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Abstract In the conventional estimation problem, we assume that the observed value always contains a signal

to be estimated and observation noise. However, in communication systems, there arises the case where the

observed value consists of noise alone during observing the signal.

This paper, in the estimation problem with the uncertain observation, designs algorithms for fixed-point

smoothing and filtering estimates by use of a probability that the signal exists, a crosscovariance function of

the signal with the observed value, an autocovariance function of the signal plus colored noise besides the

observed value when the signal is observed with additional white Gaussian and colored noises. The signal

might be correlated with colored noise. In the current approach, it is advantageous over the existing one阜n

that the present estimator necessitates the covariance information without requiring complete knowledge of

state-space model of the signal.

A numerical simulation example is shown to demonstrate the feasibilty of the current estimation technique.

1. Introduction

In the Kalman filter [1], it is a usual assumption that the observed value always contains

the signal and observation noise. However, in practical estimation problems in communication

systems, we encounter the case of "false alarm" where the observed value consists of noise alone

with nonzero probability in spite of positive decision on the existence of the signal. This case

occurs, for example, in tracking the target trajectory in space, and we must decide the existence
●

of a target by means of the decision rule based on a likelihood ratio test etc‥

Previously, linear least-squares estimator is developed regarding the estimation problem with

the uncertain observation [2]. In [2], recursive estimation algorithm is designed by assuming

complete knowledge of a state-space model for the signal in linear discrete-time systems.

By the way, there is a study on the recursive Wiener filter for the estimation problem in

linear stochastic systems, given a specified covariance function of the observed value, when

●

observation noise is white Gaussian [3]. This approach differes from that based on the Kalman

filter on the kind of information used. The recursive Wiener filter uses the information of the

system matrix in the state-space model of the signal, the observation matrix, the crosscovanance
●

function of the signal with the observed value and the observed value in linear continuous
●
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systems. Whereas the Kalman filter requires complete knowledge of the state-space model of the

signal. As an example, the state-space model is realized from the information of the Markov

parameter of the system [4]. Also, still in the recursive Wiener filter, there remains a task to

estimate the system matrix before implementing jthe computation of the estimate. To avoid the

realization step for the state-space model, the estimators, by use of the covariance information,

have been devised [5].

In this paper, on the estimation problem with the uncertain observation, new fixed-point

smoother and filter are designed in linear continuous stochastic systems. The estimator is e侃cient

for recursive estimation from the uncertain observed value. Let the observation equation be given

by y(t) - z(t) + v(t), z(t) - xu(t) + vc(t), xu(t) - U(t)x(t). The signal x(t) might be correlated with

colored observation noise vc(t). We assume that the probabilty on the existence of the signal x(t)

at time t is p(t) as introduced in [2]. Besides the probability, the proposed estimator assumes

the knowledge on the information of the observed value y(t), the crosscovariance function Kuy(t, s)

of xu(t) with y(s), the autocovariance function Kz(t, s) of z(t) and the variance of white Gaussian

observation noise v(t). Since K (t,s)-p(t)K (t,s), we see that the information Kuy(t9s) is

decomposed to p(t) and Kxy(t, s). We assume that the covariance functions Kuy(t, s) and Kz(t, s)

are expressed in the semi-degenerate kernel form. The semi-degenerate kernel is appropriate for
●                                                                                                                                                                                                            ●

expressing the covariance functions of stationary stochastic signal etc. by finite sum of nonrandom

functions of the variables t and s [5]. Therefore, the current algorithms can be applied to the
●

estimation of the stochastic signal in general.

The advantage of the present approach over the existing one [2] is that it is suitable for
●                                       ●

on-line estimation of the signal by using the covariance information, and does not take in the

step to realize the state-space model.

