Notes on enumerating embeddings of certain n-manifolds in Euclidean (2n-2)and ($2 n-3$)-spaces

By
Tsutomu YASUI*
(Received August 28, 1986)

Abstract

Denote by [$M \subset R^{m}$] the set of isotopy classes of embeddings of an n-manifold M in Euclidean m-space. In this note, we shall study the set $\left[M \subset R^{2 n-k}\right]$ for $k=2$ and 3 in the case when M is an n-manifold satisfying the condition $\tilde{H}_{i}(M ; Z) \otimes Z_{2}$ $=0$ for $i<k$, and generalize some results in [15] and [19].

§1. Introduction

Throughout this nots, an n-manifold and an embedding mean respectively a closed connected differentiable manifold of dimension n and a differentiable embedding. Let $\left[M \subset R^{m}\right.$] denote the set of isotopy classes of embeddings of a manifold M in Euclidean m-space R^{m}. The set [$M \subset R^{2 n-k}$] has so far been studied (see [17]-[19] and [15]), when M is an n-manifold and $k=1$, when M is a homologically ($k-1$)connected n-manifold ($k \geqq 2$), and when M is a lens space $L^{(n-1) / 2}(p) \bmod p$ and $1 \leqq k \leqq 5$. These results make us interested in $\left[M \subset R^{2 n-2}\right]$ or $\left[M \subset R^{2 n-k}\right]$ for an n-manifold M satisfying the condition

$$
\begin{equation*}
\widetilde{H}_{i}(M ; Z) \otimes Z_{2}=0 \quad \text { for } \quad i<k \tag{*}
\end{equation*}
$$

In this note we shall study the set $\left[M \subset R^{2 n-k}\right]$ for an n-manifold M satisfying the above condition (*) for $k=2$ and 3 , and prove the following theorems:

Theorem A. Assume that M is an n-manifold ($n \geqq 8$) satisfying the condition $H_{1}(M ; Z) \otimes Z_{2}=0$. Then, when it is not empty, the set $\left[M \subset R^{2 n-2}\right]$ is given as follows:

[^0]YASUI, T .

$$
\begin{aligned}
& {\left[M \subset R^{2 n-2}\right]=H^{n-1}(M ; Z) \otimes H^{n-2}(M ; Z) \times\left(1+t^{*}\right)\left(H^{n-1}(M ; Z) * H^{n-1}(M ; Z)\right)} \\
& \quad \begin{array}{ll}
H^{n-3}\left(M ; Z_{2}\right) & \text { if } n \equiv 0(4), w_{2}(M) \neq 0, \\
H^{n-3}\left(M ; Z_{2}\right) \times Z_{2} & \text { if } n \equiv 2(4), w_{2}(M)=0, \\
H^{n-3}\left(M ; Z_{2}\right) \times H^{n-2}\left(M ; Z_{2}\right) / S q^{2} H^{n-4}\left(M ; Z_{2}\right), w_{2}(M) \neq 0, \\
& \text { if } n \equiv 0(4), w_{2}(M)=0, \\
H^{n-3}(M ; Z) \times H^{n-2}\left(M ; Z_{2}\right) & \text { if } n \equiv 1(4), w_{3}(M) \neq 0, \\
H^{n-3}(M ; Z) \times H^{n-2}\left(M ; Z_{2}\right) \times Z_{2} & \text { if } n \equiv 3(4), w_{2}(M) \neq 0 \\
& \text { or if } n \equiv 1(4), w_{2}(M) \neq 0, w_{3}(M)=0, \\
H^{n-3}(M ; Z) \times H^{n-2}\left(M ; Z_{2}\right) /\left(S q^{2} \rho_{2} H^{n-4}(M ; Z)+S q^{1} H^{n-3}\left(M ; Z_{2}\right)\right) \\
\times H^{n-2}\left(M ; Z_{2}\right) & \text { if } n \equiv 1(4), w_{2}(M)=0, \\
H^{n-3}(M ; Z) \times H^{n-2}\left(M ; Z_{2}\right) / S q^{2} \rho_{2} H^{n-4}(M ; Z) \times H^{n-2}\left(M ; Z_{2}\right) \\
r & \text { if } n \equiv 3(4), w_{2}(M)=0 .
\end{array}
\end{aligned}
$$

From now on $t: M \times M \rightarrow M \times M$ is the map defined by $t(x, y)=(y, x)$ and the symbol $*$ denotes the torsion product.

Corollary. If M is an odd torsion n-manifold, i.e. if M is an n-manifold such that $\widetilde{H}_{i}(M ; Z) \otimes Z_{2}=0$ for $i<n$ (cf. [9]), then

$$
\begin{gathered}
{\left[M \subset R^{2 n-2}\right]=H^{n-1}(M ; Z) \otimes H^{n-2}(M ; Z) \times\left(1+t^{*}\right)\left(H^{n-1}(M ; Z) * H^{n-1}(M ; Z)\right)} \\
\times \begin{cases}0 & n \equiv 0(2), \\
H^{n-3}(M ; Z) & n \equiv 1(2) .\end{cases}
\end{gathered}
$$

Theorem B. Assume that M is an n-manifold ($n \geqq 10$) satisfying the condition $\widetilde{H}_{i}(M ; Z) \otimes Z_{2}=0$ for $i<3$ and that the first Pontrjagin class mod 3 $P_{1}(M)$ of M vanishes if n is even. Then, when it is not empty, the set [$\left.M \subset R^{2 n-3}\right]$ is given by

$$
\begin{aligned}
& {\left[M \subset R^{2 n-3}\right]=H^{n-1}(M ; Z) \otimes H^{n-3}(M ; Z) \times H^{n-1}(M ; Z) * H^{n-2}(M ; Z)} \\
& \times\left(1-t^{*}\right)\left(H^{n-2}(M ; Z) \otimes H^{n-2}(M ; Z)\right) \\
& \times \begin{cases}H^{n-4}\left(M ; Z_{2}\right) \times H^{n-3}\left(M ; Z_{2}\right) / S q^{2} H^{n-5}\left(M ; Z_{2}\right) & \text { if } n \equiv 1(4), \\
H^{n-4}\left(M ; Z_{2}\right) & \text { if } n \equiv 3(4), \\
H^{n-4}(M ; Z) \times H^{n-3}\left(M ; Z_{2}\right) \times H^{n-1}\left(M ; Z_{3}\right) & \end{cases} \\
& \times \begin{cases}H^{n-3}\left(M ; Z_{2}\right) /\left(S q^{2} \rho_{2} H^{n-5}(M ; Z)+S q^{1} H^{n-4}\left(M ; Z_{2}\right)\right) \\
H^{n-3}\left(M ; Z_{2}\right) / S q^{2} \rho_{2} H^{n-5}(M ; Z) & \text { if } n \equiv 2(4), \\
\text { if } n \equiv 0(4) .\end{cases}
\end{aligned}
$$

These are the generalization both of the Main Theorem for $k=2$ and 3 in [19] and Theorem $A(2)-(3)$ in [15].

