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LINEAR ESTIMATION USING COVARIANCE
INFORMATION IN THE PRESENCE OF
UNCERTAIN OBSERVATIONS
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Abstract In the conventional estimation problem, we assume that the observed value always contains a signal
to be estimated and observation noise. However, in communication systems, there arises the case where the
observed value consists of noise alone during observing the signal.

This paper, in the estimation problem with the uncertain observation, designs algorithms for fixed-point
smoothing and filtering estimates by use of a probability that the signal exists, a crosscovariance function of
the signal with the observed value, an autocovariance function of the signal plus colored noise besides the
observed value when the signal is observed with additional white Gaussian and colored noises. The signal
might be correlated with colored noise. In the current approach, it is advantageous over the existing one in
that the present estimator necessitates the covariance information without requiring complete knowledge of
state-space model of the signal.

A numerical simulation example is shown to demonstrate the feasibilty of the current estimation technique.

1. Introduction

In the Kalman filter [1], it is a usual assumption that the observed value always contains
the signal and observation noise. However, in practical estimation problems in communication
systems, we encounter the case of “false alarm” where the observed value consists of noise alone
with nonzero probability in spite of positive decision on the existence of the signal. This case
occurs, for example, in tracking the target trajectory in space, and we must decide the existence
of a target by means of the decision rule based on a likelihood ratio test etc..

Previously, linear least-squares estimator is developed regarding the estimation problem with
the uncertain observation [2]. In [2], recursive estimation algorithm is designed by assuming
complete knowledge of a state-space model for the signal in linear discrete-time systems.

By the way, there is a study on the recursive Wiener filter for the estimation problem in
linear stochastic systems, given a specified covariance function of the observed value, when
observation noise is white Gaussian [3]. This approach differes from that based on the Kalman
filter on the kind of information used. The recursive Wiener filter uses the information of the
system matrix in the state-space model of the signal, the observation matrix, the crosscovariance

function of the signal with the observed value and the observed value in linear continuous
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systems. Whereas the Kalman filter requires complete knowledge of the state-space model of the
signal. As an example, the state-space model is realized from the information of the Markov
parameter of the system [4]. Also, still in the recursive Wiener filter, there remains a task to
estimate the system matrix before implementing the computation of the estimate. To avoid the
realization step for the state-space model, the estimators, by use of the covariance information,
have been devised [5].

In this paper, on the estimation problem with the uncertain observation, new fixed-point
smoother and filter are designed in linear continuous stochastic systems. The estimator is efficient
for recursive estimation from the uncertain observed value. Let the observation equation be given
by y(t) = z(t) + v(t), z(t) = x,(t) + v.(t), x,(t) = U(t)x(t). The signal x(t) might be correlated with
colored observation noise v.(t). We assume that the probabilty on the existence of the signal x(t)
at time t is p(t) as introduced in [2]. Besides the probability, the proposed estimator assumes
the knowledge on the information of the observed value y(t), the crosscovariance function K,,(t, s)
of x,(t) with y(s), the autocovariance function K,(t, s) of z(t) and the variance of white Gaussian
observation noise v(t). Since Kuy(t, s) = p(t)K,,(t, s), we see that the information K,(t,s) is
decomposed to p(t) and K, (t,s). We assume that the covariance functions K, (t, s) and K,(t, s)
are expressed in the semi-degenerate kernel form. The semi-degenerate kernel is appropriate for
expressing the covariance functions of stationary stochastic signal etc. by finite sum of nonrandom

_functions of the variables ¢t and s [5]. Therefore, the current algorithms can be applied to the
estimation of the stochastic signal in general.

The advantage of the present approach over the existing one [2] is that it is suitable for
on-line estimation of the signal by using the covariance information, and does not take in the

step to realize the state-space model.

2. [Estimation problem with uncertain observations
Let an observation equation be described by
y(t)=z(@) +v(1), z(t) = x,(¢) + v.(0), x,()=U(t)x(), (1)

where y(t) is an n x 1 observed value vector, x(t) is an n x 1 zero-mean signal vector, v.(t) is a

zero-mean colored observation noise, and v(t) is white Gaussian observation noise satisfying

E[v()] =0, 2

E[v(t)v"(s)] = R(t)(t —s), 0=t s< 0. (3)
We assume that the signal x(t) and colored noise v (t) are uncorrelated with white Gaussian noise
v(s) as

E[x(t)v"(s)] =0, E[v.(t)v"(s)]=0, 0=t s< oo, 4)

where the signal might be correlated with coloured noise v.(s). Let p(¢) be the probability that
the observation at time ¢ contains the signal x(t). Then, U(z) is a scalar quantity taking on values
of 0 or 1 with
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p(t) = Pr{U() = 1}, )

