オブザーバ併用型拡大次元自動抽出制御則合成と その電力系統への適用に関する研究

高田 等* 小濱 健吾** 八野 知博*

Studies on Synthesis of an Augmented Automatic Choosing Control Law with Observer and its Application to Power Systems

Hitoshi TAKATA*, Kengo KOHAMA** and Tomohiro HACHINO*

In this paper we consider a nonlinear feedback control law which is called an augmented automatic choosing control (AACC) for nonlinear systems. A given domain is divided into some subdomains. A constant term which arises on each subdomain from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. The LQ control theory is used to acquire AACC for each sectionwise linear system. In a case of indirect measurements, an observer theory is taken together with AACC, which designs AACCLO and AACCNO of linear and nonlinear observer types, respectively. These controllers are applied to a transient stability problem of power systems.

Keywords: Nonlinear control, Zero-dynamics, Augmented system, Linearization, Observer

1. まえがき

我々の周りに実在するシステムは線形システムと非 線形システムに大別されるが、そのほとんどは非線形 システムである。線形システムに対しては既存の線形 制御理論を用いた制御系設計が比較的容易である。一 方、非線形システムを直接解析、制御することは一般 に容易でない。そのため、これまで多くの非線形シス テム制御に関する研究が行われてきた。非線形システ ムに対し安定化コントローラを設計する手法の一つと して、何らかの方法で非線形システムを線形化し、線 形制御則を適用する手法がある。線形化の例として代 表的且つ実用的なものの一つとしては、テイラー展開 一次近似があげられる。しかしこれはシステムが単一

2009年7月10日受理

** 博士前期課程電気電子工学専攻

の線形システムで、十分に近似できる範囲においては 極めて有効なものであるが、非線形性の強いシステム に対しては有効とはいえない。そこで本研究では線形 観測型非線形システムに対し、領域毎の拡大次元線形 化^{1),2)}とLQ制御理論⁷⁾とオブザーバ^{3),8)}を利用し た準最適な単一拡大次元自動抽出制御則を合成した手 法を提案した。これはまず、システムの非線形性を考 慮して複数の領域に分割し、各領域ごとにテイラー展 開一次近似を行い区分的線形制御則群を構成する。そ れらに自動抽出関数を乗じ総和することで、全領域で 一つの非線形準最適制御則を合成することで全体の近 似精度を向上させた。更に安定なゼロダイナミクスを 用いて次元を拡大することにより、定数項の無い拡大 次元線形近似システムを構築した。また、実システム では常に良好な観測が得られるとは限らない。そのよ うな場合においても制御則の構成に必要な変数を得る ために、線形オブザーバ^{4),5)}と非線形オブザーバ^{6),10)} の2種類のオブザーバを用いて状態推定を行った。本

^{*} 電気電子工学専攻

制御則を電力系統過渡安定化問題に適用し、数値シミュ レーションによりその有効性を確認した。

2. 拡大次元自動抽出制御法

2.1 概要

自動抽出制御法は、まず対象とするシステムの非 線形性を考慮して分離関数を選び、領域を分割する。 各小領域ごとにテイラー展開一次近似を行い LQ 制御 則を構成した後、シグモイド型自動抽出関数により各 領域で有効な近似関数を抽出し、滑らかに結合して単 一フィードバック制御則を合成する手法である。しか し、この手法ではテイラー展開により定数項が生じる。 この定数項の無限時間での影響に対処するため、定常 状態にある原点で零となる制御を行うための非線形原 点補正関数による補正が必要である。そこで本章では 安定なゼロダイナミクス変数を導入した拡大次元シス テムに対し、自動抽出制御法を適用した、いわゆる拡 大次元自動抽出制御法を合成する。本手法は自動抽出 関数合成時における、テイラー展開定数項に上述のゼ ロダイナミクス変数を乗じ、拡大次元変数とみなす。 これにより定数項のない拡大次元システムを構成し、 自動抽出制御理論を適用して制御則を合成する手法で ある。