This note is, in a sense, a sequel to the papers [15] and [17]-[19]. Hence the defintitions and notations used here are exactly the same as those explained in [18][19].

The remainder of this note is organized as follows: In §2, we give some definitions and notations, and restate Haefliger's theorem [3, Théorème 1^{\prime}] by using the homotopy set of liftings and the reduced symmetric product M^{*} of M. In $\S 3$, we state the cohomology of M^{*}, postponing the proof of the integral case till $\S 5$. The proofs of Theorems A and B are given in $\S 4$.

§ 2. Preliminaries

We study the set [$M \subset R^{2 n-k}$] along the lines of Haefliger [3]-[4]. The cyclic group Z_{2} of order 2 acts on the product X^{2} of X via the map t above. The diagonal ΔX in X^{2} is the fixed point set of this action. The quotient spaces

$$
X^{*}=\left(X^{2}-\Delta X\right) / Z_{2} \text { and } \Lambda^{2} X=X^{2} / Z_{2}
$$

are defined. The former is called the reduced symmetric product of M. Here the projection $p: X^{2}-\Delta X \rightarrow X^{*}$ is a double covering, whose classifying map we denote by

$$
\xi: X^{*} \longrightarrow P^{\infty} .
$$

Haefliger's theorem [3, Théorème 1^{\prime}] can be restated as follows (cf. [18, Theorem 1.1]) :

Theorem 2.1 (Haefliger). If $2 m>3(n+1)$, then for an n-manifold M, there is a bijection

$$
\left[M \subset R^{m}\right]=\left[M^{*}, P^{m-1} ; \xi\right] .
$$

Here the right hand side of this equality is the homotopy set of liftings of $\xi: M^{*} \rightarrow P^{\infty}$ to $\left(S^{\infty} \times z_{2} S^{m-1}\right) \simeq P^{m-1}$.

To compute $\left[M \subset R^{2 n-k}\right]=\left[M^{*}, P^{2 n-k-1} ; \xi\right]$, we may use Proposition 4 in [1] or Proposition on p. 414 of [14] if $k=2$, and Proposition 1.1 in [15] if $k=3$.
we give some notations which will be used later.
$Z_{r}\langle a\rangle$ denotes the cyclic group of order r generated by $a\left(r \leqq \infty, Z_{\infty}=Z\right)$.
The non-trivial elements $u \in H^{1}\left(P^{\infty} ; Z_{2}\right)$ and $v \in H^{1}\left(X^{*} ; Z_{2}\right)$ denote the first Stiefel-Whitney classes of the double coverings $S^{\infty} \rightarrow P^{\infty}$ and $X^{2}-\Delta X \rightarrow X^{*}$, respectively.

YASUI, T.

The relation $\xi^{*} u=v$ holds.
For $x \in H^{1}\left(M ; Z_{2}\right), Z_{r}[x](r \leqq \infty)$ denotes the sheaf of coefficients over X, locally isomorphic to Z_{r}, twisted by x, and Z_{r} denotes either Z_{r} or $Z_{r}[x]$. Let

$$
\tilde{\rho}_{r}: H^{i}\left(X ; Z_{s}[x]\right) \longrightarrow H^{i}\left(X ; Z_{r}[x]\right) \quad(s \equiv 0(r) \text { or } s=\infty)
$$

and

$$
\widetilde{\beta}_{r}: H^{i-1}\left(X ; Z_{r}[x]\right) \longrightarrow H^{i}(X: Z[x]) \quad(r<\infty)
$$

denote the reduction mod r and Bockstein operator, respectively, twisted by x. Then $\tilde{\rho}_{r}$ and $\tilde{\beta}_{r}$ for $x=0$ are the ordinary ρ_{r} and β_{r}, respectively. $\bar{\rho}_{r}$ and $\bar{\beta}_{r}$ denote either $\tilde{\rho}_{r}$ and $\widetilde{\beta}_{r}$ or the ordinary ρ_{r} and β_{r}, respectively. By [2] and [11], we have

$$
\bar{\rho}_{2} \bar{\beta}_{2}= \begin{cases}S q^{1} & \text { if } \underline{Z}=Z \tag{2.2}\\ S q^{1}+x & \text { if } \underline{Z}=Z[x]\end{cases}
$$

For an orientable n-manifold M, there is a short exact sequence

$$
\begin{equation*}
0 \rightarrow H^{i}\left(M ; Z_{r}\right) \xrightarrow{\phi_{1}} H^{i+n}\left(M^{2} ; Z_{r}\right) \xrightarrow{\tilde{i}^{*}} H^{i+n}\left(M^{2}-\Delta M ; Z_{r}\right) \rightarrow 0(r \leqq \infty), \tag{2.3}
\end{equation*}
$$

where $\tilde{i}: M^{2}-\Delta M \rightarrow M^{2}$ is the natural inclusion,

$$
\begin{equation*}
\phi_{1}(x)=U(1 \otimes x) \quad \text { for } x \in H^{i}\left(M ; Z_{r}\right) \tag{2.4}
\end{equation*}
$$

and $U \in H^{n}\left(M^{2} ; Z\right)$ is called the Thom class or the diagonal cohomology class of $M[8, \S 11]$. Further there are the following relations (cf. [12, p.305] and [8, Theorem 11.11]) :

$$
\begin{equation*}
t^{*} \phi_{1}(x)=(-1)^{n} \phi_{1}(x) \quad \text { for } x \in H^{i}\left(M ; Z_{r}\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
& U \equiv \pm\left(1 \otimes M+(-1)^{n} M \otimes 1\right) \tag{2.6}\\
& \bmod \sum_{1 \leqq j \leqq n-1} H^{j}(M ; Z) \otimes H^{n-j}(M ; Z)+\sum_{1 \leqq j \leq n-2} H^{j}(M ; Z) * H^{n+1-j}(M ; Z)
\end{align*}
$$

where

$$
H^{n}\left(M ; Z_{r}\right)=Z_{r}<M>(r \leqq \infty) .
$$

§ 3. The cohomology of M^{*}

Throughout this section we assume that M is an n-manifold satisfying the condition

$$
\begin{equation*}
\widetilde{H}_{i}(M ; Z) \otimes Z_{2}=0 \quad \text { for } i<k \quad(k \geqq 2) . \tag{*}
\end{equation*}
$$