1 —p() = Pr{U(:) = 0}. (6)
Hence,

E[U(1)] = p(t) ™)
and

E[UMU(s)] = p)p(s), t#s, )

E[U*(®)]=p(®) ©)

[2]. Then, the probability for U(r)=1 is p(t) and for U(t)=0 is 1 — p(t), although the
ideal value of U(t) might be 1 when the signal x(t) exists, and U(t) =0 for the case where the
observed value contains noises only. The uncertain observation is caused by U(t) in Eq. (1), and
x,(t)(= U(t)x(t)) equals x(¢) with the probability p(t) and 0 with probability 1 — p(t). Also, the
probability of false alarm becomes 1 — p(t), since the “false-alarm probability” means the probability
that the signal x(t) is not present in spite of a priori assumption that the signal exists. Thus, we
are lead to the estimation problem, where we estimate the uncertain process x,(t) with the uncertain
observed value.

We consider the fixed-point smoothing and filtering problems. Let the fixed-point smoothing
estimate X,(t, T) of x,(t) be given by

X, T)= JT h(t, s', T)y(s')ds' (10)
0

as a linear integral transform of the observation set {y(s), 0 <s' < T}, where ¢ is the fixed-point
and h(t, s, T) is an optimal impulse response function.

Minimizing a cost function
J = E[]x,t) = %, T[], (11)

we obtain the Wiener-Hopf integral equation

T

E[x,(0)y"(s)] = J ht, s', T)E[y(s)y"(s)]ds’ (12)

0

by an orthogonal projection lemma [5]

x,(t) — J ht, s', T)y(s)ds" L y(s), O0=s, t=T. (13)

0

Here, “ | ” denotes the notation of the orthogonality. Substituting Eq. (1) into Eq. (12), and using
Eq. (3), we have

T
h(t, s, T)R(s) = K,(t, s) — J h(t, s', T)K (s, s)ds’, (14)
0
where K, (t, s) denotes the crosscovariance function of x,(t) with y(s), and K,(¢, s) the autocovariance

function of z(¢). Considering the stochastic property of U(t) above, we might express the
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crosscovariance function K, (t, s) in the semi-degenerate kernel form [5] by

K., (t, s) = E[x,(t)y"(s)]
= E[U()x(t)y"(s)]
=p()K,(t, 5)
_ | CoH™(s), 0=s=<1,

- T (15)
M(@)N*(s), 0=t<s,

where C(t) and H(s) are n x n’ bounded matrices, and M(t) and N(s) are n x m" bounded

matrices. The autocovariance function K,(¢, s) is also expressed in the semi-degenerate kernel form
by
K.(t, 5) = E[2(t)z"(s)]

__[G(t)LT(s), 0
L L@®)GT(s), 0

N t

<s<
St=s,

where G(t) and L(s) are n x | bounded matrices.

The specific estimation problem pursued in this paper necessitates the information of the
probability p(t), the observed value y(t), the crosscovariance function K,,(t, s), the autocovariance
function K,(t, s) and the variance R(t) of white Gaussian observation noise. This certifies that
the approach taken in this paper is distinct from that in [2] for the estimation problem with the
uncertain observation. In [2], Acomplete description of the state-space model is assumed as for
the necessary information regarding the estimation problem with the uncertain observation. Since
the kind of covariance information might be useful before realizing the state-space model, we
recommend, in the confronted estimation problem, rather the approach using the covariance
information than that by use of the state-space model.

In section 3, on the basis of the preliminary statement above, we design the recursive algorithms
for the linear least-squares fixed-point smoothing and filtering estimates of x,(t) by use of the

covariance information.

3. Recursive fixed-point smoothing algorithm using covariance information

In Theorem 1, we present the recursive least-squares algorithm for the fixed-point smoothing

estimate in linear continuous stochastic systems.

Theorem 1. Let the probability for U(t) = 1 be p(t) in the observation equation (1) for the signal
observed with additional white Gaussian plus coloured noise. Here, the signal might be correlated
with colored noise. Let the crosscovariance function K, (t,s) of x(t) with y(s) and the
autocovariance function K,(t, s) of z(t) be expressed in the semi-degenerate kernel form. Also, let
the observed value and the variance of white Gaussian observation noise be given. Then, the
recursive algorithm for linear least-squares fixed-point smoothing estimate consists of Egs. (17)+26)

in continuous stochastic systems.