2.2 領域毎線形近似の拡大次元化

システムが次の非線形微分方程式:

$$\dot{x} = f(x) + g(x)u \qquad x \in \mathbf{D} \tag{1}$$

で与えられる制御問題について考える。ただし、

$$\begin{aligned} &\cdot = d/dt \\ &x = [x[1] \dots x[n]]^T : n 次元状態ベクトル \\ &u = [u[1] \dots u[r]]^T : r 次元制御ベクトル \\ &f:連続微分可能な非線形 n 次元ベクトル値関数 \\ &g:連続微分可能な非線形 n × r 行列値関数 \\ &f(0) = 0, \quad g(0) \neq 0 \end{aligned}$$

である。

評価関数として二次形式の

$$J = \frac{1}{2} \int_0^\infty (x^T Q x + u^T R u) dt \tag{2}$$

を選ぶ。ただし、

 $Q: n \times n$ 準正定值対称行列

 $R: r \times r$ 正定值対称行列

右肩 T は転置記号、右肩-1 は逆行列記号である。

連続微分可能な L 次元分離ベクトル値関数 $C: x \rightarrow R^L$ を導入し、その値域を D とする。次に領域 D を M + 1 個の小領域に分割 $(D = \bigcup_{i=0}^{M} D_i)$ する。(1) 式 に対し、各小領域 D_i ごとに、 $\hat{X}_0 = 0$ および $\hat{X}_i \in C^{-1}(D_i)$ 点近傍でのテイラー展開線形化は、

$$\dot{x} = A_i x + w_i + B_i u \tag{3}$$

ただし、

$$A_i = \partial f(\hat{X}_i) / \partial \hat{X}_i^T, w_i = f(\hat{X}_i) - A_i \hat{X}_i,$$

$$B_i = g(\hat{X}_i)$$

である。ここで、安定なゼロダイナミクス変数 x_{n+1} を導入し、定数項 w_i に乗じて、(3) 式を次のように次元拡大する。

$$\begin{cases} \dot{x} = A_i x + w_i x_{n+1} + B_i u\\ \dot{x}_{n+1} = -\sigma_i x_{n+1} \end{cases}$$
(4)

 $(x_{n+1}(0) \simeq 1 \ , \ 0 < \sigma_i \ll 1)$ すなわち (4) 式は、

$$\dot{\mathbf{X}} = \begin{bmatrix} A_i & w_i \\ 0 & -\sigma_i \end{bmatrix} \mathbf{X} + \begin{bmatrix} B_i \\ 0 \end{bmatrix} \mathbf{u}$$
$$= \mathbf{A}_i \mathbf{X} + \mathbf{B}_i u \tag{5}$$

ただし、

$$\mathbf{X} = \begin{bmatrix} x_1 & \dots & x_n & x_{n+1} \end{bmatrix}^{\mathbf{T}} \\ \mathbf{A}_i = \begin{bmatrix} A_i & w_i \\ 0 & -\sigma_i \end{bmatrix}, \mathbf{B}_i = \begin{bmatrix} B_i \\ 0 \end{bmatrix} \\ \mathfrak{C}$$
ある。これを拡大次元システムと呼ぶ。

2.3 領域毎最適制御則

各領域ごとに線形近似した場合、それぞれの制御 則 *u*(*X*) は完全観測の場合、次の(6) 式により求めら れる。

$$u(\mathbf{X}) = -F_i \mathbf{X} \tag{6}$$

ただし、

 $F_i = R^{-1} B_i^T P_i$ である。また、 P_i はリカッチ方程式:

$$P_i \mathbf{A}_i + \mathbf{A}_i^T P_i + Q - P_i \mathbf{B}_i R^{-1} \mathbf{B}_i^T P_i = 0 \qquad (7)$$

の (n+1) × (n+1) 対称行列の解である。これを、全 領域で連続した一つの制御則に合成するため、次の自 動抽出関数を導入する。

2.4 自動抽出関数

前節では各領域 D_i ごとに最適制御則 u_i を求めた。 隣り合った領域同士の制御則 u_i を抽出し、つなぎ合わ

せることで、全領域の連続した制御則u(X)として扱う。このとき、領域が変わると同時に制御則を切り替え ねばならない。そのためには、領域 $D_i = \prod_{j=1}^{L} [a_{ij}, b_{ij}]$ を抽出する関数が必要である。これは、抽出したい領域でほぼ1、それ以外では0となるような関数である。

$$I_{iN}(x) = \begin{cases} 1 & on \ D_i \\ 0 & \ \mathcal{EO}(\mathfrak{t}) \end{cases}$$
(8)