It is equivalent to the condition $H^{n-i}\left(M ; Z_{2}\right)=0$ for $0<i<k$.
Under this condition we should like to determine the cohomology of M^{*}. The notations used here are the same as those explained in [18] - [19] (most of them are the same as those in $[13, ~ § 2])$. Let

$$
\sigma=1+t^{*}: H^{*}\left(M^{2} ; Z_{2}\right) \longrightarrow H^{*}\left(M^{2} ; Z_{2}\right) .
$$

Then Lemma 3.1 of and (4.1)-(4.2) of [19] are valid if the condition $\mathscr{H}_{i}(M ; Z)$ $=0$ for $i<k$ in [19] is replaced by (*).

Lemma 3.1 (cf. [19]). Assume that M is an n-manifold satisfying the condition $\tilde{H}_{i}(M ; Z) \otimes Z_{2}=0$ for $i<k$. Then
(i) $H^{i}\left(M^{*} ; Z_{2}\right)=0 \quad$ for $i>2 n-k$,
(ii) $H^{2 n-k}\left(M^{*} ; Z_{2}\right)=\left\{\rho \sigma(M \otimes x) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\}\left(\cong H^{n-k}\left(M ; Z_{2}\right)\right)$,
(iii) $H^{2 n-k-1}\left(M^{*} ; Z_{2}\right)=\left\{\rho\left(u^{k-1} \otimes x^{2}\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\}\left(\cong H^{n-k}\left(M ; Z_{2}\right)\right)$

$$
+\left\{\rho\left(u^{k+1} \otimes x^{2}\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\}\left(\cong H^{n-k-1}\left(M ; Z_{2}\right)\right),
$$

(iv) $H^{2 n-k-2}\left(M^{*} ; Z_{2}\right)=\left\{\rho\left(u^{k} \otimes x^{2}\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\}\left(\cong H^{n-k-1}\left(M ; Z_{2}\right)\right)$

$$
\begin{aligned}
& +\left\{\rho\left(u^{k-2} \otimes x^{2}\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\}\left(\cong H^{n-k}\left(M ; Z_{2}\right)\right) \\
& +\left\{\rho\left(u^{k+2} \otimes x^{2}\right) \mid x \in H^{n-k-2}\left(M ; Z_{2}\right)\right\}\left(\cong H^{n-k-2}\left(M ; Z_{2}\right)\right) \\
& +\left[\left\{\rho \sigma(x \otimes y) \mid x, y \in H^{n-2}\left(M ; Z_{2}\right), x \neq y\right\}\right]
\end{aligned}
$$

where the term in the square brackets [] is present only when $k=2$.
(v) there are equalities

$$
\rho\left(u^{k} \otimes x^{2}\right)=\rho(U(1 \otimes x))=\rho \sigma(M \otimes x) \in H^{2 n-k}\left(M^{*} ; Z_{2}\right) \text { for } x \in H^{n-k}\left(M ; Z_{2}\right)
$$

and an isomorphism

$$
\chi: H^{n-k}\left(M ; Z_{2}\right) \xrightarrow{\cong} H^{2 n-k}\left(M ; Z_{2}\right) \quad(\chi(x)=\rho \sigma(M \otimes x)) .
$$

Further we have the following theorem, postponing its proof till §5:

Theorem 3.2. Let $k \geqq 2$ and assume that M is an n-manifold satisfying the condition $\widetilde{H}_{i}(M ; Z) \otimes Z_{2}=0$ for $i<k$. Then
(i) for $i=2, k \geqq 3$ or $i=1$,
$H^{2 n-k-i}\left(M^{*} ; \underline{Z}\right)$

$$
\begin{aligned}
& =p^{*-1} \tilde{i}^{*}\left(1+(-1)^{k} t^{*}\right)\left(\begin{array}{c}
\sum_{1 \leq j \leq[(k+i) / 2]} H^{n-j}(M ; Z) \otimes H^{n-k-i+j}(M ; Z) \\
+ \\
\sum_{1 \leq j \leq[(k+i-1) / 2]} H^{n-j}(M ; Z) * H^{n-k-i+1+j}(M ; Z)
\end{array}\right) \\
& + \begin{cases}0 & \text { if } n-k \text { is even, }, \\
p^{*-1} \tilde{i}^{*}\left(1+(-1)^{k} t^{*}\right)\left(H^{n}(M ; Z) \otimes H^{n-k-i}(M ; Z)\right) & \text { if } n-k \text { is odd, }\end{cases} \\
& + \begin{cases}\left\{\bar{\beta}_{2} \rho\left(u^{k} \otimes x^{2}\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\} & \text { if } i=1, n-k \text { is even, }, \\
\left\{\bar{\beta}_{2} \rho\left(u^{k-2} \otimes x^{2}\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\} & \text { if } i=1, n-k \text { is odd, } \\
\left\{\bar{\beta}_{2} \rho\left(u^{k-3} \otimes x^{2}\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\} & \\
\quad+\left\{\bar{\beta}_{2} \rho\left(u^{k+1} \otimes x^{2}\right) \mid x \in H^{n-k-2}\left(M ; Z_{2}\right)\right\} & \text { if } i=2, n-k \text { is even, }, \\
\left\{\bar{\beta}_{2} \rho\left(u^{k-1} \otimes x^{2}\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\} & \text { if } i=2, n-k \text { is odd } ;\end{cases}
\end{aligned}
$$