Fixed-point smoothing estimate:



S. Nakamori: LINEAR ESTIMATION USING COVARIANCE INFORMATION IN THE

PRESENCE OF UNCERTAIN OBSERVATIONS
0%,(t, T)/OT = h(t, T, T)(y(T) — G(T)e(T))
Filtering estimate:
X(T, T) = C(T)V(T)
dV(T)/dT = &(T, T)(y(T) — G(T)e(T)), V(0)=0
de(T)/dT = J(T, T)(y(T) — G(T)e(T)), e(0)=0
O(T, T) = (H'(T) — W(T)G™(T))R™'(T)
J(T, T) = (L'(T) — (T)G™(T))R™*(T)
dr(T)/dT = J(T, T)(L(T) — G(T)r(T)), r(0)=0
h(t, T, T) = (M()N'(T) — S(t, T)G™(T))R™(T)
3S(t, T)/oT = h(t, T, T)(L(T) — G(T)r(T)), S(t, t) = C(t)W(t)
dW(T)/dT = &(T, T)(L(T) — G(T)r(T)), W(0)=0

(Proof)
Let us differentiate Eq. (14) with respect to T.

dh(t, s, T)/OTR(s) = — h(t, T, T)K,(T, s) — J oh(t, s', T)/OTK,(s, s)ds’

0

If we introduce an auxiliary function J(T, s) which satisfies

J(T, s)R(s) = L"(s) — JT J(T, s"K. (s, s)ds,

0

we have a partial differential equation for h(t, s, T)
Oh(t,s, T)/0T = — h(t, T, T)G(T)J(T, s).

Similarly, if we differentiate Eq. (28) with respect to T, we have

r
0J(T, 5)/0TR(s) = — J(T, T)K (T, s) — j 0J(T, s')/OTK (s, s)ds’.

0

From Egs. (16), (28) and (30), we obtain a partial differential equation for J(T, s)

0J(T, 8)/0T = — J(T, T)G(T)J(T, s).

Now, from Eq. (28), the function J(T, T) in Eq. (31) satisfies

J(T, T)R(T) = LT(T) — fT J(T, K, (s, T)ds.

0

(17)

(28)

(29)

(30)

(1)

(32)

67

Substituting the expression K, (s', T) = L(s)G™(T) for 0 £ s’ < T from Eq. (16) into Eq. (32), we have

J(T, T)R(T) = L™(T) — JTJ(T, s)L(s') ds' GT(T).

0

If we introduce a function r(T) defined by

(33)
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rT) = j ' J(T, s')L(s')ds, (34)

0

we obtain Eq. (22) for J(T, T).
If we differentiate Eq. (34) with respect to T and substitute Eq. (31) into the resultant equation,

we have

dr(T)/dT = J(T, T)L(T) — J(T, T)G(T) F J(T, s')L(s') ds'. (35)

0
From Eq. (34), We can rewrite Eq. (35) as Eq. (23), where the initial condition on the differential
equation (23) at T=0 is (0) = 0 from Eq. (34).
From Eq. (14), the function h(t, T, T), which appeared in Eq. (29), satisfies

h(t, T, T)R(T) = K,,(t, T) — J h(t, s', T)K (s, T)ds'. (36)

0
If we use the expressions K, (t, T)=M(@)N'(T) for 0<¢t<T and K. (s, T)= L(s)G™(T) for
0 =5 =T from Egs. (15<16) in Eq. (36), we have

h(t, T, T)R(T) = M(t) NT(T) — JT h(t, s', T)L(s)ds GT(T). (37)

0

If we introduce a function S(t, T') defined by

S, T)= J ' h(t, s', T)L(s')ds', (38)

0

we obtain Eq. (24) for h(t, T, T).
If we differentiate Eq. (38) with respect to T and substitute Eq. (29) into the resultant equation,
we have

-
0S(t, T)/0T = h(t, T, T)L(T) — h(t, T, T)G(T)J‘ J(T, s")L(s")ds'. (39)
0

From Eq. (34), we can rewrite Eq. (39) as Eq. (29).
If we put t = T in Eq. (14), we have

.
h(T, s, T)R(s) = K,,(T, s) — J WT, s, T)K,(s', s)ds'. (40)

0
If we substitute K, (T, s)= C(T)H"(s) from Eq. (15) into Eq. (40), we have

.
WT, s, T)R(s) = C(T)H(s) — J WT, s, T)K,(s', s)ds'. (41)

0

Let us introduce an auxiliary function @(T, s) which satisfies

®(T, s)R(s) = H"(s) — JT D(T, K, (s', s)ds’. (42)

0

From Egs. (41) and (42), we obtain
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WT, s, T) = C(T)®(T, s). (43)

