原子間力顕微鏡(AFM)による三酸化タングステンW03 の研究

著者	広瀬 敏和,西浦 敏文,郡山 泰章						
雑誌名	鹿児島大学理学部紀要=Reports of the Faculty of						
	Science, Kagoshima University						
巻	39						
ページ	1-10						
別言語のタイトル	Study of Tungsten Trioxide WO3 by Atomic Force						
	Microscope (AFM)						
URL	http://hdl.handle.net/10232/00004160						

原子間力顕微鏡 (AFM) による三酸化タングステンWO₃ の研究

広瀬敏和¹⁾・西浦敏文²⁾・郡山泰章³⁾

(2006年7月4日受理)

Study of Tungsten Trioxide WO₃ by Atomic Force Microscope (AFM)

Toshikazu HIROSE, Toshifumi NISHIURA, and Yasuaki KOORIYAMA

Abstract

WO₃ has the spontaneous polarization along the *c*-crystal axis. The cleavage plane of WO₃ is the *c*-plane. The twin domain structures holding in common $\langle 110 \rangle$ axes of a WO₃ single crystal have been measured by Polarized Light Microscope. The twin angle on the *c*-plain have been measured by Atomic Force Microscope (AFM) at room temperature. The twin angle θ calculated from the lattice constants *a* and *b* is represented $\theta = 2 \tan^{-1}(\frac{a}{b}) - 90^{\circ}$, and $\theta = 1.78^{\circ}$ calculated from the ratio a/b=0.969. On the other hand, the twin angle θ measured from AFM is 1.48°, and the obtained ratio a/b=0.974.

1 序論

三酸化タングステン WO_3 の結晶構造は歪ん だ ReO_3 型構造をしており、ペロブスカイト結 晶 ABX_3 のA イオンが完全に欠落した構造をし ている。図1に8単位胞を含む WO_3 の結晶構造 を示す。 WO_3 は温度変化に対して、表1に示す ように6つの結晶相をもち変位型の逐次相転移 をする [1]。 昇温過程と降温過程で相転移温度が違うのは、一 次の相転移であることを示している。最近、WO₃ は応用面からも注目されている。例えば、エレ クトロクロミック・電気化学材料物質として[2] ,ガスセンサー (NO, NO₂)[3,4]として、また触 媒デバイスとして注目されている[5]。

希土類アルミネイトで観測されているように [6,7],ペロブスカイト結晶 ABX₃のA イオンの 半径が小さくなると共に相転移温度が増加する。

¹⁾ 広瀬敏和 鹿児島大学理学部物理科学科 〒 890-0065 鹿児島市郡元 1-21-35

Department of Physics, Faculty of Science, Kagoshima University, Kagoshima 890-0065, Japan ²⁾ 西浦敏文 アイテップ株式会社 〒 892-0823 鹿児島市住吉町 1-5

ITEP Co., Ltd., 1-5 Sumiyosi-cyou, Kagoshima,892-0823, Japan

³⁾ 郡山泰章 株式会社南日本情報処理センター 〒 891-0115 鹿児島市東開町 4-104 MIC Co., Ltd., 4-104 Tokai-cyou, Kagoshima, 891-0115, Japan

このことは、A イオンのサイズが小さくなれば 結晶の不安定性が増すことを示しており、A イ オンが完全に欠落した WO₃ の場合不安定性が 最大になることを示している。

WO₃ の逐次構造相転移は、河南・広瀬によりソフトフォノンの凍結によって引き起こされていることが示された [8]。表2に、仮想立方相 (空間群 $P_{m3m} - O_h^1$)の表現で各相転移温度でのソフトフォノンの凍結モードを示している。室温以上の X, M, R モードは反強誘電的変位モードであり、 R_{25} モードは WO₆ 八面体の回転モードである。 monoclinic (II) はこれらの凍結モードに加えて、強誘電的変位モード Γ_{15}^{z} の凍結が起きており全体としてフェリ強誘電体ないしは弱い強誘電体になっていることを示している。