(ii) $\bar{\rho}_{2} H^{2 n-k-2}\left(M^{*} ; \underline{Z}\right)$

$$
\begin{aligned}
& =\left\{\rho\left(u^{k-2} \otimes x^{2}\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\}+\left\{\rho\left(u^{k+2} \otimes x^{2}\right) \mid x \in H^{n-k-2}\left(M ; Z_{2}\right)\right\} \\
& \quad+\left[\left\{\rho \sigma(x \otimes y) \mid x, y \in H^{n-2}\left(M ; Z_{2}\right), x \neq y\right\}\right] \quad \text { if } n-k \text { is even }, \\
& \left.=\left\{\rho\left(u^{k} \otimes x^{2}\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\}+\left\{\rho \sigma(M \otimes) \rho_{2} x\right) \mid x \in H^{n-k-2}(M ; Z)\right\} \\
& \\
& \quad+\left[\left\{\rho \sigma(x \otimes y) \mid x, y \in H^{n-2}\left(M ; Z_{2}\right), x \neq y\right\}\right] \quad \text { if } n-k \text { is odd } ;
\end{aligned}
$$

where $\underline{Z}=Z$ or $Z[v]$ according as k is even or odd, and the terms in the square brackets appear only when $k=2$.

Let q be an odd prime. If we consider the cohomology spectral sequence (cf. [7]) for a fibration $M^{2}-\Delta M \rightarrow S^{\infty} \times z_{2}\left(M^{2}-\Delta M\right) \rightarrow P^{\infty}$, which is homotopically equivalent to $M^{2}-\Delta \mathrm{M} \xrightarrow{p} M^{*} \xrightarrow{\xi} P^{\infty}$, then it follows that the map p induces an isomorphism

$$
p^{*}: H^{i}\left(M^{*} ; \underline{Z}_{q}\right) \cong H^{i}\left(M^{2}-\Delta M ; Z_{q}\right)^{(-1)^{k} t *}\left(=\left\{x \in H^{i}\left(M^{2}-\Delta M ; Z_{q}\right) \mid(-1)^{k t} * x=x\right\}\right)
$$

where $\underline{Z}_{q}=Z_{q}$ or $Z_{q}[v]$ according as k is even or odd. By the Künneth formula, we get

$$
\begin{aligned}
H^{2 n-i}\left(M^{2} ; Z_{q}\right)= & \left(1+(-1)^{k} t^{*}\right)\left(\sum_{0 \leq j \leq[i / 2]} H^{n-j}\left(M ; Z_{q}\right) \otimes H^{n-i+j}\left(M ; Z_{q}\right)\right) \\
& +\left(1-(-1)^{k} t^{*}\right)\left(\sum_{0 \leq j \leq[i / 2]} H^{n-j}\left(M ; Z_{q}\right) \otimes H^{n-i+j}\left(M ; Z_{q}\right)\right) .
\end{aligned}
$$

Here $\left(1+(-1)^{k} t^{*}\right)$-image is $(-1)^{k} t^{*}$-invariant, and by (2.5), $\phi_{1} H^{n-i}\left(M ; Z_{q}\right)$
 diagram of isomorphisms

$$
\begin{aligned}
& \left(H^{2 n-i}\left(M^{2} ; Z_{q}\right) / \phi_{1} H^{n-i}\left(M ; Z_{q}\right)\right)^{(-1)^{k} t} * \xrightarrow[\cong]{\xrightarrow{\tilde{i}^{*}} H^{2 n-i}\left(M^{2}-\Delta M ; Z_{q}\right)^{(-1)^{k} t^{*}}, ~} \\
& \left(1+(-1)^{k} t^{*}\right)\left(\sum_{1 \leq j \leq[i / 2]}^{\cong} H^{n-j}\left(M ; Z_{q}\right) \otimes \tilde{i}^{*} / \xlongequal{n} \cong\right. \\
& + \begin{cases}0 & \text { if } n-k \text { is even }, \\
\left(1+(-1)^{k} t^{*}\right)\left(H^{n}\left(M ; Z_{q}\right) \otimes H^{n-i}\left(M ; Z_{q}\right)\right) & \text { if } n-k \text { is odd, }\end{cases}
\end{aligned}
$$

and hence the following lemma holds:

Lemma 3.3. For any odd prime q,

$$
\begin{aligned}
& H^{2 n-i}\left(M^{*} ; \underline{Z}_{q}\right)= \\
& \quad p^{*-1} \tilde{i}^{*}\left(1+(-1)^{k} t^{*}\right)\left(\sum_{1 \leq j \leq[i / 2]} H^{n-j}\left(M ; Z_{q}\right) \otimes H^{n-i+j}\left(M ; Z_{q}\right)\right) \\
& \quad+ \begin{cases}0 & \text { if } n-k \text { is even }, \\
p^{*-1} \tilde{i}^{*}\left(1+(-1)^{k} t^{*}\right)\left(H^{n}\left(M ; Z_{q}\right) \otimes H^{n-i}\left(M ; Z_{q}\right)\right) & \text { if } n-k \text { is odd },\end{cases}
\end{aligned}
$$

where $\underline{Z}_{q}=Z_{q}$ or $Z_{q}[v]$ according as k is even or odd.

Corollary 3.4. There is an isomorphism

$$
\begin{array}{rlr}
\tilde{i}^{*-1} p^{*}: H^{2 n-1}\left(M^{*} ; \underline{Z}_{3}\right) \cong 0 & \text { if } n-k \text { is even }, \\
\cong\left\{\left(1+(-1)^{k} t^{*}\right)(M \otimes x) \mid x \in H^{n-1}\left(M ; Z_{3}\right)\right\} & & \text { if } n-k \text { is odd } .
\end{array}
$$

§ 4. Proofs of Theorems A and B

We prove only Theorem B and not Theorem A because the proof of the latter is similar to, and moreover rather simpler than, that of the former.

