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Abstract

In this article, we study the existence and classification of i-mersions of manifolds

via fc-morphisms of vector bundles.

Introduction

A differentiate map g : M -> N between differentiate manifolds without boundary

is called a A-mersion if g has rank at least k at each point of M. In particular, a

fc-mersion is an immersion or a submersion according as k = dim M or k = dim N.

The space of &-mersions of M to N, endowed with CMopology, is denoted by k(M,

K). The two Emersions are said to be ^-regularly homotopic if they are joined by a

path in k(M,N). We denote by k\_M, #][/] the set of ^-regular homotopy classes of
£-mersions homotopic to a given map f:M^-N. In particular, the set k\M, N\n
is equal to the regular homotopy set I\_M, JV][/] of immersions homotopic to / or the
regular homotopy set S\_M, JV][/] of submersions homotopic to /, according as k =
dim M or k = dim N.

A morphism g : $ -+ £ between real vector bundles is called a £-morphism if its

restriction to each fiber is of rank at least k. The space of &-morphisms of £ to £

with compact open topology is denoted by k(£, £). Moreover, for a map /': X -• Y
and two real vector bundles £ over X and £ over Y, let k($, Of and k(£, Oifl be
the subspaces of k($, £) consisting of &-morphisms covering / and of &-morphisms

covering maps homotopic to /, respectively. Further, let &[£,£], £[£» C]/ and

£[£. C][/] be the homotopy set of k(£, £), k($, Of and k($, £)[/], respectively.
Under these circumstances, Fait [1, Theorem 1 ] has proved that if k < dim N

or M is an open manifold then the correspondence that maps £-mersions to their

differentials induces a.bijection

k\_M, Nltfi = k[jM, tjv][/] for any map f:M-*- N,

where tm is the tangent bundle of M.

In this paper, we study the existence and classification problem for A-meriosns

via &-morphisms and we obtain some relations between A-mersions of M to N and
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those of M to the euclidean space. In particular, we get some existence and classifi

cation theorems both for immesions and submersions simultaneously (see Theorem 7.6).

For our purpose, it is important to study the existence and classification of £-mor-

phisms. We do this by using the way similar to that used by Li and Habegger [3]-[6].

In the forthcoming paper [9], we will study the set »[£, £]/ for n = dim £

more exactly and get some results concerning the regular homotopy sets S\_M, Pn\f\
of submersions of certain open manifolds to the real projective space.

The remainder of this paper is organized as follows : In § 1, we construct two fiber

bundles £/(£, £ ; k) and £(£, £; k) associated with £, £, and f:X->Y. In § 2, we

see that the space &(£» C) and &(£, £)/ are homeomorphic, respectively, to the space

r(3(£. C5 &)) of cross sections of j8(f, £ ; k) and to the space rG9/(£, £ ; &)) of

cross sections of £/(£, £ ; k), and the natural inclusion &(£, £)/ -> k(£, Olfl leads

to a surjection k[£, £]/-• &[£, £][/]. In §3, we define an action of the funda

mental group x\(Yx, f) on k\£, £]/, and in §6, we show that the above surjection
induces a bijection of the quotient set £[£, £]/Ai(Fjv:, f) to [£, £][/]. In §4, we
will give some examples of the trivial actions of the non-trivial groups tci(Yx , /) on

£[£t C]/- §5 is devoted to a study of the stabilization map k[£, £]/ -*• (&+/)

[M®dx, C©0yG/' ™hzre Qlz *s a trivial /-plane bundle over a space Z. In the last
section (§7), we will give some conditions, namely, that for a map f:M-+ N,
the existence of a A-mersion homotopic to / is equivalent to that of a £-mersion of M

to the ^-dimensional enclidean space Rn (n = dim AT) (see Theorem 7. 3) and that

there exists a bijection between ^-regular homotopy sets k[M, N\f] and k\_M, /?"]

(see Theorem 7. 5).

§ 1. Bundles £/(£, £ ; k) and j5(£. £ ; k).

For k ^ min{w, «}, let Af*(«, w; &) denote the space consisting of all real

n x m-matrices of rank at least k and let G(tri) denote either GL(m, R) or 0(ni).

Then C(w)xG(n) acts on M*(n, m\ k) from the left by the equation 04, B)C =

JSCiT1, where A <= G(m), 5 e G(«) and C e M*(n, m ; A).