2. Estimation problem with uncertain observations

Let an observation equation be described by

y(t)-z(t)+v(t), z(t)-xJt)+vAt), xM)- U(t)x(t), 川

where y(t) is an n x 1 observed value vector, x(t) is an n x 1 zero-mean signal vector, vc(t) is a

zero-mean colored observation noise, and v(t) is white Gaussian observation noise satisfying

E[v(t)l - 0,　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　2)

Eivlt)vT(s)l-R(t)∂(t-s), 0≦L S< ∞　　　　　　　　　　　　　　　　　　　　(3)

We assume that the signal x(t) and colored noise vc(t) are uncorrelated with white Gaussian noise

v(s)as

E[x(t)vT(s)l-O, ETvc(t)vl(s)-] -0, 0≦t, s< ∞　　　　　　　　　　　　　　　　(4)

where the signal might be correlated with coloured noise vc(s). Let p(t) be the probability that

the observation at time t contains the signal x(t). Then, U(t) is a scalar quantity taking on values

of 0 or 1 with



S. Nakamori: LINEAR ESTIMATION USING COVARIANCE INFORMATION IN THE　65
PRESENCE OF UNCERTAIN OBSERVATIONS

p(t)-Pr{U(t)- l},

l -p(t)-Pr{U(t)-O}.

Hence,

E[U(t)l - p(t)

and

ELU{t)U(s)-] -p(t)p(s), t ≠ S,

E[U2(t)l - p(t)

(7)

[21. Then, the probability for U(t)-l is p(t) and for U(t)-0 is 1-p{t), although the

ideal value of U(t) might be 1 when the signal x(t) exists, and U(t)-0 for the case where the

observed value contains noises only. The uncertain observation is caused by U(t) in Eq. (1), and

xu(t)(- U(t)x(t)) equals x(t) with the probability p(t) and 0 with probability 1 -p{t). Also, the

probability of false alarm becomes 1 - pit), since the "false-alarm probability" means the probability

that the signal x(t) is not present in spite of a priori assumption that the signal exists. Thus, we

are lead to the estimation problem, where we estimate the uncertain process xu{t) with the uncertain

observed value.

We consider the fixed-point smoothing and filtering problems. Let the fixed-point smoothing

estimate xu(t, T) of xu(t) be given by

xu(t, T) - fJo hit, s', T)y(s')ds' (10)

as a linear integral transform of the observation set {y(s′), 0 ≦ S′ ^ T}, where J is the fixed-point

and h(t, s, T) is an optimal impulse response function.

Minimizing a cost function
●　　　　●

J-E[¥¥xJt)-xM, T)||2],

we obtain the Wiener-Hopf integral equation

ElxM)yT(s)l -
1

Jo

h(t, s', T) E[y(s')yT(s)l ds'

by an orthogonal projection lemma [5]

xu(t) -

fJo
h(t,s′, T)y(s′)ds′⊥y(s), o≦S, t≦ T.

ll

12

(13)

Here, " ⊥　denotes the notation of the orthogonality. Substituting Eq. (1) into Eq. (12), and using

Eq. (3), we have

h(t, s, T)R(s) - KuJt,.s) - fJo h(t, s', T)Kz{s', s)ds', (14)

where K (t, s) denotes the crosscovariance function of xu(t) with y(s), and Kz(t, s) the autocovariance

function of z(t). Considering the stochastic property of U(t) above, we might express the
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crosscovanance function Kuy(t, s) in the semi-degenerate kernel form [5] by

Kuy(t, s) - E[xu(t)yT(s)l

- E[U(t)x(t)yT(s)-}

- p(t)KxJt, s)

[

C(t)HT{s), o^s≦t,

M{t)NT(s), o≦t≦S,
(15)

where C(t) and H(s) are nxn' bounded matrices, and M(t) and N(s) are nxm! bounded

matrices. The autocovariance function Kz(t, s) is also expressed in the semi-degenerate kernel form

by

KM, s) - E[z{t)zT(s)-]

｡<t≡三　　　　　　　　　(16)

where G{t) and L(s) are n x I bounded matrices.

The specific estimation problem pursued in this paper necessitates the information of the

probability p(t), the observed value y(t), the crosscovariance function Kuy(t, s), the autocovanance

function Kz(t, s) and the variance R(t) of white Gaussian observation noise. This certifies that

the approach taken in this paper is distinct from that in [2] for the estimation problem with the

uncertain observation. In [2], complete description of the state-space model is assumed as for

the necessary information regarding the estimation problem with the uncertain observation. Since

the kind of covariance information might be useful before realizing the state-space model, we

recommend, in the confronted estimation problem, rather the approach using the covanance

information than that by use of the state-space model.