The initial condition on the partial differential equation (25) at T=1t is S(t, t). From Eq. (38),

S(t, t) is formulated as

S(t, t) = J h(t, s', t)L(s')ds'. (44)

0

From Eq. (43), we can rewrite Eq. (44) as
t .
S, t)= C(t)J &(t, s')L(s") ds'. (45)
0
If we introduce a function W(T) defined by

-
W(T) = J &O(T, s')L(s) ds, (46)
0
we obtain the initial condition as S(t, t) = C (t) W(t).
If we differentiate Eq. (42) with respect to T, we have

T
0D(T, s)/0TR(s) = — (T, T)K,(T, s) — J 0D(T, s')/OTK,(s', s)ds'. 47)
0
If we substitute K (T, s) = G(T)L"(s) for 0 <s < T from Eq. (16) into Eq. (47) and compare the

resultant equation with Eq. (28), we obtain a partial differential equation for &(T, s)
0D(T, 5)/0T = — @(T, T)G(T)J(T, s). (48)

From Eq. (42), the function &(T, T) in Eq. (48) satisfies

T

&(T, T)R(T) = H'(T) — j qu(T, $)K,(s', T)ds'. (49)

0
Since K,(s', T) = L(s')G™(T) for 0 < s < T, we can rewrite Eq. (49) as

T

&(T, T)R(T) = H'(T) — J ‘di(T, $)L(s')ds' GT(T). (50)

0
Also, by use of Eq. (46), Eq. (50) becomes Eq. (21).
If we differentiate Eq. (46) with respect to T, we have

T
dW(T)/dT = &(T, T)L(T) + j 0D(T, s")/0TL(s") ds'. (51)
0
If we substitute Eq. (48) into Eq. (51) and use Eq. (34), we obtain Eq. (26). The initial condition
on the differential equation for W(T) at T=0 is W(0) = 0 from Eq. (46).
If we differentiate Eq. (10) with respect to T, we have

0x,(t, T)/0T = h(t, T, T)y(T) + JT Oh(t, s', T)/0Ty(s")ds'. (52)

0

If we substitute Eq. (29) into Eq. (52) and introduce a function
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e(T) = JT (T, s)y(s)ds, (53)

0

we obtain the partial differential equation (17) for the fixed-point smoothing estimate %,(t, T).
If we differentiate Eq. (53) with respect to T, we have

T
de(T)/dT = J(T, T)y(T) + J 0J(T, s")/0Ty(s") ds . (54
0
If we substitute Eq. (31) into Eq. (54) and use Eq. (53), we obtain Eq. (20). The initial condition
on the differential equation (20) at T=0 is ¢(0) =0 from Eq. (53).
The filtering estimate X,(T, T) of x,(T)(= U(T)x(T)) is formlated as

(T, T) = JT h(T, s', T)y(s')ds’ (59)

0

by putting t = T in Eq. (10). If we substitute Eq. (43) into Eq. (55), and introduce a function V(T)
defined by

V(T) = fT D(T, s')y(s)ds', (56)

0
we obtain Eq. (18).
If we differentiate Eq. (56) with respect to T, we have

dv(T)/dT = &(T, T)y(T) + JT 0D(T, s")/0Ty(s')ds'. (57
0
If we substitute Eq. (48) into Eq. (57) and use Eq. (53), we obtain Eq. (19). The initial condition
on the differential equation for V(T)at T=0 is V(0) =0 from Eq. (56) (Q.E.D.).
In [Theorem 1] the recursive least-squares algorithms for the fixed-point smoothing and filtering
estimates are proposed in linear continuous stochastic systems when the covariance information is
given. In sectiqn 4, we show a simple numerical simulation example which calculates the fixed-point

smoothing and filtering estimates by the algorithm of [Theorem 1].

4. A numerical simulation example

Let the observation equation be given by Eq. (1) for a scalar signal when observation noise

is white Gaussian plus colored. Let the signal x(t) be generated by
dx(t)/dt = — 5x(t) + u(t), E[u(t)u(s)] = 1005(t —s), E[x?*(0)] = 10, (58)

where the autocovariance function K, (t, s) of x(t) is expressed by K,(t, s) = 10e~%!*"sI [6]. Also,

let the process of colored noise v,(t) be generated by
do(t)/dt = w(t), E[w(t)w(s)] =106(t —s), E[v3*(0)] =0, (59)