しかし、(8) 式を満たすような解析関数は存在しない ため、次のシグモイド型自動抽出関数で近似する。

$$I_{iN} = \prod_{j=1}^{L} I_{iN}(x;j)$$
(9)

$$I_{iN}(x;j) = 1 - \frac{1}{1 + \exp(2N(C_j(\hat{x}) - a_{ij})/h_j)} - \frac{1}{1 + \exp(-2N(C_j(x) - b_{ij})/h_j)}$$
(10)

ただし、Nは自然数、 $h_i = (b_{ij} - a_{ij})/2$ である。

自動抽出関数は、 $N \to \infty$ で理想的なものに近づ くが、実際の制御分野への適用では以前の実験報告で N = 8以下でも有効であることが検証されている。

図-1にシグモイド型関数の概略図を示す。

2.5 準最適制御則合成

各領域の最適制御則と自動抽出関数を乗じることに より、次のフィードバック制御則が得られる。

$$u(x) = \sum_{i=0}^{M} u_i(x) I_{iN}(x)$$
(11)

これを全領域の完全観測時制御則と定義する。これは、 領域毎に切り替えのない単一フィードバック制御則で ある。次に不完全観測時について考察する。

3. オブザーバ

3.1 概要

前章では非線形性の強いシステムの制御法の一つ として拡大次元自動抽出制御法を提案した。自動抽出 制御法では状態フィードバック制御を用いるが、状態 値 x(t) が外部から直接には観測できず、出力 y(t) のみ が測定できる場合にはこの制御則は適用できない。し かし、このシステムが可観測であれば出力 y(t) の観測 値を用いて状態値 x(t) を知ることが出来る。これは可 観測行列を用いた直接的な計算法によっても可能であ るが、オブザーバを用いることにより、より簡単に推 定できる。したがって、状態が観測できない場合にも、 オブザーバと状態フィードバック制御則を結合して最 適制御則を導く際に有効な手法である。本章では線形 オブザーバと非線形オブザーバの2種類のオブザーバ について説明する。

3.2 線形オブザーバ

システムが次の非線形微分方程式で表される制御 問題について考える。

$$\begin{cases} \dot{x} = f(x) + g(x)u\\ y = Hx \end{cases} \qquad x \in \mathbf{D} \qquad (12)$$

連続微分可能な L 次元分離ベクトル値関数 $C: x \to R^L$ を導入し、その値域を Dとする。次に領域 DをM+1個の小領域に分割 ($D = \bigcup_{i=0}^{M} D_i$) する。(12) 式に対し、 各小領域 D_i ごとに、 $\hat{X}_0 = 0$ および $\hat{X}_i \in C^{-1}(D_i)$ 点 近傍でのテーラー展開線形化は、

$$\begin{cases} \dot{x} = A_i x + w_i + B_i u\\ y = H x \end{cases}$$
(13)

となる。さらに、安定なゼロダイナミクス変数

$$\dot{\hat{x}}_{n+1} = -\sigma \hat{x}_{n+1}$$
 $\hat{x}_{n+1} \in R$ (14)

を導入し次元を拡大すると、

$$\begin{cases} \dot{\mathbf{X}} = \mathbf{A}_i \mathbf{X} + \mathbf{B}_i u\\ \mathbf{Y} = \mathbf{H} \mathbf{X} \end{cases}$$
(15)

となる。ただし、

$$\mathbf{X} = \begin{bmatrix} x^T, \hat{x}_{n+1} \end{bmatrix}^T, \mathbf{Y} = \begin{bmatrix} y^T, x_{n+1} \end{bmatrix}^T$$

$$\mathbf{A}_i = \begin{bmatrix} A_i & w_i \\ 0 & -\sigma \end{bmatrix}, \mathbf{B}_i = \begin{bmatrix} B_i \\ 0 \end{bmatrix}, \mathbf{H} = \begin{bmatrix} H & 0 \\ 0 & 1 \end{bmatrix}$$