In section 3, 0n the basis of the preliminary statement above, we design the recursive algorithms

for the linear least-squares fixed-point smoothing and filtering estimates of xu(t) by use of the

covanance information.

3. Recursive后xed-point smoothing algorithm using covariance information

In Theorem 1, we present the recursive least-squares algorithm for the fixed-point smoothing
●

estimate in linear continuous stochastic systems.

Theorem 1. Let the probability for U(t) - 1 be p(t) in the observation equation (1) for the signal

observed with additional white Gaussian plus coloured noise. Here, the signal might be correlated

with colored noise. Let the crosscovariance function K (t,s) of x(t) with y(s) and the

autocovariance function Kz(t, s) of z(t) be expressed in the semi-degenerate kernel form. Also, let

the observed value and the variance of white Gaussian observation noise be given. Then, the

recursive algorithm for linear least-squares fixed-point smoothing estimate consists of Eqs. (17)-(26)

in continuous stochastic systems.

Fixed-point smoothing estimate :



S. Nakamori: LINEAR ESTIMATION USING COVARIANCE INFORMATION IN THE　67
PRESENCE OF UNCERTAIN OBSERVATIONS

∂Uu T)l∂T- h(t, T, T)(y(T) - G(T)e(T))

Filtering estimate :

xu(T, T) - C(T)V(T)

dV(T)/dT- ¢(T, T)(y(T)- G(T)e(T)), V(0)-0

de(T)/dT- J(T, T)(y(T) - G(T)e(T)), e(0) - 0

¢(T, T) -{Hl{T) - W{T)GT(T))R-1(T)

J{T, T) - (LT{T) - r(T)GT(T))R'l(T)

dr(T)/dT- J(T, T)(L(T) - G(7>(7")), r(0) - 0

h(t, T, T) - (M{t)NT(T) - S(t, T)GT(T))R-1(T)

dS(t, T)/dT- h(t, T, T){L(T)- G(T)r(T)), S(t, t) - C(t)W(t)

dW(T)/dT- ¢(T, T)(L(T) - G(T)r{T)), W(0) - 0

(Proof)

Let us differentiate Eq. (14) with respect to T.

dh(t, s, T)/dTR(s) - - h(t, T, T)Kz(T, s) - fJo dh(t, s', T)/dTKz(s', s)ds'

If we introduce an auxiliary function J(T, s) which satisfies

J(T, s)R(s) - LT(s) - fJo J(T, s')KJs', s)ds',

we have a partial differential equation for h(t, s, T)

dh(t, s, T)/8T- - h(t, T, T)G(T)J(T, s).

Similarly, if we differentiate Eq. (28) with respect to T, we have

∂J(T, s)/∂TR(s) - -J(T, T)KJT, s) -
Jo

dJ(T, s')/dTKJs', s)ds'.

From Eqs. (16), (28) and (30), we obtain a partial differential equation for J(T, s)

dJ(T, s)/dT- - J(T, T)G(T)J(T, s).

Now, from Eq. (28), the function J(T, T) in Eq. (31) satisfies

J(T, T)R(T)-Ll{T)-
Jo

J(T, s')Kz(s', T)dsf.

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

30

31

32

Substituting the expression Kz(s′, T) - L(s′)GT(T) for 0 ≦ S′ ≦ Tfrom Eq. (16) into Eq. (32), we have

J(T, T)R(T)-V(T)- fJo J(T, s')L(s')ds'GT(T).

If we introduce a function r(T) defined by

(33)
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J(T, s')L(s')ds', 34

we obtain Eq. (22) for J(T, T).

If we differentiate Eq. (34) with respect to T and substitute Eq. (31) into the resultant equation,

we have

dr(T) dT- JiT, T)L(T) - J(T, T)G(T) fJo J(T, s')L(s')ds'. 35)

From Eq. (34), We can rewrite Eq. (35) as Eq. (23), where the initial condition on the differential

equation (23) at T-0 is r(0)-0 from Eq.(34).