In what follows, £ and £ will mean, respectively, a real m-plane bundle over a

CW-complex X and a real M-plane bundle over Y. The bundle $m and £„ mean the

principal G(jri) - and G(»)-bundles associated with £ and £, respectively. The space

B(£> C 5 &) is defined by

B($. C; *)=(£« XCn)XG(«)xG(«)^*(». »»; A?).

It is easily seen that

£(£, £ ; *) =6mx G(«)(C»xg(»)A**(». m; A)).

Let £ : 5(£, £ ; A) -> X and ^ : J3(£, £ ; A) -> ATx Ybe the mapsdefined by the natural

308



fc-mersions and fc-morphisms

projections. Then we have the following

Lemma 1.1 (cf. Li [3]). (0 j5(£, £ ; *) = (P • B($, £ ; k) -> X) is a fiber
bundle with fiber £„xG(M)-M*(». m\k) and with structure group G(w).

(ii) £(£, £ ; k) = (jq : £(£, £ ; A?) -> JTx F) *s c /iter 6«»rf/e wtfA fiber
M*(n, m ; &) and with structure group G(w)xG(»).

Remark. The element [ux,vy,C\ of £(£, £ ; £) (* e X, .veF) can be
regarded as a linear map of £x to Cy with C as its matrix relative to the bases ux and
vy, where £* and £y are fibers of £ at * and of £ at jy, respectively.

Both of the maps pi : XxY -> X and p2: XxY ^-Y stand for the natural pro
jections. Then we have a commutative diagram

-XxY.

For a map f'.X-*Y, let (lx,/) : * -+ XxY be a map defined by (1at,/)(*)
= (a:, /(#)) and let

Me. c;^) = (iAr,/)*i8(£, c;*)

be the pull-back of j8(£, £ ; k) along (\x,f). Then we have

Lemme 1.2. Tfte following properties hold :

(i) (cf. Li and Habegger [6, 3.2]) for f.X'^X and g\Y' -> F,

(/x*)*j8(e, c; *) = Kf*t.sK; *).

(ii) /or f\X -+ X' and g : X' ^ Y,

j9/(£,s*c;*) = /W(£.c;*),

flwrf f» particular fr^tf, /*£ ; A) = 0/(£. C; *) for f:X -*Y,
(iii) for h\X' -+ X and f:X-+Y,

h*Pf(t, £ ; *) = fo(**e. £ ; *).

§ 2. &-morphisms and cross sections.

This section is devoted to a study of the relations between A-morphisms of £ to £

and cross sections of $(£, £ ; k) and /*/(£, £ ; &). Let rG5(£. C ; &)) be the space of

cross sections of the bundle J3(f, £ ; k), and let r(#(£, £ ; £))/ and r($(£' C; &))[/]
for a map /: X -> 7 be its subspaces defined by
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r(3BCe, C; ft))/ =(serCJ5(e.C; ft)) 1^ = /},

r(fe.C;ft))c/] = {5 € r(?tf. C; *)) IMs «/}.

Moreover let r(fc$, C5ft)), r(J8(f, C; A))/ and r(?(£, C; ft))[/3 be the sets of
path components of the above respective spaces. Then it is easy to see that the map

$ : ft(f, C) -> r(.K£, C ; ft)) defined by 4>(£)(x) = # I £*, the restriction of g to

the fiber £*, is a homeomorphism. This map 0 induces homeomorphisms $f ' ft(£. Of

-> rCfa. C; ft))/ and *m : Ke,Om-rGfe. C; *))[/].
Let r(.Pf(£> C; ^)) be the space of cross sections of j8/(f ,£;ft) and r(j8/(£,C;ft))

the set of its path components. Then we can naturally identify 7*(j8($, C » ft))/ with

r(M£. C; *))• Hence we regard r(J8(£, C; ft))/ and r(j8/(£. C; *)) as identical.
Thus we get

Proposition 2. 1. 7%0re are three bijections

4>*:ft[£,C] - rcfe.c;*)).

<£/*: *k, C]/ - rcfte, c; ft))/ = /we. c; ft)),

<f>in*: *K. Clc/] -* rcfte, c ; ft))c/].