Assume that M is an n-manifold ($n \geqq 10$) satisfying the condition

$$
\begin{equation*}
\tilde{H}_{i}(M ; Z) \otimes Z_{2}=0 \quad \text { for } i<3, \tag{*}
\end{equation*}
$$

and that it is embedded in Euclidean ($2 n-3$)-space. By Theorem 2.1, Lemma 3.1 and [15, Proposition 1.1], we have a filtration

$$
\left[M \subset R^{2 n-3}\right]=\left[M^{*}, P^{2 n-4} ; \xi\right]=F_{0} \supset F_{1} \supset F_{2} \supset F_{3} \supset 0
$$

such that

$$
\begin{array}{ll}
F_{0} / F_{1}=H^{2 n-4}\left(M^{*} ; Z[v]\right), & F_{2} / F_{3}=0, \\
F_{1} / F_{2}=\operatorname{Coker} \theta, & F_{3}=0,
\end{array}
$$

where

$$
\begin{gathered}
\theta: H^{2 n-5}\left(M^{*} ; Z[v]\right) \longrightarrow H^{2 n-3}\left(M^{*} ; Z_{2}\right) \times H^{2 n-1}\left(M^{*} ; Z_{3}[v]\right), \\
\theta=\left(\left(S q^{2}+\binom{2 n-3}{2} v^{2}\right) \tilde{\rho}_{2}, \not \phi^{1} \tilde{\rho}_{3}\right) .
\end{gathered}
$$

Hence we have

$$
\begin{equation*}
\left[M \subset R^{2 n-3}\right]=H^{2 n-4}\left(M^{*} ; Z[v]\right) \times \operatorname{Coker} \theta \tag{4.1}
\end{equation*}
$$

We first consider Coker θ. If n is odd, then by Corollary 3.4, $H^{2 n-1}\left(M^{*} ; Z_{3}[v]\right)$ $=0$ and hence Coker $\theta=H^{2 n-3}\left(M^{*} ; Z_{2}\right) /\left(S q^{2}+\binom{2 n-3}{2} v^{2}\right) \tilde{\rho}_{2} H^{2 n-5}\left(M^{*} ; Z[v]\right)$, which is obtained in exactly the same way as in [19, (4.6)], i.e.

$$
\operatorname{Coker} \theta \cong \begin{cases}0 & n \equiv 3(4) \tag{4.2}\\ H^{n-3}\left(M ; Z_{2}\right) / S q^{2} H^{n-5}\left(M ; Z_{2}\right) & n \equiv 1(4)\end{cases}
$$

If n is even, there is a commutative diagram

where by Corollary 3.4, $\tilde{i}^{*-1} p^{*}$ in the right hand side is an isomorphism, and by (5.8)-(5.9) below, the one in the left is an epimorphism. To study $\phi_{1} \tilde{\rho}_{3}$, recall Yo's operation Q^{1} [20, p. 1481 and p.1485],

$$
Q^{1}: H^{i}\left(M ; Z_{3}\right) \longrightarrow H^{i+4}\left(M ; Z_{3}\right)
$$

such that

$$
Q^{1}=0 \text { for } i \geqq n-5 \quad \text { and } \quad Q^{1} x+\phi^{1} x=W_{3}^{1}(M) x \text {, }
$$

where $W_{3}^{1}(M)$ is the first $W u$ class $\bmod 3$, which is equal to $P_{1}(M)$, the first Pontrjagin class mod 3 of M [8, p.229]. Hence

$$
\not \$_{1} x=0 \quad \text { for } x \in H^{i}\left(M ; Z_{3}\right), i>n-5,
$$

because of the assumption $P_{1}(M)=0$. Using this relation, the diagram (4.3) and the relations (6.1) below, we get $\phi_{1 \tilde{\rho}_{3}} H^{2 n-5}\left(M^{*} ; Z[v]\right)=0$, and so
(4.4) $\operatorname{Coker} \Theta \cong H^{2 n-3}\left(M^{*} ; Z_{2}\right) / S q^{2} \widetilde{\rho}_{2} H^{2 n-5}\left(M^{*} ; Z[v]\right) \times H^{n-1}\left(M ; Z_{3}\right) \quad n \equiv 0(2)$,

The group $S q^{2} \widetilde{\rho}_{2} H^{2 n-5}\left(M^{*} ; Z[v]\right)$ for even n is obtained in exactly the same way as in $[19,(4.10)]$ and is given as follows:
(4.5) $S q^{2} \widetilde{\rho}_{2} H^{2 n-5}\left(M^{*} ; Z[v]\right) \cong \begin{cases}S q^{2} \rho_{2} H^{n-5}(M ; Z) & n \equiv 0(4), \\ S q^{2} \rho_{2} H^{n-5}(M ; Z)+S q^{1} H^{n-4}\left(M ; Z_{2}\right) & n \equiv 2(4) .\end{cases}$

Thus Coker Θ is determined by (4.2) and (4.4) - (4.5).
On the other hand, the group $H^{2 n-4}(M ; Z[v])$ is given by Theorem 3.2. Therefore by (4.1), the set $\left[M \subset R^{2 n-3}\right]$ is determined and so Theorem B is established.

§ 5. Proof of Theorem 3.2

Let $k \geqq 2$ and assume that M is an n-manifold satisfying the condition

$$
\begin{equation*}
\widetilde{H}_{i}(M ; Z) \otimes Z_{2}=0 \quad \text { for } i<k . \tag{*}
\end{equation*}
$$

Case I: $\boldsymbol{n - k}$ is even. If we consider the cohomology spectral sequence [7] for $M^{2}-\Delta M \xrightarrow{p} M^{*} \xrightarrow{\xi} P^{\infty}$, then it follows that the rank and the odd torsion subgroup of $H^{2 n-k-i}\left(M^{*} ; \underline{Z}\right)$ are equal to and isomorphic to those of $H^{2 n-k-i}\left(M^{2}-\Delta M ; Z\right)^{(-1)^{k_{t}} *}$ by p^{*}. Since by (2.5), $\phi_{1} H^{n-k-i}(M ; Z) \subset H^{2 n-k-i}\left(M^{2} ; Z\right)^{(-1)^{k} *}$ because $n-k$ is even, there is an isomorphism

$$
\tilde{i}^{*}: H^{2 n-k-i}\left(M^{2} ; Z\right)^{(-1)^{k} t} / \phi_{1} H^{n-k-i}(M ; Z) \cong H^{2 n-k-i}\left(M^{2}-\Delta M ; Z\right)^{(-1)^{k} t}
$$

Here by (2.4) and (2.6), ϕ_{1} is a split monomorphism. Hence the left hand side of this equality is isomorphic by \tilde{i}^{*} to the subgroup of $H^{2 n-k-i}\left(M^{2} ; Z\right)$,

$$
\left(1+(-1)^{k} t^{*}\right)\binom{\sum_{1 \leqq j \leq(k+i) / 2]} H^{n-j}(M ; Z) \otimes H^{n-k-i+j}(M ; Z)}{\sum_{1 \leqq j \leq\lfloor(k+i-1) / 2]} H^{n-j}(M ; Z) * H^{n-k-i+1+j}(M ; Z)}
$$

