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Numerical Solution of Block Tridiagonal Form

by Katsuhiko Sanada

1. Introduction

●    ●

We study the numerical solution of the linear systems arising from certain

implicit finite difference approximation to the linear differential equations. Especial-

ly we consider those schemes which lead to matrices of block tridiagonal form.

When only one equation is involved, this scheme is tridiagonal form.

For example, the heat equation

u, - uxx O<,x<l ,　　　0<t<T

ォ(*.O) -/(*) ,　　サ(o,O - ft(0サ　　　ォ(1.0 - 8*0)

by the Crank-Nicolson scheme

(I一号D+Z)-W+l -(/+与D+D-)u:

leads to a tridiagonal matrix equation, for which the factorization method is often

used as direct solution. 〔see (1)〕.

njサ- u(jdx, mAt)

k-At-time step

h- At-space step

However, when we consider a system of differential equations, the structure

of the matrix is more complicated.

For example, the system of the parabolic equations

ut - P(x,t)ux U- (ォ!,..…. ,up)

QIMx+Qoォ- ft(0

Qzu - ft(O

i?1M, +2?OM - g-3(0

RiU - gAt)

)

)

at x-0

at x==1

the Crank-Nicolson scheme

(ト音D*P[x,一号tm-1)JD-)ォrl-(/+喜D+P¥x,一昔,)2>-)k?

with any kind of discrete boundary conditions can be expressed in the block tri-

diagonal form. 〔5〕

2. Block Tridiagonal Form

Block tridiagonal matrix is
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A, C,

B2 A2

(1)

where each of At represents a square matrix of order mu and each of the Bt and

Ci are rectanguler matrices. That is, Bt must have m, rows and m^i columns,

and Ct must have nti rows and mi+1 columns. And if all mi-m9 then all the sub-

matrices are square and of order m.

Thus, let the system be

Ax-f

)〟erel
nW

l
乃

ガ

‥

‥

‥

∬
乃

･
九
　
　
　
ォ
*
ハ

(2)

(2)′

and each xt and /, are m*-component column vectors.

The system (2) may be solved by a procedure analogous to the factorization

method of a tridiagonal form. 〔1〕

Assume matrix (1) can be decomposed as

LU=

where /, are identity matrices.

We can丘nd that

Px-A, , Ql-A:1CI

Pt - A-B.Q^

Q, - Pr'Q
i

1-2,……,〟

(3)

(4)

For numerical stability, we need that Pt and Qt (7-1,  , h) are bounded for some

norm, 1. e. max Q¥Pt日. IIGill)≦M.

Definition 1.

The matrix A is block diagonally dominant with respect to the matrix norm

if

ll^H+IIC-I≦‖　　　1-1,

〔2〕

Here we assume that At is nonsingular and C^O.

THEOREM　2.1

// A is block diagonally dominant, then

(a) IIQi¥¥<l , (P) PMI≦¥¥Ai¥¥+¥lBi¥¥

so that the factorization is numerically stable.

(5)
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Proof. We show (a) by induction. For /-1, from (5)

‖QlflHl-Pfl旧ICAl-UAr1日IICJI≦IICxIKH*!ll+ llCl旧~1<l

Assume IIQ川<1 for 7-1. Then from (4)

Qi - PzlCt

ItQ川≦

≦

Thus,

c<

Ai-BiQ卜1

llAJ lie,

A?Ct

I- AT'B.Q^

l-ll^r1日lltfill IICi-i

HAr lie川

1-日A^wm

by the inductive assumption. Finally, by using (5),

HQ描くl

Using this result and (4)､, it follows that

IIP,II≦=A川+11*1

3. Algorithms of this System

The system (2) is equivalent to

Ly-f ,　　Ux-y

where y also has the compound form indicated in (2)′.

Thus, we can obtain the following algorithm from (3) in (4),

vi -Prfi

yt-Pr¥ft-Bd ,　i-2, 3,.…‥, n

OCn^Vn

x^vi-QiXi+x ,　　/-/!-1,n-2,...…, 1

BBul

(6)

(7)

(8)

Here, in the case of wi-m, we consider to estimate the total number of ope-

rations used. 〔1〕

We require nmz ops. (operations) for all Pt

and　2(3ォー2)m3 ops. for all P^Q and ｣,<?*-

Thus, the evaluation of (4) involves not more than (3n-2)m3 ops.

The evaluation of (7) and (8) involves

(2n-1)m2 ops.　for (7)

and　(ォーl)m2 ops. for (8).

The total evaluation is thus

(3/1-2)(m3+m2) ops.

to solve the system (2) with coefficient matrix (1).

Furthermore, when we wish to improve upon the accuracy of the solution of

(6), we can apply the iteration method to (7). At　丘rst, we will apply to the
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first expression of (7) and, for simplicity, write as､-y-P~lf.

Let the approximating inverse血atrix､ of R be P-
●

y(1) -ラー1/

△y{　-ラー1(トpy(1))-i>-1r(　､　　　　.′

y(*)-y(1)+△y(H+△y<2'+. .+△yl

△y(ォ-p-i(/-/>y(*>) -P-Ir(

Here, if {△y{k)) is convergent, {yu)} is also converg占nt.

/蝣ォ> -トpyU) -トォ*-サ/�"- (トpp-*)t

r<2> -f-p(y<1) +△y(1>)

-(トpp-1)トP△ ,(1)

- (I-pp-^f-pp-1*�"

- (/-i'iサー1)/-pp-¥I-pp-1)f

- (トPP-iyf

In general,　rU)-(トPP-蝣)�"/

Therefore, yu) is convergent if and only if the spectral radius p(トPP 'Xl.

Thus we can apply the obtained value y[k) to the second expression of (7) and

continue this process.　　　　　　　　　　　　L
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