From now no, we frequently identify the sets ft[f, £], ft[£» C]/ and ft[f, £][/]

with r(J8(£, C; ft)), r(pf($, C; A)) and r(j8(£, C; ft))[/]. respectively, by means
of the above bijections, and we study cross sections of £(£, £ ; ft) and £/(f, £ ; &)

instead of ft-morphisms of £ to C-

The natural inclusions if: ft(£, Of -* ft(£» C)[/] and *"/ : r(/3/(£, C ; ft)) -»•

Y(K$, C ; ft))[/J induce the maps

if* : ft[£, C]/ -> *K. Clc/] and i/„ : r(M£. C; *)) - rc§ce, C; ft))m-

In the same way as in the proof of Li [ 3 , Theorem 3], we have

Proposition 2.2. The map if* is surjective.

From here on, the bundle Blz will mean the trivial /-plane bundle over a space
Z and a map c stands for a constant map of spaces.

Proposition 2.3. Assume that /*C is trivial. Then there is a bijection

between the sets ft[f, £]/ and ft[£, 0f]c for any space Z, awrf in particular
there exists a k-morphism of $ to C covering a map homotopic to f if and only

if there is a k-morphism of f to 6% covering a null-homotopic map.

Proof. The result follows immediately from Lemma 1.2(H), Propositions 2. 1-

2.2, and the assumption /*£ = 0£.
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§3. «i(?x, /)-action on ft[£, £]/.

We begin this section by defining a ^i(Yx, f)-action on the set /"(£/(£, C*, ft))
for a map f : X -+ Y. For a cross section s0 e r(j8/(£, C; ft)). i.e., a map s0 : A"
-> fl(£, C; ft) such that $s0 = (1a:, /), and for a homotopy ft:X-+Y such that /0
= /1=/, by the homotopy covering property of bundles there exists a homotopy
st : X -• £(£, C; ft) lifting a homotopy (Iat./O- Since /^i =/, we regard Si as
a cross section of 0/(£,C;ft) and describe [5t] e r(M?« C; ft)) as Cs0][//].
It is easily seen that the element [_s{] depends only on the homotopy classes [So3^
rtPftf, C; ft)) and [/,] e ^(Yx,f), and that the map r(M£, C*, ft)) x«i(**./)
-> T(Mf -C; ft)) thus defind is an action on TXMf>C", ft)) from the right (cf.
[4, §1]).

Therefore we can define a right action of «i(Yx,f) on ft[£, C]/ by means of
the bijections £/* of Proposition 2.2, as follows : Given a ft-morphism ¥o *. £ -»• C
covering / anda homotopy ft'.X^Y such that f0 = f1=f, there exists a homotopy
¥* : £ -> C of ft-morphisms covering//. We write [¥i] as [¥<>][/*].

For a map £ : Y-+Z, let #' : (Yx,f) -+ (Zx,gf) be a map defined by £'(/*)
= gh and let ## : xi(Yx, /) -> ni(Zx, gf) be a homomorphism induced from g'.
Then the definition of the «l(Yx, /)-action on ft[£, C]/ and the argument similar to

that in [6, §3] lead to

Proposition 3.1. If g : Z-+y is a pull-back of -q along g'.Y -• Z, Men
Me ma/> g* : ft[£, C]/ -> ft[£, 7]*/ </«/»««<* ^ £*[¥] = [£¥] is a bisection and
moreover gl-equivariant, meaning that £*(¥F) = £*(¥)£#(F) /or ¥ <= ft[£,C]/
and F e ffi(Fx,/).

In the same way as in [6, 2.2] we have the following

Corollary 3.2. If Zis r-trivial and if dim X < r, then the xi(Yx, /)
-action on ft[£, C]/ fa trivial.

Here £ is said to be r-trivial if its restriction to the r-skeleton is trivial for some
CW-decomposition of its base space.

For a map ft : Z -> X, let h" : (Yx, /) -> (Yz, fK) be a map defined by h"(g)
= gh and ft : ft*£ -> £ be the pull-back of £ along ft. Both of the maps h" and h
lead to a map ft* : ft[£, C]/ -> ft[ft*£, C]/* given by ft*[¥] = [¥ft] and a homo
morphism h~ : «i(Yx, f)-+xi(Yz, fK). By simple calculation, we get

Proposition 3.3. For a map h: Z-+ X, the map h* : ft[£, C]/-> ft[ft*£, C]/a
is h^-equivariant, meaning thah ft*(¥F) = ft*(¥)ft*(F) /or ¥ e ft[£, C]/ «»<*
F e *i(F* /).
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Corollary 3.4. If h : Z-+X is a homotopy equivalence, then h* : ft[£, C3/

->ft[ft*£, C]/a is an h#-equivariant bijection.