YASUI, T.

which is an odd torsion group for $i=2(k \geqq 3)$ and $i=1$, under the condition (*). This shows that for $i=2(k \geqq 3)$ and $i=1, p^{*}: H^{2 n-k-i}\left(M^{*} ; \underline{Z}\right) \rightarrow H^{2 n-k-i}\left(M^{2}-\Delta M: Z\right)^{(-1)^{k} t^{*}}$ is an epimorphism, whose kernel is a 2 -primary component. This component is easily calculated in the same way as in [19, §5], i.e. by using (2.2), Lemma 3.1, the Bockstein exact sequence and [19, Lemma 3.2], and is given as follows :

$$
\begin{aligned}
H^{2 n-k-1}\left(M^{*} ; \underline{Z}\right) \equiv & \left\{\bar{\beta}_{2} \rho\left(u^{k} \otimes x^{2}\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\} \text { mod odd torsion, } \\
H^{2 n-k-2}\left(M^{*} ; \underline{Z}\right) \equiv & \left\{\bar{\beta}_{2} \rho\left(u^{k+1} \otimes x^{2}\right) \mid x \in H^{n-k-2}\left(M ; Z_{2}\right)\right\} \\
+ & \left\{\bar{\beta}_{2} \rho\left(u^{k-3} \otimes x^{2}\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\} \text { mod odd torsion }(k \geqq 3), \\
\bar{\rho}_{2} H^{2 n-k-2}\left(M^{*} ; \underline{Z}\right)= & \left\{\rho\left(1 \otimes x^{2}\right) \mid x \in H^{n-2}\left(M ; Z_{2}\right)\right\} \\
& +\left\{\rho\left(u^{4} \otimes x^{2}\right) \mid x \in H^{n-4}\left(M ; Z_{2}\right)\right\} \\
& +\left\{\rho \sigma(x \otimes y) \mid x, y \in H^{n-2}\left(M ; Z_{2}\right), x \neq y\right\} \quad(k=2) .
\end{aligned}
$$

Here there is a relation

$$
\bar{\rho}_{2} \bar{\beta}_{2} \rho\left(u^{j} \otimes x^{2}\right)=\rho\left(u^{j+1} \otimes x^{2}\right) \quad \text { if }(j, \operatorname{dim} x)=(k+1, n-k-2),(k-3, n-k) .
$$

The argument above establishes Theorem 3.2(i) and (ii) for $n-k$ even.
Case II : $n-k$ is odd. We make an argument similar to that used in [19, §5]. For the natural embedding $j: P M \rightarrow M^{*}$, write $j^{*} v$ as v in $H^{1}\left(P M ; Z_{2}\right)$ and consider the exact sequence in $[19,(5.3)]$,

$$
\begin{equation*}
\cdots \rightarrow H^{i-1}(P M ; \underline{Z}) \xrightarrow{\delta} H^{i}\left(\Lambda^{2} M, \Delta M ; \underline{Z} \xrightarrow{i^{*}} H^{i}\left(M^{*} ; \underline{Z}\right) \xrightarrow{j^{*}} H^{i}(P M ; \underline{Z}) \rightarrow \cdots\right. \tag{5.1}
\end{equation*}
$$

The cohomology of $P M$ has been given by Rigdon [10, §9] (cf. [19, Lemma 5.4]).
Lemma 5.2 (Rigdon). Assume that M is an n-manifold satisfying the condition (*) above and that $n-k$ is odd. Then

$$
\begin{aligned}
& \text { (i) } H^{2 n-k-1}(P M ; \underline{Z})=\left\{\beta_{2}\left(v^{n-2} x+v^{n-k-2} S q^{k} x\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\} \\
& +Z_{2}\left\langle\beta_{2}\left(v^{n-k-2} M\right)\right\rangle \quad \text { if } k \text { is even, } \\
& =\left\{\tilde{\beta}_{2}\left(v^{n-2} x\right) \mid x \in H^{n-k}\left(M ; Z_{2}\right)\right\} \quad \text { if } k \text { is odd ; } \\
& \text { (ii) } H^{2 n-k-2}(P M ; \underline{Z})=\left\{\beta_{2}\left(v^{n-2} x\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\} \text {, if } k \text { is even, } \\
& =\left\{\widetilde{\beta}_{2}\left(v^{n-2} x+v^{n-k-3} S q^{k+1} x\right) \mid x \in H^{n-k-1}\left(M ; Z_{2}\right)\right\} \\
& +Z_{2}\left\langle\widetilde{\beta}_{2}\left(v^{n-k-3} M\right)\right\rangle \quad \text { if } k \text { is odd. }
\end{aligned}
$$

The cohomology of $\left(\Lambda^{2} M, \Delta M\right)$ has been investigated by Larmore [5]. There are elements

```
            \Lambdax\in\mp@subsup{H}{}{r}(\mp@subsup{\Lambda}{}{2}M,\DeltaM;\mp@subsup{Z}{p}{}[v]) for }x\in\mp@subsup{H}{}{r}(M;\mp@subsup{Z}{p}{})(p\leqq\infty)
\Delta(x,y)\in\mp@subsup{H}{}{r+s}(\mp@subsup{\Lambda}{}{2}M,\DeltaM;\mp@subsup{Z}{p}{\prime}[v]) for }x\in\mp@subsup{H}{}{r}(M;\mp@subsup{Z}{p}{}),y\in\mp@subsup{H}{}{s}(M;\mp@subsup{Z}{p}{})(p\leqq\infty)
```

satisfying the conditions

$$
\begin{align*}
\pi^{*} \Lambda x & =x \otimes 1-1 \otimes x \\
\pi^{*} \Delta(x, y) & =x \otimes y-(-1)^{r s} y \otimes x \tag{5.3}
\end{align*}
$$

where $\pi:\left(M^{2}, \Delta M\right) \rightarrow\left(\Lambda^{2} M, \Delta M\right)$ is the natural projection. Let