である。このとき、制御則 u と観測値 y から状態推定

値
$$\hat{x}$$
 を与える線形オブザーバを次式とする。
 $\dot{\hat{x}} = \sum_{i=0}^{M} \{\hat{f}(\hat{x}) + B_i u + K_i (y - H\hat{x})\} I_{iN}(\hat{x})$
 $= \sum_{i=0}^{M} \{A_i \hat{x} + w_i \hat{x}_{n+1} + B_i u + K_i (y - H\hat{x})\} I_{iN}(\hat{x})$
(16)

ここでのオブザーバゲイン K_i は次式で与えられる。

$$K_i = S_i H^T V^{-1} \tag{17}$$

ただし、 S_i は次のリカッチ代数方程式の解であり、V > 0、 $W \ge 0$ を満たす。

$$A_i S_i + S_i A_i^T - S_i H^T V^{-1} H S_i + W = 0$$
 (18)

また制御則 $u(\hat{\mathbf{X}})$ は、次式で表される。

$$u(\hat{\mathbf{X}}) = -F_i \hat{\mathbf{X}} \tag{19}$$

ここで *F*_i は、

$$F_i = R^{-1} \mathbf{B}_i \tilde{P}_i \tag{20}$$

である。ただし、 \tilde{P}_i は次のリカッチ代数方程式の解であり、R > 0、 $\mathbf{Q} \ge 0$ を満たす。

$$\mathbf{A}_{i}{}^{T}\tilde{P}_{i} + \tilde{P}_{i}\mathbf{A}_{i} - \tilde{P}_{i}\mathbf{B}_{i}R^{-1}\mathbf{B}_{i}^{T}\tilde{P}_{i} + \mathbf{Q} = 0 \qquad (21)$$

このときの推定誤差は

$$e(t) = x(t) - \hat{x}(t)$$
 (22)

である。(13)式と(15)式は近似誤差 ε_iにより、

$$\dot{x} = \sum_{i=0}^{M} (A_i x + w_i \hat{x}_{n+1} + B_i u_i + \varepsilon_i) I_{iN}(x) \quad (23)$$

$$\dot{\hat{x}} = \sum_{i=0}^{M} (A_i \hat{x} + w_i \hat{x}_{n+1} + B_i u_i + K_i (y - H \hat{x})) I_{iN}(\hat{x})$$
(24)

小領域 D_i 毎に $I_i = 1$ $(I_j = 0, i \neq j)$ の場合は (14) 式 と上式から $e = x - \hat{x}$ で、

$$\begin{cases} \dot{\mathbf{X}} = \mathbf{A}_i \mathbf{X} + \mathbf{B}_i u + \bar{\varepsilon_i} \\ \dot{e} = (A_i - K_i H) e + \varepsilon_i \end{cases}$$
(25)

すなわち、

$$\begin{bmatrix} \dot{\mathbf{X}} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} \mathbf{A}_i - \mathbf{B}_i F_i & \mathbf{B}_i F_i E_z \\ 0 & A_i - K_i H \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ e \end{bmatrix} + \tilde{\varepsilon_i}$$
(26)

$$\mathbf{X} = \begin{bmatrix} x \\ \hat{x}_{n+1} \end{bmatrix}, \quad E_z = \begin{bmatrix} I \\ 0 \end{bmatrix}$$
$$\bar{\varepsilon}_i = \begin{bmatrix} \varepsilon_i \\ 0 \end{bmatrix}, \quad \tilde{\varepsilon}_i = \begin{bmatrix} \bar{\varepsilon}_i \\ \varepsilon_i \end{bmatrix}$$