§4. Examples.

In this section, we shall give some examples of the trivial actions of non-trivial

groups x\(Yx, /) on ft[£, CJ/.
Let Pn(R) and X» be the real projective M-space and its canonical real line

bundle, respectively, and let / : X-*• Pn(R) be a base point preserving map. By

using the homotopy exact sequence of the fibration Pn(R)x -*• Pn(R) given by the
evaluation map, and the Eilenberg classification theorem, we have the following

Lemma 4-1. (Li [4, Lemma 1]). //dim X < n-\ (« > 2), then the eval

uation map Pn(R)x-+Pn(R) induces an isomorphism *!(/>"(/?)*, /) s iri(PnCR))
= Z2.

We now show the following

Proposition 4.2. Let X be a real vector bundle over a CW-complex X

and letf:X -> P"(i?) (w > 2) be a map. If dim X< n-1, then the *!(/>"(/?)*/)
-action is trivial on k[X, 2rln~\f, where 2rXn is the Whitney sum of 2r copies

of X».

Proof. First we consider the case where n is odd and replace n by 2w+l.

Regard R2s as the complex s-space Cs and SPs~l as the unit (2s-l)-sphere in Cs.
Then Sl = {e2*il | 0 ^ / ^ 1}. The .^-actions both on 0s and 525-1 are defined by

e2*u(zi,-,zs) = (e^'zi, -,e2iri'zs) for zj <= C (1^/^s).

Moreover Z2-action on S2*+1x Cr is given by eh«\z, x) = (ehKiz, eh*lx) (ft=0,l).

It is easy to see that 2rX2n+i = (/> : 52n+1 *zfr -• P2w +*(*)). The self map Wt on
52m+1 xz2Crand Ot on P2M+1(/2), defined by

Wtlz, *] = [«"'*. ?ilx\ and 0,[*] = [A] for t e /2,

are flows on the respective spaces such that

?r/+i = gr, and 0t+i = &t for / e fl

and the following diagram is commutative :

Wt
2rX2n +i —> 2r^2« +i

\p \p
P2n +1(R) >i>2,,+1(/?).
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We note that Wt is linear on each fiber. For a map / : X -» P2,, +1(/2), the group

ffi(?2n+1(/?)x, /) is generated by the homotopy class of a homotopy 0tf (0 ^ t <, 1)
(see the proof of Li [4, Theorem 1]). Given a &-morphism g : X^ 2rX2„+i covering
/, the homotopy Wtg: X-*2rX2n+i covers the homotopy Qtf. Hence [g~][$tf~\ =
[Wig] = [J?]. This completes the proof of the proposition for odd n.

In order to consider the case wheren is even, replace n by 2« and let i '. p2n(.R)
-*• P2n+1(R) be the natural inclusion. Then Proposition 3.1 leads to an i~-equivari-

ant bijection i* : ft[^,2r^2»]/->- k\X, 2rX2n+{]if because i*X2n+\ = X2„. Here i# :
ni(P2n(.K)x, /) ->*r1(P2w +1(fl)-x', if) is an isomorphism. For this reason, and because

the ;zi(P2M+1(i?)*, */)-action onk[X, 2rA2n+1],y is trivial, the xi(P2n(R)x, /)-action
on k[_X,2rX2l{\f is also trivial. The proof is thus complete.

Let rjn be the canonical real 2-plane bundle over a lens space Ln(p) mod p, p
being odd prime. Then we have the following result simlar to the above :

Proposition 4.3. Let X be a real vector bundle over a CW-complex X,

where dim X < 2n, and let f : X-> Ln(p) be a map. Then the evaluation map

induces an isomorphism ni(Ln(ip)x, f) s n\(Ln(p)) = Zp and the nl(LnQp)x, /)
-action is trivial on k\_X, rrjn^f.

Proof is similar to that leading to the above proposition for odd n.

§ 5. Stabilization maps.