From Eq. (14), the function h(t, T, T), which appeared in Eq. (29), satisfies

h(t, T, T)R(T) - KuJt, T)- fJo h(t, s¥ T)KJs¥ T)ds'. (36)

If we use the expressions Kuy(t, T)-M{t)NT(T) for O≦t≦ T and KJs′ T)-L(s')GT(T) for

O≦S′≦ Tfrom Eqs. (15V-(16) in Eq. (36), we have

h(t, T, T)R(T) - M(t)Nl{T) -
I.: '
h(t, s', T)L(s')ds'GT(T).

If we introduce a function S(t, T) defined by

S(t, T)-
JJo
hit, s', T)L(s')ds',

(37)

38

we obtain Eq. (24) for h(t, T, T).

If we differentiate Eq. (38) with respect to T and substitute Eq. (29) into the resultant equation,

we have

dS(t, T) dT- h(t, T, T)L(T)-h(t, T, T)G(T) fJo
From Eq. (34), we can rewrite Eq. (39) as Eq. (25).

Ifwe put t-Tin Eq.(14), we have

h(T, s, T)R(s) - KuJT, s) - fJo

J(T, s')L(s')ds'.

h(T, s¥ T)KJsf, s)ds'.

If we substitute KuJT, s) - C(T)HT(s) from Eq. (15) into Eq. (40), we have

h(T, s, T)R(s) - C(T)HT(s) -
Jo

MT, s', T)KJs', s)ds'.

Let us introduce an auxiliary function ¢(T, s) which satisBes

¢(T, s)R(s) - HT(s) -
Jo

¢(T, s′)KAs′, s)ds′.

From Eqs. (41) and (42), we obtain

39

(40)

(41)

42
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h(T, s, T) - C(T)¢(T, s).　　　　　　　　　　　　　　　　　　　　　　　　　　　　(43)

The initial condition on the partial differential equation (25) at T- Ms S{t, t). From Eq. (38),

t, t) is formulated as

S(t, t)-
Jo

hit, s', t)L(s')dsf.

From Eq. (43), we can rewrite Eq. (44) as

S(t, t)- C(t)
蝣

Jo
¢(t, s′)L(s′)ds′.

If we introduce a function W(T) defined by

W(T) -
Jo
¢{T, s′)L(s′) ds′,

we obtain the initial condition as S(t, t) - C (t)W(t).

If we differentiate Eq. (42) with respect to T, we have

∂¢(T, s)/∂77? s) - - ¢(T, T)KAT, s) -
fJo
∂¢(T, s′)/∂TKJs′, s)ds′.

(44

45

(46)

47

If we substitute KJT, s)- G(T)Lr(s) for O≦S≦ T from Eq. (16) into Eq. (47) and compare the

resultant equation with Eq. (28), we obtain a partial differential equation for ¢(T, s)

∂¢(T, s)/∂T- - ¢(T, T)G(T)J(T, s).

From Eq. (42), the function ¢(T, T) in Eq. (48) satisfies

¢(T, T)R(T) - HT(T) - fJo ¢(T, s′)Kz(s′, T)ds′.

Since KJs′, T)-Us′)Gl(T) for O≦S′ ≦ T, we can rewrite Eq. (49) as

¢(T, T)R(T)- HT(T)-
1

Jo

¢(T, s′)L(s′)ds′GT(T).

Also, by use of Eq. (46), Eq. (50) becomes Eq. (21).

If we differentiate Eq. (46) with respect to T, we have

dW(T)/dT- ¢(T, T)L(T) + fJo ∂¢(T, s′)/∂TL(s′)ds′.

(48)

49)

50

51

If we substitute Eq. (48) into Eq. (51) and use Eq. (34), we obtain Eq. (26). The initial condition

on the differential equation for W{T) at T- 0 is W(0) - 0 from Eq. (46).

If we differentiate Eq. (10) with respect to T, we have

∂Ut, T)l∂T- h(t, T, T)y(T) + fJo dh(t, s', T) dTy(s')ds'.