(26) 式で $\tilde{\epsilon_i}$ を入力と考えたときの閉ループシステム の特性方程式は det[$sI - (\mathbf{A}_i - \mathbf{B}_i F_i)$] det[$sI - (A_i -$ K_iH)] となり分離定理⁹⁾が使え、($\mathbf{A}_i - \mathbf{B}_iF_i$)が安定 で、 $(A_i - K_i H)$ も安定に選ぶ。ここで、 $(A_i - K_i H)$ が安定行列となるように出力誤差のフィードバックゲ イン K_i を選ぶことができれば、 $e(t) \rightarrow 0 (t \rightarrow \infty)$ と できるので状態推定値 *x*(*t*) が真の状態値 *x*(*t*) に近づ く。状態推定値 x(t) が制御ループの中で実用上の意味 をもつためには、状態推定値 *x*(*t*)の収束の速さが状態 値 x(t) の運動の早さに比べて十分速くなければならな い。このためには (26) 式中の (A_i – K_iH) の極を任意 の位置に指定できることが必要である。 $(A_i - K_i H)$ の極の極指定の問題は (H, A_i) の可観測性と密接に関 係している。すなわち完全次元オブザーバの推定誤差 である (25) 式において (A_i – K_iH) の極が任意の位 置に配置できるための必要十分条件は (H, A_i) が可観 測となることである。よって F_iに関しては評価関数 $J = \frac{1}{2} \int_0^\infty \left(\mathbf{X}^T \mathbf{Q} \mathbf{X} + u_i^T R u_i \right) dt$ を最小にする LQ 制 御則を求め、K_iに関してはロバストオブザーバを求 めて (20)、(17) 式が得られる⁸⁾。ただし、合成式に含 まれる *I_i* のパラメータ等は、*D*上大局的意味で安定 化されるように選ばれる必要がある。

3.3 非線形オブザーバ

前項の線形オブザーバの問題設定と同様の場合で 考える。制御則 *u* と観測値 *y* から状態推定値 *x* を与え る非線形オブザーバを次式とする。

$$\dot{\hat{x}} = \sum_{i=0}^{M} \{f(\hat{x}) + B_i u + K_i (y - H\hat{x})\} I_{iN}(\hat{x}) \quad (27)$$

(16) 式の線形オブザーバと異なり、(12) 式のシステム の状態方程式 f(x) と同じ形 $f(\hat{x})$ の状態推定モデルを 用いる。オブザーバゲイン K_i 、制御ゲイン F_i の導出 については線形オブザーバと同様の方法の(17)、(19) 式で求める。

4. 数値シミュレーション

4.1 例題

本研究における各手法の有効性を検証するために

一機無限大母線系統過渡安定化問題に応用し、その有効性を検証する。九州電力(株)小関発電所の系統図を図-2に示す。この発電所の発電機動揺方程式を(28)式に示す。

$$M\frac{d^2\delta}{dt^2} + D(\delta)\frac{d\delta}{dt} + P_e(\delta) = P_{in} \qquad (28)$$

$$P_{e}(\delta) = E_{I}^{2}Y_{11}cos\theta_{11} + E_{I}VY_{12}cos(\theta_{12} - \delta)$$

$$E_{I} + T_{d0}'\frac{dE_{q}'}{dt} = E_{fd}$$

$$E_{I} = E_{q}' + (X_{d} - X_{d}')I_{d}(\delta)$$

$$I_{d}(\delta) = -E_{I}Y_{11}sin\theta_{11} - VY_{12}sin(\theta_{12} - \delta)$$

$$D(\delta) = V^{2} \Big\{ \frac{T_{d0}''(X_{d}' - X_{d}'')}{(X_{d}' + X_{e})^{2}}sin^{2}\delta + \frac{T_{q0}''(X_{q} - X_{q}'')}{(X_{q} + X_{e})^{2}}cos^{2}\delta \Big\}$$

ここで、 δ :発電機の相差角、 P_{in} :機械的入力、 $P_e(\delta)$: 電気的出力、M:発電機慣性定数、 $D(\delta)$:制動係数、 E_I :内部誘起電圧、V:基準点電圧、 $Y_{11} \angle \theta_{11}$ 、 $Y_{12} \angle \theta_{12}$: 機間アドミタンス、 E'_q :過渡リアクタンス背後電圧、 E_{fd} :界磁電圧、 T'_{d0} :直軸過渡時定数、 T''_{d0} :直軸短 絡初期過渡時定数、 T''_{q0} :横軸短絡初期過渡時定数、 $I_d(\delta)$:直軸電流、 X_d :直軸同期リアクタンス、 X'_d : 直軸過渡リアクタンス、 X''_d :直軸初期過渡リアクタン ス、 X_q :横軸同期リアクタンス、 X''_q :横軸初期過渡 リアクタンス、 X_e :外部リアクタンスである。