$$
\underline{\Lambda}(x, y)= \begin{cases}\Lambda x \Lambda y & \text { if } \underline{Z}_{p}=Z_{p} \tag{5.4}\\ \Delta(x, y) & \text { if } \underline{Z}_{p}=Z_{p}[v]\end{cases}
$$

and assume that the integral cohomology groups of M are of the form

$$
\begin{aligned}
& H^{n}(M ; Z)=Z<M>\quad\left(\rho_{r} M=M\right), \\
& H^{m}(M ; Z)=\sum_{1 \leq \leq \leq r(m)} Z_{r(m, i)}<x_{m, i}>\quad \text { (direct sum) for } m<n, \\
& x_{m, i}=\beta_{r(m, i)} y_{m, i} \quad\left(y_{m, i} \in H^{m-1}\left(M ; Z_{r(m, i)}\right) \text { for } \alpha(m)<i \leqq r(m),\right.
\end{aligned}
$$

where the order $r(m, i)$ is infinite for $1 \leqq i \leqq \alpha(m)$ and a power of a prime for $\alpha(m)<i \leqq \gamma(m)$, and if $\alpha(m)<i<j \leqq r(m)$, then either $(r(m, i), r(m, j))=1$ or $r(m, i) \mid r(m, j)$ holds. Then using these notations we have

Lemma 5.5 (Larmore*)). Assume that M is an n-manifold satisfying the condition (*) above and that $n-k$ is odd. Then
(i) $H^{2 n-k}\left(\Lambda^{2} M, \Delta M ; \underline{Z}\right)$ has $Z_{2}<\bar{\beta}_{2}\left(v^{n-k-1} \Lambda M\right)>$ as a direct summand if k is even,
(ii) if $i=2(k \geqq 3)$ or $i=1$, then

$$
\begin{aligned}
& H^{2 n-k-i}\left(\Lambda^{2} M, \Delta M ; \underline{Z}\right)=\varepsilon Z_{2}+\sum_{1 \leq j \leq \alpha(n-k-i)} Z<\underline{\Lambda}\left(M, x_{n-k-i, j}\right)> \\
&+\sum_{1 \leq j \leq k+i(\lambda, \mu) \in A_{j} \cup A_{j}^{\prime}} Z_{r}\left\langle\beta_{r} \underline{\Lambda}\left(y_{n-j, \lambda}, \rho_{r} x_{n-k-i+j, \mu}\right)>\right. \\
&+\sum_{1 \leq j<k+i} \sum_{(\lambda, \mu) \in B_{j} \cup B_{j}^{\prime}} Z_{r}\left\langle\bar{\beta}_{r} \underline{\Lambda}\left(y_{n-j, \lambda}, \rho_{r} y_{n-k-i+1+j, \mu)}\right)>\right.
\end{aligned}
$$

where $r=r(n-j, \lambda), x_{n, \mu}=M$ and

$$
\begin{aligned}
& \varepsilon Z_{2}= \begin{cases}Z_{2}\left\langle\beta_{2}\left(v^{n-k-i-1} \Lambda M\right)>\right. & \text { if } k \leqq 0(2), i=1 \text { or } k \equiv 1(2), i=2, \\
0 & \text { otherwise },\end{cases} \\
& A_{j}=\left\{\begin{array}{l|l}
(\lambda, \mu) & \begin{array}{c}
\alpha(n-j)<\lambda \leqq r(n-j), \\
\\
r(n-j, \lambda)<r(n-k-i+j, \mu)
\end{array}
\end{array}\right\},
\end{aligned}
$$

[^1]YASUI, T.

$$
\begin{aligned}
& A_{j}^{\prime}=\left\{\begin{array}{lll}
\{(\lambda, \mu) \mid r(n-j, \lambda)=r(n-k-i+j, \mu)\} \\
\{(\lambda, \mu) & \begin{array}{l}
r(n-j, \lambda)=r(n-j, \mu), \text { and } \lambda<\mu \text { or } \\
\lambda \leqq \mu \text { according as } j \equiv 0(4) \text { or } 2(4)
\end{array}
\end{array}\right\} \quad \begin{array}{l}
j=(k+i) / 2, \\
\phi
\end{array} \\
& B_{j}=\left\{\begin{array}{l|l}
(\lambda, \mu) & \begin{array}{l}
\alpha(n-k-i+j+1)<\mu \leqq r(n-k-i+j+1), \\
\alpha(n-j)<\lambda \leqq r(n-j), r(n-j, \lambda)<r(n-k-i+j+1, \mu)
\end{array}
\end{array}\right\}, \\
& B_{j}^{\prime}= \begin{cases}\{(\lambda, \mu) \mid r(n-j, \lambda)=r(n-k-i+j+1, \mu)\} & 1 \leqq j<(k+i-1) / 2, \\
\left\{\begin{array}{ll}
(\lambda, \mu) & \begin{array}{l}
r(n-j, \lambda)=r(n-j, \mu), \text { and } \lambda \leqq \mu \text { or } \\
\lambda<\mu \text { according as } j \equiv 1(4) \text { or } 3(4)
\end{array}
\end{array}\right\} & \begin{array}{l}
j=(k+i-1) / 2, \\
\phi
\end{array} \\
(k+i-1) / 2<j\end{cases}
\end{aligned}
$$

Using this lemma, the two relations

$$
\begin{array}{cc}
\delta\left(v^{i} x\right)=v^{i+1} \Lambda x \quad \text { for } x \in H^{*}\left(M ; Z_{2}\right), \\
j^{*} \rho\left(u^{r} \otimes x^{2}\right)=\sum_{1 \leq i \leq s} v^{r+s-t} S q^{t} x & \text { for } x \in H^{s}\left(M ; Z_{2}\right),
\end{array}
$$

contained in [16, Lemma 1.5] and [13, §2], the exact sequence (5.2) and the relations (5.4)-(5.5) above, and (6.1)-(6.2) below, we have the following two lemmas:

Lemma 5.6. Let $k \geqq 2$ and assume that M is an n-manifold satisfying the condition (*) above and $n-k$ is odd. Then for $i=2(k \geqq 3)$ and $i=1$,

$$
\begin{aligned}
H^{2 n-k-i}\left(M^{*} ; \underline{Z}\right)= & \left\{\bar{\beta}_{2} \rho\left(u^{k+i-3} \otimes x^{2}\right) \mid x \in H^{n-k-i+1}\left(M ; Z_{2}\right)\right\} \\
& +i^{*} H^{2 n-k-i}\left(\Lambda^{2} M, \Delta M ; \underline{Z}\right)
\end{aligned}
$$

and $i^{*}\left(\varepsilon Z_{2}\right)=0$.