where the autocovariance function K, (t, s) of v.(t) is given by K (t, s) = 10min(t, s) [6]. The
crosscovariance function K, (¢, s) of x,(t) with y(s) is expressed by Eq.(15). Since x(t) is
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uncorrelated with v,(s), we obtain C(t) = 10p(t)e > (= N(t)) and H(s) = e>(= M(s)) from
K. (t,s) = 10e”5!""sl. Here, we put the value of p(t) as p(t) =09. Also, the autocovariance
function K. (t, s) of z(t)(= x,(t) + v.(t), x,(t) = U(t)x(t)) is given by Eq. (16). The functions G(t)
and L(s) become G(t) = [p(t)10e~ > 10] and L(s) = [p(s)e>* s]. If we substitute the functions
C(T), H(T), N(T), M(t), G(T) and L(T) into [THEOREM 1], we can calculate the filtering estimate
X,(T, T) and the fixed-point smoothing estimate X,(t, T). Graphs (a) and (b) in Fig. 1 illustrate
the colored noise processes generated by Eq. (59), starting with initial conditions v,(0) = — 0.1 and
v.(0) = — 0.3 respectively. Fig. 2 illustrates the process x,(t) (graph (a)) and its filtering estimate
X.(t, t) vs. t. Graphs (b), (c) and (d) show %,(t, t) for white Gaussian observation noises N (0, 0.1%),

0.25 ' 0.5t
0 ; .
a
= b
2
=]
i
[}
Q
_2..

Fig. 1 The colored noise process v, (¢) generated by Eq. (59) vs. ¢.
(@) The colored noise process for the initial condition v, (0)= —0.1.
(b) The colored noise process for the initial condition v, (0)=—0.3.

0.25 0.5t

—2

%, (t) and its filtering estimate %, (t, t)

Fig. 2 The process x, () and its filtering estimate £, (¢, ¢) vs. .

(a) The signal process x,, ().

(b) The filtering estimate £, (¢, ¢ for white Gaussian observation noise N (0,
0.12).

(c) The filtering estimate £, (¢, ¢ for white Gaussian observation noise N (0,
0.32).

(d) The filtering estimate £, (¢, ¢} for white Gaussian observation noise N (0,
0.52).
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N(0, 0.3%) and N(0, 0.5%) respectively. Fig. 3 illustrates the fixed-point smoothing estimate

x,(0.13, T) vs. T. Graphs (a), (b), (c), (d), (¢) and (f) show %,(0.13, T) vs. T for white Gaussian
" observation noises N(0, 0.12), N(0, 0.22), N(0, 0.32), N(0, 0.4%), N(0, 0.5%) and N(0, 0.73) respectively.
Here, the value of x,(t) at the fixed-point ¢t = 0.13 is x,(0.13) = — 1.2772(= x(0.13)). Table 1 shows

0.1 0.2 T

|
@
w

Fixed-point smoothing estimate %, (0. 13, t)
|

—_—

#
x (0.13)=x, (0.13)=—1.2772

|
=
3

Fig. 3 The fixed-point smoothing estimate £, (0.13, T) vs. T.

(a) The fixed-point smoothing estimate £, (0.13, T) for white Gaussian observa-
tion noise N (0, 0.12).

(b) The fixed-point smoothing estimate £, (0.13, T) for white Gaussian observa-
tion noise N (0, 0.22).

(c) The fixed-point smoothing estimate £, (0.13, T) for white Gaussian observa-
tion noise N (0, 0.32).

(d) The fixed-point smoothing estimate £, (0.13, T) for white Gaussian observa-
tion noise N (0, 0.42).

(e) The fixed-point smoothing estimate £, (0.13, T) for white Gaussian observa-
tion noise N (0, 0.5%).

(f) The fixed-point smoothing estimate £, (0.13, T) for white Gaussian observa-
tion noise N (0, 0.72).

Table 1 The mean-square values of the filtering error and the fixed-point smoothing
error for white Gaussian observation noises N (0, 0.12), N (0, 0.22), N (0,
0.32), N (0, 0.4%), N (0, 0.5%) and N (0, 0.7).

5 (0)=—0.1 5 0)=—0.3
i 5‘23‘&21’22 M.S.V. of the Mﬁi‘é;p‘(’fm the | M.S.V. of the Mﬁjs(ég;p‘(’)f.nfthe
fitering error smoothing error filtering error smoothing error
N (0, 0.1%) 0.19286 0.019094 0.36359 0.047612
N (0, 0.22) 0.38346 0.036371 0.46377 0.052578
N (0, 0.3%) 0.56022 0.054127 0.56055 0.056694
N (0, 0.47) 0.72864 0.074201 0.66492 0.064096
N (0, 0.5%) 0.89623 0.097973 0.78314 0.076780
N (0, 0.7) 1.2325 0.15610 1.0563 0.11811