状態変数を $x = [x_1, x_2, x_3]^T = [E_I - \hat{E}_I, \delta - \hat{\delta}_0, \hat{\delta}]^T$ 、制御変数を $u = E_{fd} - \hat{E}_{fd}$ とする。 系統定数と定常状態の各値は以下の通りである。

$M{=}0.016095$	$T'_{d0} = 5.09907$	V = 1.0
$P_{in}=1.2$	$X_d = 0.875$	$X'_d = 0.422$
$Y_{11} = 1.04276$	$Y_{12} = 1.03084$	$\theta_{11} = -1.56495$
$\theta_{12} {=} 1.56189$	$X_e = 1.15$	$X''_d = 0.238$
$X_q = 0.6$	$X_{q}''=0.3$	$T_{d0}^{\prime\prime} = 0.0299$
$T_{q0}^{\prime\prime}{=}0.02616$	$\hat{E}_I = 1.52243$	$\hat{\delta}_0 = 48.57$
$\dot{\hat{\delta}}_0 = 0.0$	$\hat{E}_{fd} = 1.52243$	

図-3 初期値に対する安定領域の比較

本手法と比較のため、原点近傍でのテイラー展開一次 近似による線形最適制御(以下 LOC と記す)を導入 する。

4.2 線形オブザーバ併用の拡大次元自動抽出制御

LOC と本手法 (以下 AACCLO と記す)の比較を 行った。各パラメータは以下のように設定した。

 $L = 1, M = 1, N = 5.41, a_{11} = 0.86, R = 1$

 $V = \mathbf{I}, \mathbf{Q} = I, W = diag(139, 1, 1)$

AACCLOの展開点は $X_1 = \begin{bmatrix} 0, 48.57^\circ - \hat{\delta}_0, 0 \end{bmatrix}^T$ 、 $X_2 = \begin{bmatrix} 0, 80.00^\circ - \hat{\delta}_0, 0 \end{bmatrix}^T$ とした。また線形オブザーバの初 期値は $\begin{bmatrix} \hat{x}_1(0), \hat{x}_2(0), \hat{x}_3(0) \end{bmatrix}^T = \begin{bmatrix} 0, 3, 0 \end{bmatrix}^T$ とした。 $x_1(0) = 0$ 面における安定領域を図-3に示す。

初期値 $x(0) = [x_1(0), x_2(0), x_3(0)]^T = [0, 1.4, 0]^T$ における x_1, x_2, x_3, u の時間応答の比較をそれぞれ 図-4に示す。図-3から、AACCLOの方がLOCよ り安定領域が拡大していることが分かる。また図-4 より、LOCに比べ AACCLO は安定時間が短縮して

図-5 初期値に対する安定領域の比較

いることが分かる。

4.3 非線形オブザーバ併用の拡大次元自動抽出制御 LOC と本手法 (以下 AACCNO と記す) との比較 を行う。各パラメータは以下のように設定した。

 $L = 1, M = 1, N = 1, a_{11} = 0.86, R = 1$

 $V = \mathbf{I}, \mathbf{Q} = I, W = diag(139, 1, 1)$

AACCNO の展開点は $X_1 = [0, 48.57^{\circ} - \hat{\delta}_0, 0]^T$ 、 $X_2 = [0, 89.40^{\circ} - \hat{\delta}_0, 0]^T$ とした。また非線形オブザーバの 初期値は $[\hat{x}_1(0), \hat{x}_2(0), \hat{x}_3(0)]^T = [0, 0, 0]^T$ とした。 $x_1(0) = 0$ 面における安定領域の比較を図-5 に示す。 初期値 $x(0) = [x_1(0), x_2(0), x_3(0)]^T = [0, 1.4, 0]^T$ に おける x_1, x_2, x_3, u の時間応答の比較をそれぞれ 図-6 に示す。図-5 より、AACCNO の方が LOC よ り安定領域が拡大していることが分かる。また図-6 より、LOC に比べ AACCNO は安定時間が短縮して いることが分かる。