The natural inclusions //: ft(£, C)/-» (k+l)($®dx, Z®0ly)f and Jr/j : ft(£, C)[/i

-* (ft+/)(£©^, C©#r)[/] induce the maps //* : ft[£, CD/-* (ft+O[£©0Jr, C©0^]/

and /[/> : ft[£, C][/] -*- (k+l)[$®dx, C,®8y\f\, respectively. In this section we study

the map //*. For our purpose, we construct a map I'f'. r(/9/(£, C\ ft)) -* r(AK£©0x->

C©#k >ft+O) in such a way that I'/f>f= <f>flf as follows. The two natural inclusions

U • £ -*" £®&x an(* *c • C-+£®0y induce natural inclusions if '. £w -*- (£©#x)»i+/ and

h : Cn ->• (C©<?r )«+/, respectively. Let i : M*(n,m ; ft) -> M*(«+/, m+/ ; k+l) be

a map defined by i(C) = (q jA, &being the unit matrix. Then we have a bundle
map

/: 5(£, c ; ft) - fi(£©<?ir, C©0£; ft+0

covering lxxr, defind by I\u,v,C] —[*«(«), *c(f)> *(£")]• This map / gives rise to a

map /^ IKPfiSX ; ft)) - r(M£©*i. C©#r ; *+/)) for any map / : AT - Y. It is
easy to verify that I'jj>f = $flf and hence we have a commutative diagram
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*k. C]/ > (k+i)ie®ox, c©^]/

rtftf. c ; ft)) —-—• n^®ex, c©^; *+/)).

Moreover, both maps I/* and I'f* are easily shown to be ici(Yx, /)-equivariant.
Let c(n, m\k)i be the connectivity of the map i : M*(n, m ; ft) -• M*(n+l,

m+l; k+l) above, that is, the map i is 0 c(n, m ; ft)/-equivalence. Then the map

If is of the same status and hence we get

Theorem 5.1. For a map f : X->Y,

(i) //* is surjecive if dimJT ^ c(«, m ; ft)/ flwrf is injective if dim A"<

c(w, m ; ft)/, tftfrf

(ii) //* is K1(YX, f)-equivariant.

Remark. (i) The integer c(n, m\k)i = f»-l or n-\ according as ft = » or
k = m, because if n > m then the natural inclusion of the Stiefel manifold Vn>m
of orthonormal m-frames in R* into M*(n, m\k) is a homotopy equivalence and

the natural inclusion Vn,m -+ V„+\, m+i is an (w-l)-equivalence.
(ii) In general, M*(n, m\k) is ((w+l-ft) (m+l-ft) -2) -connected (see

Phillips [7, §2°]).

In consequence of Theorem 5.1 and Propositions 2.2-2.3, we have

Proposition 5.2. Assume that fX®6x is trivial and that dim X ^
c(n, m\ ft)/ for some integer I. Then there exists a k-morphism of £ to C
covering a map homotopic to f if and only if there is a k-morphism of £ to
0f covering a null-homotopic map of X to Zfor any space Z.

§ 6. Classification of ft-morpbisms.

We have proved that for a map f : X-*Y, the map i/* : ft[£, Of-*- ft[£, Oifl
is surjective (see §2) and the group xi(Yx,f) acts on ft[£, Of (see §3). In this
section we first generalize Li's result [4, §1].

Theorem 6.1. The map ifa '. ft[£, Of/*i(?x, /) -• ft[£, £][/] defined by
i}*(g*i(Yx, /)) = */*(£) <£ e ft[£, Of) is a bisection.

Proof. For two ft-morphisms g0> gi : £ -> C covering /, the equality if*[gd] =
ifitted holds if and onlyif there exists a homotoPy^ '• £-»• Cof ft-morphisms covering
a homotopy, say ft, such that f0=f1=f, which implies that teoKfd = ted for
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some element [//] e *i(Yx, /) by the definition of the ni(Yx, /)-action on
ft[£» Of- This completes the proof.

This theorem, together with Theorem 5.1, leads at once to

Theorem 6.2. // dim X < c(n, m\k)i, then the map /[/]* : ft[£, £][/] -•
(ft+/)[£©0y, C©0y][/j is a bisection for any map f'.X^Y.

In consequence of Theorem 6.1 and Corollary 3.4, we have

Proposition 6.3. If h '. Z-> X is a homotopy equivalence, then the map

ft* : ft[£, C][/l -»• ft[ft*£, C][/« is a bisection for any map f:X^Y.

Now we consider the condition that the set ft[£, C][/] is equivalent to the set

ft[f, 0z3[c] for a constant map c : X -+ Z.

Proposition 6.4. For a map f;X-*Y, there is a bijection between the

sets ft[£, Ow cmd ft[£, 0z3[c] if one °f ine following conditions is satisfied:

(1) C is r-trivial and dim X < r,

(2) C©0y is r-trivial and dim X < min{c(», m;k)i, r).