If we substitute Eq. (29) into Eq. (52) and introduce a function

52
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JIT, s')y(s')ds', (53)

we obtain the partial differential equation (17) for the fixed-point smoothing estimate xu(t, T).

If we differentiate Eq. (53) with respect to T, we have

de(T) dT- J(T, T)y(T) + fJo dJ(T, s') dTy{s')ds'. (54)

If we substitute Eq. (31) into Eq. (54) and use Eq. (53), we obtain Eq. (20). The initial condition

on the differential equation (20) at T- 0 is e(0) - 0 from Eq. (53).

The filtering estimate XJT, T) of xu(T)(- U{T)x(T)) is formlated as

xu(T. T)- fJo h(T, s', T)y(s')ds' (55)

by putting t - Tin Eq. (10). If we substitute Eq. (43) into Eq. (55), and introduce a function V(T)

deBned by

｢[T)- fJo ¢(T, s′)y(s′) ds′,

we obtain Eq. (18).

If we differentiate Eq. (56) with respect to T, we have

dV(T)/dT- ¢(T, T)y(T) +
JJo
∂¢(T, s′)/∂Ty(s′)ds′.

(56)

(57)

If we substitute Eq. (48) into Eq. (57) and use Eq. (53), we obtain Eq. (19). The initial condition

on the differential equation for V(T) at T- 0 is V(0) - 0 from Eq. (56) (Q.E.D.).

In [Theorem l] the recursive least-squares algorithms for the fixed-point smoothing and filtering

estimates are proposed in linear continuous stochastic systems when the covariance information is

given. In section 4, we show a simple numerical simulation example which calculates the fixed-point
●

smoothing and filtering estimates by the algorithm of [Theorem l].

4. A numerical simulation example

Let the observation equation be given by Eq. (1) for a scalar signal when observation noise

is white Gaussian plus colored. Let the signal x(t) be generated by

dx(t)/dt - - 5x(r) + u(t), ｣[u(0m(s)] - 100∂(t-s), ｣[x2(o)] - 10,　　　　　　(58)

where the autocovariance function Kx(t, s) of x(t) is expressed by Kx(t, s) - ¥Oe 5|r s| [6]. Also,

let the process of colored noise vc(t) be generated by

dvc(t)/dt - w{t), E[w{t)w(sft - 10∂(t-s), ｣[ォ2(o)l -0,　　　　　　　　　　　(59)

where the autocovariance function KJt, s) of vAt) is given by Kc(t, s)- lOmin(t, s) [61. The

crosscovariance function Kuy(t,s). of xu(t) with y(s) is expressed by Eq.(15). Since x(t) is
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uncorrelated with vc{s), we obtain C{t)- 10p{t)e~5t{-N(t)) and H{s)-e5s{-M(s)) from

KJt9s)-10e 5|r s|. Here, we put the value of p(t) as p(t)-0.9. Also, the autocovariance

function KJt, s) of z(t){- xu(t) + vc(t)9 xu(t) - U(t)x(t)) is given by Eq. (16). The functions G(t)

and L(s) become G(t)- [p(t)lOe　5t lO] and L(s)- [p{s)e5ss]. If we substitute the functions

C(T), H(T), N(T), M{t), G(T) and L(T) into [THEOREM l], we can calculate the filtering estimate

支JT, T) and the fixed-point smoothing estimate xu(t, T). Graphs (a) and (b) in Fig. 1 illustrate

the colored noise processes generated by Eq. (59), starting with initial conditions i;c(0) - - 0.1 and

*>c(0) - - 0-3 respectively. Fig. 2 illustrates the process xu(t) (graph (a)) and its filtering estimate

xu(t, t) vs. t. Graphs (b), (c) and (d) show xu(t, t) for white Gaussian observation noises N(0, 0.1 ),

‖
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Fig. 1 The colored noise process vc (t) generated by Eq. (59) vs. /.

(a) The colored noise process for the initial condition vc (0) - -0.1.

(b) The colored noise process for the initial condition vc (0) - -0.3.
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Fig. 2　The process xu (t) and its filtering estimate xu (t, t) vs. t.

(a) The signal process xu (t).