一方、 WO_3 は monoclinic (I)-triclinic 相転移温 度で半導体-金属転移を起こし [9]、加えて大き な誘電異常が起きている [10]。巨大誘電率を示 すこの誘電異常は、広瀬・古川により強誘電的 マイクロ領域 (FMR) が反強誘電的母体に存 在し自発分極が隣接する分極と平行になるか反 平行になるかのフラストレーションが起きてい ることににより引き起こされていることが示さ れた [11]。triclinic 相で強誘電的 monoclinic (II) 相と 反強誘電的 monoclinic (I) 相が共存してい ることは我々の Cr^{3+} の ESR(EPR)の結果から分 かっており [12]、最近の Filho らのラマン分光 の実験からも共存が確かめられている [13]。

WO₃ が双晶構造を示すことは分かっているが、 この論文は原子間力顕微鏡 (AFM) を使って双晶 角を測定し、格子定数から予測される双晶角と 比較検討することが目的である。

図 1: WO₃のWを中心とした酸素八面体構造(8単位胞)

Table 1 WO₃の逐次構造相の晶系、空間群、単位胞内分子数、格子定数。

Temperature («	-) -40	17	28	5 71	0	
(°C) (-	→) -20	20~30) 33	0 74	10	
Crystal ststem	monoclinic(II)	triclinic	monoclinic(I)	orthorhombic	tetragonal	(cubic)
Space group	$P_c - C_s^2$	$P\overline{1} - C_i^1$	$P2_1/n - C_{2h}^5$	Pmnb- D _{2h} ¹⁶	P4/nmm - D _{4h}	$(Pm3m - O_h^1)$
Z	4	8	8	8	2	1
Lattice constant	<i>a</i> = 5.28	<i>a</i> = 7.31	a = 7.31	a = 7.34	a = 5.25	
(Å)	b = 5.16	b = 7.52	b = 7.54	b = 7.57		
	<i>c</i> = 7.67	c = 7.68	c = 7.69	c = 7.75	c = 3.92	
	$\beta = 91.7$ °	$\alpha = 88.8 °$ $\beta = 90.9 °$ $\gamma = 90.9 °$	β = 90.9 °			

$(^{\circ}C) \leftarrow -4$	10 1	7 28	85	710	
\rightarrow -2	20 20	~30 3.	30	740	
Monoclinic(II)	Triclinic	Monoclinic(I)	Orthorhombic	Tetragonal	(Cubic)
	$\begin{bmatrix} z \\ 15 \\ z \end{bmatrix}^x$	$\begin{bmatrix} R_{25}^x & I \\ R_{25}^y & I \\ R_{25}^z & I \end{bmatrix}$	$\begin{bmatrix} R_{25}^x & (\\ M_3^y & 3\\ R^z \end{bmatrix}$	$ \begin{array}{c} M_5^{'y})^z \\ (X_5^z)^y \end{array} $	$M_3^{\prime z}$

Table 2 WO₃の逐次構造相と各相転移温度におけるソフトフォノンの凍結モード。

2 WO3の双晶構造と偏光顕微鏡写真

WO₃の双晶構造は、図 2(b) に示すように c 面内で (110) 軸を共有した双晶分域構造になる。 双晶軸は (110) であり、図 2(b) に示すように、 隣同士の 双晶分域 で *a* 軸と *b* 軸が交換され 90 [°]方向が違っている。 **WO**₃の室温における格子定数は、表1に示す ように a =7.31 Å,b =7.54 Åと違っているので双 晶分域間は 90°からずれた双晶角 θ を持つ。図 7 に示すように双晶角 θ は