Proof. If the condition (1) is satisfied, then by virtue of Proposition 2.3,
Corollary 3.2 and Theorem 6.1, we have our assertion, while if (2) is satisfied our

assertion follows from Theorem 6.2 and the case (1) of the proposition.

§7. ft-mersions.

Throughout this section we assume that the manifolds M and N both mean the

connected smooth manifolds without boundary and are of dimensions m and n,

respectively, and that "either ft < n or M is open". Under this assumption, Feit [1,
Theorem 1] has proved that the differential map d \ k(M, N) -+k(jM,TN) is a weak

homotopy equivalence and hence we have a bijection

(7.1)*(Feit) ft[Af, Nlif] = kltM, tjv][/i for any /: Af-> N,

and in particular

(7. l)/(Hirsch) /[Af, Ar]c/] = m[rM, **][/],

(7.2)s(PhilIips) S\_M, #][/] = n[rji/, TN][f] if M is open.

As for the existence and classification problem of k-mersions, we have the follow
ing theorems :

Theorem 7.2. (cf. Li [3]). A map f'. M-+N is nomotopic to a k-mersion
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if and only if the bundle fifeM, rfr', ft) admits a cross section.

Proof. This follows from (7.1) and Propositions 2.1-2.2.

Theorem 7.3. A map f: M-* N is homotopic to a k-mersion if and only

if there exists a k-mersion of M to Rn, when one of the conditions (1) and
(2) is satisfied ;

( 1) f*TN is trivial

(2) homotopy dim M ^ c(n, m\k)i and f*TN®OlM is trivial for some
integer I.

Proof. We deduce the theorem from (7.1) and Proposition 2.3 under the con

dition (1), and from (7.1) and Propositions 5.2 and 6.3 under the condition (2).

Corollary 7.4. Let f: M -»- N be a map and assume that one of conditions
(1)'. —f(2)" listed below is satisfied. Then f is homotopic to a k-mersion if
and only if there exists a k-mersion of M to Rn.

(1)' f is null-homotopic,

(1)" homotopy dim M <Z r and tn is r-trivial for some integer r,

(1)''' N is parallelizable,

(2)' homotopy dim M ^ min{c(n, m ; ft)/, r} and tn®0n is r-trivial for
some integers I and r,

(2)" homotopy dim M &c(n,tn; ft)/ for some integer I and N is a «-
manifold. ]

Theorem 7.5. There is a bijection between the sets k[M, M\f\ forf: M

-+ N and k\_M, flM], if one of the following conditions holds :
(1) homotopy dim M < r and tn is r-trivial,
(1)' N is parallelizable,

(2) homotopy dim M < min{c(M, m ; ft)/, r} and tn®0n is r-trivial for
some integers I and r,

(2)' homotopy dim M <*c(m, m ; ft)/ for some integer I and N is a
ic-manifold.

Proof. The result follows from (7.1) and Propositions 6.3-6.4.

Considering the case when ft = min{m, n} (if ft = n then M is understood to be
open), we get

Theorem 7.6. Let f': M-+ N be a map.
( i) Assume that /*rjv is stably trivial. Then f is homotopic to a submer

sion or an immersion if and only if there exists such a map of M to Rn ac

cording as n < m or n ^ m.

316



A-mersions and ft-morphisms

(ii) There exists a bijection between the sets S[M,N\fi and S[M,Rn~\ or

between I[M,N\f] and I\_M, /?"] according as n < m or n ^ m, if one of the
following conditions holds :

(1) homotopy dim M < r and tn is r-trivial,

(1)' N is parallelizable,

(2) homotopy dim M < min{r, m-1} or min{r, w-1} according as n ^ m or

n > m, and tn®0n is r-trivial,

(2)' homotopy dim M < m-\ or w-1 according as n ^ m or n ^ m, and

N is a it-manifold.

Corollary 7.7. A map f: M -> N is homotopic to a submersion or an

immersion if and only if there exists such a map of M to Rn according as n

g m or n ^ m, when one of the following conditions holds :

(1) f is null-homotopic,

(2) homotopy dim M ^ r and tn®6n is r-trivial,

(2)' N is a iz-manifold.

Remark. In Theorem 7.6 and its Corollary, the part concerning immersions

fairly overlaps with the results of Li [3] and [5], while the existence theorem for

submesrions is deduced from Phillips' theorem reworded by Thomas [8].
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