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Summary 

  An azimuthing podded drive system is established as one of the most promising technologies for the improvement of propulsive 
efficiency and maneuverability. The system is also useful for fishing vessels to control the power of generators during the draw in 
fishing gears for a long time in low speed. Although, the drawback to a fishing vessel with this system is that it will be a worry to 
the course stability in the voyage. A large number of studies have been made on maneuverability of conventional ships. What seems
to be lacking, however, is the course stability of the fishing vessel with the azimuthing podded drive system.   

In this paper, a new evaluation method of course stability is proposed on the basis of experimental study that is conducted in a
circulating water channel on survey of slewing motion in a towed condition. As a towing point moves to forward in a constant speed, 
the amplitude of slewing motion (a) decreases and its period (T) is getting longer. Accordingly, the index of evaluation is 
represented by the point of towing from the center of gravity of ship and the value of the amplitude divided by the period (2 a/T). 
The results are checked that compared with the course stability criterions by means of derivatives of hydrodynamic forces and 
moments. By using the present method, newly fishing vessels can be designed to achieve the improvement of propulsive efficiency
and maneuverability.  
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Table 1

Fig.2 G

A.P.

Fig.3

Fig.4

0.6 m A.P.

1/29.6 Lpp 1.300 m

18.22 kg

750kw

Table 2

Table 1 Principle dimensions 

Dimensions Full scale Model 
Lpp (m)   38.500  1.300 
B  (m)    8.100  0.274 
d  (m)    2.900    0.098 
xG (m)  fore(+) -2.350   -0.079 
Cb    0.522    0.522 

Fig.2 Body plan of the round haul netter 

Fig. 3 Body plan of the buttock flow stern 

Fig.4 Profile of the buttock flow stern 

No.2

No.3 No.4

No.5

No.6

No.7

Photo.1

-(20)
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Table 2 Profiles of the models 

Ex. Stern form Appendage 
No.2 Conventional stern A rudder 

No.3 Buttock flow stern Non

No.4 Buttock flow stern A pod 

No.5 Buttock flow stern Two pods 

No.6 Buttock flow stern 
Increased area of skeg 

Non

No.7 Buttock flow stern 
Increased area of skeg 

A pod 

   Photo.1 Stern forms of the models 

3. 2

6 m 2 m 1 m

2.0 m/s

0.6 mm

Fig.1

2Lpp (15)

2Lpp

2

1) 12 U=1.14 m/s (Fn=0.318)

2) 10 U=0.95 m/s (Fn=0.265) 

3) 8 U=0.76m/s (Fn=0.212)

Photo.2 Ordinate 7

12.5 1/4

5 6

Photo.2 Model arrangement of a towed condition 

(15)

(18)

Fig.5 3

1) Case-1

2) Case-2

3) Case-3

Case-1

Case-3

Case-3 Case-2

Case-2

a(m)

No.2 No.3

No.4 No.5

No.6 No.7
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B(m)

Fig.5 Classification of the slewing motion under three cases

T(sec)

U

(21)

TU
B

VTm -(21)

TmV 1.0TmV

aT aT

Ordinate

No.7 Fig.6

Case-1 Case-3

aT =4.4

Fig.6 Example for results of the experiment (No.7) 

3.3

No.2

Fig.7 12 aT =3.7 10

aT =3.7 8 aT =3

No.3 Fig.8

aT =8 Ordinate 12.6

No.4 No.6

8

12 10

No.4 aT =6.8

No.3 Fig.9

No.5 aT =5.3

Fig.10

No.6 aT =6.0 No.3

Fig.11 9)

Fig. 7 Result of the experiments in towed conditions (No.2) 

Fig. 8 Result of the experiments in towed conditions (No.3) 
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aT
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Fig. 9 Result of the experiments in towed conditions (No.4) 

Fig. 10 Result of the experiments in towed conditions (No.5) 

Fig. 11 Result of the experiments in towed conditions (No.6) 

Fig.12 No.2

aT =3.7 No.7 aT =4.4 No.5 aT =5.3

No.6 aT =6.0 No.4 aT =6.8 No.3 aT =8.3

D

(21)

12

10

Fig. 12 Results of slewing motion in towed conditions 

4

4. 1 PMM

No.2 No.7 PMM

Pure yaw

0.25 m

39.0maxr

9.5 U=0.90m/s Fn=0.252

PMM
10)

PMM

xm

Table 3

           Table 3 Static derivatives of models 

Ex. Y N

No.2 0.398 0.104 0.261 
No.3 0.328 0.142 0.433 
No.4 0.372 0.127 0.341 
No.5 0.366 0.121 0.331 
No.6 0.385 0.125 0.325 
No.7 0.412 0.118 0.286 

(22) 0D

r

PMM

D Table 4
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No. 4

aT
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No.4No.5 No.6No.7
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(D=–0.110)

(D=0.114) (D=0.007)(D=0.020)(D=0.045)
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T.L.=2Lpp
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曳航中の振れ回り運動からの針路安定性評価法 231



0
)( Y

N
mmY

N
D

xr

r
r -(22)

     Table 4 Dynamic derivatives and stability discriminates  

226.0xmm

Ex. rY rN r D

No.2 0.056 -0.066 0.388 0.127 
No.3 0.059 -0.054 0.323 -0.110 
No.4 0.062 -0.057 0.348 0.007 
No.5 0.064 -0.061 0.376 0.045 
No.6 0.064 -0.056 0.345 0.020 
No.7 0.066 -0.064 0.400 0.114 

12

Fig.12 aT

D

aT x D y

Fig.13 R=0.984

-0.05

aT 1 Ordinate

0.05
11)

L/V<10

No.4

aT =6.5

aT =6.8

No.4

No.7 aT =4.4

No.4 No.7

1/4

Fig.13 Comparison between the indexes of evaluation 

and the stability discriminate 

5.

TU
B

VTm TmV

1.0TmV

aT aT

Ordinate

No.2 D=0.127

12 aT =3.7

1) aT

D R=0.984

-0.05

aT 1 Ordinate 

D 0.05

2) No.3 aT =8.3

0.2

No.3

No.6 aT =6.0

3) No.4

aT =6.5

aT =6.8

No.4

No.7 aT =4.4

No.4 No.7

1/4
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