$$\theta = 2\tan^{-1}\left(\frac{a}{b}\right) - 90^{\circ} \tag{1}$$

で表わせる。

図 2: (a) WO₃ の c 面内の双晶角 θ, (b) (110) 双晶分域, (c) WO₃ の双晶概念図

試料の複素屈折率は *n** = *n*-*ik* で表わされる。*n* は屈折率で、*k* は消衰係数である。試料に入射 した光の振幅反射率 *r* は

$$r = \frac{n - ik - 1}{n - ik + 1} \quad , \tag{2}$$

で与えられる。エネルギー反射率 R は

$$R = |r|^{2} = \frac{(n-1)^{2} + k^{2}}{(n+1)^{2} + k^{2}} , \qquad (3)$$

で与えられる。

WO₃の屈折率は 23°C白色光で、 $n_a = 2.703$ 、 $n_b = 2.376$ 、 $n_c = 2.283$ 、平均屈折率n = 2.454と測定されている [1]。従って、c面内でa軸の 屈折率 n_a とb軸の屈折率 n_b に差があるので、 偏光顕微鏡の偏光板を通った反射波に明暗がで きる。偏光顕微鏡 (Nikon LABOPHOT-POL)で 撮った WO₃のc面内写真の一例を図 3 に示す。 双晶軸は $\langle 110 \rangle$ であり、図 2 (b) に示すように、 隣同士の 双晶分域 でa軸とb軸が交換され 90 。方向が違っている。

図 3: WO₃の偏光顕微鏡写真。双晶軸は (110) である。

3 原子間力顕微鏡(AFM)の原理

原子間力顕微鏡(AFM)は大気圧下で原子レ ベルの分解能を有する顕微鏡であり、試料表面 の微細形状のみならず表面粗さなどが容易に測 定できるという特徴がある。観察対象としては 導電性試料だけでなく、高分子などの絶縁物の 観察にも有効である。また測定の際に走査型電 子顕微鏡(SEM)のように、金属蒸着などの 前処理を必要としない。また液中でも測定でき るという利点がある。AFMの動作原理は、カ ンチレバーと呼ばれる微小な探針と試料表面間 に働く原子間力(斥力あるいは引力)を検出し、 その力が一定になるように試料表面を走査し、表 面凹凸を描き出すというものである。力は、カ ンチレバーの変位で検出する。カンチレバー背 面にレーザーを照射し、反射光を4分割のフォ トディテクタに入射させ、光の変位量として検 出する。測定手法としては斥力領域で動作する コンタクモードと引力領域で動作するノンコン タクモードの2種類がある。前者は金属材料な どの硬い試料に適し、後者は高分子材料や生体 試料など柔らかい試料の観察に有効である。原 子間力顕微鏡(AFM)装置の概略図を図4に 示す。

図 4: 原子間力顕微鏡 (AFM) 装置の概略図

検出されるカンチレバーの変位は、作用する力 が一定になるように、フィードバックによりサ ンプルをのせたピエゾ素子(圧電アクチュエー タ素子)の z 軸を上下させる駆動電圧を測定し て求めます。同時に x,y 方向にもピエゾ素子を スキャンする駆動電圧を測定して、コンピュー タで3次元の表面像を描きます。 即ち、3次元ピエゾ素子のコントロール信号が、 3次元の表面像の情報を与えます。詳しくは、参 考文献[14],[15],[16]を参照していただきたい。

4 WO₃のAFM写真

今回実験に使用した原子間力顕微鏡(AFM) 装置は、 鹿児島大学地域共同センターに設置さ れた Digital Instruments 社製の NanoScope III 走 査型プローブ顕微鏡システム (MMAFM-K) であ る。

WO₃の c 面のA F M写真を図 5、図 6 に示 す。図 5(b),図 6(b)の黒い直線上のデータをコン ピュータ処理し、表面の凸凹をグラフ化したも のを図 5(c),図 6(c)に示す。図 5(b),図 6(b)は真 上からの画像であり、原子間力顕微鏡(A F M) 装置のデータ処理の操作手順は、ツールバーの FILE を選択し SELECT DIRECTORY から開き たいディレクトリを選ぶ。 図 5(c), 図 6(c) は、ツールバーの ANALYZE から SECTION を選択しマウスで図 5(b), 図 6(b) の 画面に線を引く。角度を測るにはツールバーの DRAW をクリックし、マーカーを表示させ切断 面の 2 点を選びその傾斜角を測る。記入された 角度が双晶角に対応する。図 5(a), 図 6(a) はA F M写真のデータをコンピュータ処理して、表 面の凸凹の様子をグラフ表示させたものである。 図 5(a), 図 6(a) は三次元プロットであり、操作 手順は 1, 図 5(b), 図 6(b) の画像で、VIEW から SURFACE PLOT を選択しマウスで画面の視点を 決める。