(b) The filtering estimate xu (t, t) for white Gaussian observation noise N (0,

0.I2).

(c) The丘Itenng estimate xu (t, t) for white Gaussian observation noise N (0,

0.32).

(d) The filtering estimate xu (t, t) for white Gaussian observation noise N (0,

0.52).
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N(0, 0.32) and N(0, 0.52) respectively. Fig. 3 illustrates the fixed-point smoothing estimate

xtt(0.13, T) vs. T. Graphs (a), (b), (c),(d), (e) and (f) show jcm(0.13, T) vs. T for white Gaussian

observation noises JV(O, O.I2), N(0, 0.22), N(0, 0.32), N(0, 0.42), JV(O, 0.52) and N(0, 0.72) respectively.

Here, the value ofxJt) at the fixed-point t - 0.13 is xu{OA3) - - 1.2772(- x(0.13)). Table 1 shows

(
1
'
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-
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"
胡
9
}
E
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;
o
o
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s
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n
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-
p
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h
j

Fig. 3　The fixed-point smoothing estimate xu (0.13, T) vs. T.

(a) The fixed-point smoothing estimate xu (0. 13, T) for white Gaussian observa-

tion noise N (0, 0.I2).

(b) The fixed-point smoothing estimate xu (0. 13, T) for white Gaussian observa-

tion noise N (0, 0.22).

(c) The fixed-point smoothing estimate xu (0. 13, T) for white Gaussian observa-

tion noise N (0, 0.32).

(d) The丘xed-point smoothing estimate xuの.13, T) for white Gaussian observa-

tion noise N (0, 0.42).

(e) The fixed-point smoothing estimate xu (0. 13, T) for white Gaussian observa-

tion noise N (0, 0.52).

O The丘xed-point smoothing estimate xu (0.13, T) for white Gaussian observa-

tion noise N (0, 0.72).

Table 1 The mean-square values of the丘Itenng error and the fixed-point smoothing

error for white Gaussian observation noises N (0, 0.1 ), N (0, 0.22), N (0,

0.32), N (0, 0.42), N (0, 0.52) andN (0, 0.72).

W hite G aussian

●▼noise sequence

〟 (0)= - 0.1 〝c 0)= - 0.3

M .S.V .of the

filtering error

M .S.V . of the

血ed-point

sm oothing error

M .S.V .of the

filtering error

M .S.V . of the

fixed-point

sm oothing error

N (0, 0.I2) 0.19286 0.019094 0.36359 0.047612

N (0, 0.22) 0.38346 0.036371 0.46377 0.052578

N J(0, 0.32) 0.56022 0.054127 0.56055 0.056694

N (0, 0.42) 0.72864 0.074201 0.66492 0.064096

N (0, 0.52) 0.89623 0.097973 0.78314 0.076780

N (0, 0.72) 1.2325 0.15610 1.0563 0.11811
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the mean-square values for the filtering error and the fixed-point smoothing error when the sequences

of white Gaussian observation noise are N(0, 0.I2), iV(0, 0.22), JV(0, 0.32), N(0, 0.42), N(0, 0.52) and
500

iV(0,0.72). Here, the mean-square value of the filtering error is calculated by　∑ {xu(iA)
i-1

支u(iA, iA)) /500. Also, the mean-square value of the fixed-point smoothing error is calculated by

500 100

∑ ∑ (xu(iA) - xu(iA, iA +7zf))2/50000. From Table 1, we notice that the accuracy for the fixed-
1=1j=l

point smoothing estimate is improved fairly in comparison with the filtering estimate.
●

5. Conclusions

This paper proposed new estimation technique for the signal with the uncertain observation.

The fixed-point smoothing and filtering algorithms were designed by utilizing the covariance
●

functions Kuy(t, s) and Kz(t, s) in the semi-degenerate kernel form, the observed value, the variance

of white Gaussian observation noise and the probability p(t).

The current technique treats the estimation problem with the uncertain observation from the

viewpoint that the proposed algorithm uses the covariance information as stated above and doesn't

assume full knowledge of the state-space model for the signal.

A numerical simulation example has shown that the estimation algorithms with the uncertain

observations are feasible.
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