{q} = \pm 1$ で ρ は複素数であるから

 $M_i(1-\rho)\pm p\neq 0$

 $m{arrho}_h(x)$ は既約だから、上の事から $L_i(x)$ の約数とはならない。これと Θ は矛盾する。 従つて $\gamma=q-1$, 即ち $\varphi(x)=x^q+1$ でなければならない。

 ${f G}$. 前節の結論: ${f arphi}({f x})={f x}^{f q}+1$ は ${f q}$ 個の vector ${f v}_0,\ {f v}_1,\dots,{f v}_{{f q}-1}$ が一次独立である事 を 示 す。これに $\mathbf{v_0}'$ を合せると、この $\mathbf{q}+1$ 個の vector は一次的に独立ではあり得ない。何と なれ ば、是等の vector に2 q 次元であるが、第 i 分値と第 i+q 分値は必ず反数になつていなければ ならないから、実質的には q 次元であるからである。故に一意的に

$$v_0' = m_0 v_0 + m_1 v_1 + \cdots + m_{q-1} v_{q-1}$$

D の第1列に v_i , v_i' の分値を代入したものが夫ょ \overline{D}_i , \overline{D}_i' となつている。

$$\therefore \overline{D}_0' = m_0 \overline{D}_0 + m_1 \overline{D}_1 + \cdots + m_{q-1} \overline{D}_{q-1}$$

然るに D の含む最大の p 巾因数を $p^{k}(k \geq 2)$ とる時 l_{i} , s_{i} は p と互に素であるから, \mathbb{O} から \overline{D}_i は丁度 p^{k-1} , \overline{D}_i' は丁度 p^{k-2} なる p 巾因数をもつ。⑩は之に反する事を示す。

この矛盾は $D \neq 0$ とした所から来る。

$$\therefore$$
 D=0

7. 次に D=0 となる為の条件を求める。D の第 i+1 行 vector を u_i で表わす。D=0 なる事より、 u_0 、 u_1 、…… $u_{\lambda-1}$ は一次独立で、 u_0 、 u_1 、…… $u_{\lambda-1}$, u_{λ} は一次従属なる様な番号 $\lambda(<2q)$ がある。

$$\psi(\mathbf{u}_0) = \mathbf{d}_0 \mathbf{u}_0 + \mathbf{d}_1 \mathbf{u}_1 + \dots + \mathbf{d}_{\lambda} \mathbf{u}_{\lambda} = 0 \dots$$

をその従属関係を示す一次式とすると

$$\varphi(\mathbf{x}) = \mathbf{d}_0 + \mathbf{d}_1 \mathbf{x} + \cdots + \mathbf{d}_{\lambda} \mathbf{x}^{\lambda}$$

は第3節の所論と同様にして $x^{2q}-1$ の約式となる。

$$g(x) = 1 + x^a + x^b$$

とおくと、等式(=0) ⑰ の分値を考える事により、第5節の初めの方と同様にして

$$g(x) \cdot \varphi(x) = (x^{2q} - 1) \cdot k(x)$$

故に g(x) は $x^{2q}-1/\varphi(x)$ ($\lambda < 2q$ より 1次以上) で割り切れる。即ち或る 1 の 2q 乗根 η によって

$$1 + \gamma^a + \eta^b = 0$$

この様になるのは ω を 1 の複素三乗根として $\eta^a=\omega$, $\eta^b=\omega^a$ なる場合の外ない。故に 2q は 3 の倍数で b=2a

g(x) の代りに $g_1(x)=1+x^{b-a}+x^{2q-a}$ をとつても同様の論が成立ち、2q-a=2(b-a)

$$\therefore a = \frac{2q}{3}$$

故に巡回群のSの三元 s_0 , s_a , s_b が部分群を作る事がD=0 なる為の条件である。

8. m を p と互に素な整数とする時 $q(m) = \frac{m^{p-1}-1}{p}$ を Fermat の商と呼ぶ。1909 年ヴィツフェリフヒの証した下の定理がある。

定理
$$x^p+y^p=z^p$$
 (x, y, z, p) は互に素, $p>2) ……$

が整数解を有する為には

$$q(2) \equiv 0 \pmod{p} \cdots \cdots$$

なる事が必要である。

後ミリマノフは

$$q(3) \equiv 0 \pmod{p} \dots$$

の必要な事をも証明している。

⑩, ⑩は吾人の記法を以てすれば

或る \mathbf{a} , \mathbf{b} に対し, $\mathbf{l_a}$ = $\mathbf{2}$ なる時 $\mathbf{s_a}$ = $\mathbf{2}$, $\mathbf{l_{q+b}}$ = $\mathbf{3}$ なる時 $\mathbf{s_{q+b}}$ = $\mathbf{3}$ なる事を示す。然る時 ① により

$$s_0 + s_a + s_b = p^2$$

即ち③が成立する。故に前節の結論により

$$s_0 = 1$$
, $s_a = 2$, $s_b = p^2 - 3$

は法 p² に関して乗群を作る。

 $\therefore 2(p^2-3)\equiv 1 \pmod{p^2}$

i. e $7 \equiv 0 \pmod{p^2}$

その様な p は存在しない。

故に ® の解は存在しない。或は Fermat の問題 $x^p+y^p=z^p$ (p は素数) の整数解は、x, y, z の何れかが p の倍数なるものの外にはない。