図 5: WO₃の顕微鏡 (AFM) 写真と双晶角 θ

図 6: WO₃ の顕微鏡 (AFM) 写真と双晶角 θ

WO₃ monoclinic I phase 格子定数 a = 7.31 Å $\beta = 90.9^{\circ}$ b = 7.54 Å at room temp. c = 7.69 Å $\alpha = \tan \frac{a}{b}$ $\theta = 2\tan^{-1} \frac{a}{b} - 90^{\circ}$

双晶角 $\theta = 1.78^{\circ}$

図 7: 格子定数から計算した双晶角 θ

5 結論

格子定数から計算された双晶角と AFM 測定 から求められた双晶角とを比較する。図7に示 すように格子定数と双晶角は $\theta = 2 \tan^{-1}(\frac{a}{b}) -$ 90°の関係があり、 $\theta = 1.78°$ となる。AFM 測 定から求められた双晶角は図5、図6に示すよ うに1.53°と1.42°であり平均して1.48°である。 格子定数から計算された双晶角とは16.9%違い がある。格子定数*a*と*b*の比*a/b*は0.969であ り、一方 AFM 測定から求められ比は0.974であ る。

6 謝辞

AFM によるこの実験は、鹿児島大学地域共同 センターに設置された装置で行ったが、坂元渉 氏に測定・指導いただいたことにたいし感謝い たします。また偏光顕微鏡を使用させていただ いた根建心具氏に感謝いたします。

参考文献

- Ferro- and Antiferroelectric Substances, in Landolt-Börnstein New Series, ed. K. -H. Hellwege (Springer-Verlag, Berlin, 1969) Vol.3, p.88.
- [2] P. K. Biswas, N. C. Pramanik, M. K. Mahapatra, D. Ganguli and J. Livage: Materials Letters, 57, 4429 (2003).
- [3] A. A. Tomchenko, V. V. Khatko and I. L. Emelianov: Sensors and Actuators, B46, 8 (1998).

- [4] V. Guidi, M. A. Butturi, M.C. Carotta, S. Galliera, A. Giberti, C. Malagu and B. Vendemiati: Sensors and Actuators, **B100**, 277 (2004).
- [5] Y. Xu, S. Carison and R. Norresam: J. Solid State Chem., 132, 123 (1997).
- [6] J. F. Scott and J. P. Remeika: Phys. Rev. B1, 112, 4182 (1970).
- [7] J. F. Scott: Rev. Mod. Phys., 46, 83 (1974).
- [8] M. Kawaminami and T. Hirose: J. Phys. Soc. Jpn., 46, 864 (1979).
- [9] T. Hirose: J. Phys. Soc. Jpn., 49, 562 (1980).
- [10] K. Furukawa and T. Hirose: J. Phys. Soc. Jpn., 55, 4137 (1986).
- [11] T. Hirose and M. Kawaminami: J. Phys. Soc. Jpn., 50, 843 (1981).
- [12] T. Hirose and K. Furukawa: phys. stat. sol. (a) 203, 608 (2006).
- [13] A. G. Souza Filho, J. Mendes Filho, V. N. Freire, A. P. Ayala, J. M. Sasaki, P. T. C. Freire, J. F. Juliao and U. U. Gomes: J. Raman Spectrosc., 32, 695 (2001).
- [14] NanoScope III Contact AFM オペレーション ガイド (東陽テクニカ).
- [15] 森田清三: 固体物理 27, No.8, 531 (1992).
- [16] 川見 浩、井上誠司、吉村雅満、八尾隆文:固体物理29, No.2, 139 (1994).