4.4 シミュレーション結果の検討

本章では数値シミュレーションによりLOCとAAC-CLO、LOCとAACCNOの安定領域の比較を行い、本 手法であるAACCLO及びAACCNOのいずれにおい ても従来法であるLOCよりも安定領域が拡大してい くことが確認できた。また、AACCLOとAACCNO の比較を行った場合、AACCLOの方が安定領域は広 がることが確認できたが、AACCLOの場合は、パラ メータの変動によって領域の変動が大きいという問題 点があった。特にオブザーバの初期値設定に依存して 変動が大きいため、その対処が今後の課題としてあげ られる。それに比べ、AACCNOはパラメータの変動 による影響を受けにくく、オブザーバの初期値設定に も影響が少ないことが確認できた。したがってシステ ムの構成や条件に応じて使用するオブザーバの選択を 行うことが好ましいと考えられる。

5. 結論と今後の課題

本報告では、非線形性の強いシステムに対する制 御法として領域毎の拡大次元線形化とLQ制御理論と オブザーバを利用した準最適な単一拡大次元自動抽出 制御則を合成した手法を提案した。また、状態変数が 不完全観測の場合を想定して線形オブザーバと非線形 オブザーバの2種類のオブザーバを用いることで状態 変数を推定し、推定値により制御を行う手法を提案し た。本手法を電力系統過渡安定度制御問題に対して数 値シミュレーションにより有効性の検証を行った。シ ミュレーション結果より本手法と従来法である線形制 御法 (LOC) との比較を行い、いずれのオブザーバを 用いた制御則においてもシステムの安定領域が拡大し ていることが確認できた。線形オブザーバと非線形オ ブザーバについては直接の比較は行っていないが、シ ステムの構成や用途に応じて使い分けることが好まし いと考えられる。

今後の課題として、最適な展開点、分割点の検討、 更なる安定領域の拡大、他のシステムへの適用などが 考えられる。

参考文献

 4) 縄田 俊則,高田 等:GAによる入力制限付き 非線形システムに対する拡大次元自動抽出制御 の設計,システム制御情報学会論文誌,Vol.16, No.5, pp.202-208 (2003).

- 20 -

- 高田 等,深澤 英三郎,八野 知博:オブザー バを用いた自動抽出制御の合成について,第22 回 SICE 九州支部学術講演会, pp.87-88 (2003).
- 高田 等, 梶原 健太郎, 八野 知博:オブザー バを併用した拡大次元自動抽出制御法による非 線形制御の数値実験, 第25回 SICE 九州支部 学術講演会, pp.31-32 (2006).
- 4) 高田 等,小濱 健吾,八野 知博:不完全観測 型拡大次元自動抽出制御による電力系統過渡安 定度制御, 第26回 SICE 九州支部学術講演会, pp.79-80 (2007).
- 5) 高田 等,小濱 健吾,八野 知博:線形観測型 非線形システムに対する領域毎線形オブザーバ とLQ 制御による拡大次元自動抽出制御則合成, 第52 回システム制御情報学会研究発表講演会, pp.517-518 (2008).
- 6)高田 等,小濱 健吾,八野 知博:線形観測型 非線形システムに対する領域毎非線形オブザー バとLQ制御による拡大次元自動抽出制御則合 成,平成20年度電気関係学会九州支部連合大会, 12-2P-01 (2008).
- 7) 細江 繁幸:システムと制御, オーム社, pp.83-110 (1997).
- 小郷 寛,美多 勉:システム制御理論入門,実 教出版, pp.115-140 (1979).
- 野波 健蔵,西村 秀和:MATLAB による制 御理論の基礎,東京電機大学出版局, pp.182-189 (1998).
- 10) H. Takata, T. Hachino, K. Kohama, T. Nawata: Augmented Automatic Choosing Control of Nonlinear Observer Type for Nonlinear Systems with Linear Measurement and Its Application, Proc. of NOLTA2008, B3L-F2 (2008).