Lemma 5.7. Let $x \in H^{*}\left(M ; Z_{r}\right)$ and $y \in H^{*}\left(M ; Z_{s}\right)$ be of order r and s, respectively, with $\operatorname{dim} x+\operatorname{dim} y>n$. Then the following three relations hold:
(i) $\pi^{*} \underline{A}(x, y)=(-1)^{k+1}\left(1+(-1)^{k} t^{*}\right)(x \otimes y)$
if $r=s \leqq \infty$,
(ii) $\pi^{*} \bar{\beta} r \underline{A}\left(x, \rho_{r} y\right)=(-1)^{k+1}\left(1+(-1)^{k} t^{*}\right)\left(\beta_{r} x \otimes y\right)$ if $r<s=\infty$,
(iii) $\pi^{*} \bar{\beta}, \underline{\Lambda}\left(x, \rho_{r} y\right)=(-1)^{k+1+\operatorname{dim} x}\left(1+(-1)^{k} t^{*}\right)\left(\beta_{r} x * \beta_{s} y\right)$ if $r \mid s, s<\infty$.

The above relations lead to an isomorphism

$$
\left.\begin{array}{r}
i^{\prime *} \pi^{*}: H^{2 n-k-i}\left(\Lambda^{2} M, \Delta M ; Z\right) / \varepsilon Z_{2} \xrightarrow{\cong} H^{2 n-k-i}\left(M^{2} ; Z\right)^{(-1)^{k} t} \\
\| \tag{5.8}
\end{array}\right)
$$

where $i^{\prime}: M^{2} \subset\left(M^{2}, \Delta M\right)$ is the natural inclusion ; while by the relations (2.3)(2.6), the map \tilde{i} induces an isomorphism

$$
\tilde{i}^{*}: H^{2 n-k-i}\left(M^{2} ; Z\right)^{(-1)^{k_{t *}} \longrightarrow} \cong H^{2 n-k-i}\left(M^{2}-\Delta M ; Z\right)^{(-1)^{k_{t}} t}
$$

Therefore we have a commutative diagram of isomorphisms

$$
\begin{align*}
& H^{2 n-k-i}\left(\Lambda^{2} M, \Delta M ; \underline{Z}\right) / \varepsilon Z_{2} \xrightarrow{i^{*}} \underset{\cong}{\cong} \operatorname{Im} i^{*}\left(\subset H^{2 n-k-i}\left(M^{*} ; \underline{Z}\right)\right) \tag{5.9}
\end{align*}
$$

Theorem 3.2(i) for $n-k$ odd follows from Lemma 5.6 and (5.8)-(5.9).
The proof of (ii) for $n-k$ odd is given in the same way as in the case where M is a homologically ($k-1$)-conneted \boldsymbol{n}-manifold [19].

§ 6. Remarks on the torsion product

By the Künneth formula, there is a split short exact sequence

$$
0 \rightarrow \sum_{p+q=i} H^{p}(X ; Z) \otimes H^{q}(Y ; Z) \rightarrow H^{i}(X \times Y ; Z) \rightarrow \sum_{p+q=i+1} H^{p}(X ; Z) * H^{q}(Y ; Z) \rightarrow 0
$$

Both for $x \in H^{p}(X ; Z)$ and $y \in H^{q}(Y ; Z)$ of finite order, we should like to express their torsion product $x * y \in H^{p+q-1}(X \times Y ; Z)$ by using the tensor product and the Bockstein operator.

Let r and s be the order of x and y, respectively, such that $r \mid s$, and let $x^{\prime} \in$ $H^{p-1}\left(X ; Z_{r}\right)$ and $y^{\prime} \in H^{q-1}\left(Y ; Z_{s}\right)$ be the elements such that

$$
\beta_{r} x^{\prime}=x \quad \text { and } \quad \beta_{s} y^{\prime}=y
$$

Under these circumstances, we shall show the relations

$$
\begin{gather*}
x * y=(-1)^{p-1} \beta_{r}\left(x^{\prime} \otimes \rho_{r} y^{\prime}\right), \quad y * x=(-1)^{q-1} \beta_{r}\left(\rho_{r} y^{\prime} \otimes x^{\prime}\right), \tag{6.1}\\
t^{*}(x * y)=(-1)^{p q-1} y * x . \tag{6.2}
\end{gather*}
$$

YASUI, T.

Since (6.2) immediately follows from (6.1), we now prove (6.1). Let $S^{*}(X ; G)$ and $S^{*}(Y ; G)\left(G=Z, Z_{r}\right.$ or $\left.Z_{s}\right)$ be the cochain groups of X and Y with coefficients in G, and let $\partial: S^{i}(; G) \rightarrow S^{i+1}(; G)$ be the coboundary operator and let [c] mean the cohomology class of a cocycle c. For x^{\prime} and y^{\prime} above, there are two cochains $\bar{x}^{\prime} \in S^{p-1}(X ; Z)$ and $\bar{y}^{\prime} \in S^{q-1}(Y ; Z)$ such that

$$
\left[\rho_{r} \bar{x}^{\prime}\right]=x^{\prime} \quad \text { and } \quad\left[\rho_{s} \bar{y}^{\prime}\right]=y^{\prime}
$$

Put

$$
\bar{x}=(1 / r) \partial \bar{x}^{\prime} \quad \text { and } \quad \bar{y}=(1 / s) \partial \bar{y}^{\prime}
$$

Then

$$
[\bar{x}]=\beta_{r} x^{\prime}=x, \quad[\bar{y}]=\beta_{s} y^{\prime}=y,
$$

and

$$
\partial\left((s / r) \bar{x}^{\prime}\right)=s \bar{x} \quad \partial \bar{y}^{\prime}=s \bar{y}
$$

By the definition of torsion product and its property, respectively, on p. 150 and p. 170 of [6], we get

$$
\begin{aligned}
x * y & =(-1)^{p-1}\left[(1 / s) \partial\left((s / r) \bar{x}^{\prime} \otimes \bar{y}^{\prime}\right)\right] \\
& =(-1)^{p-1}\left[\bar{x} \otimes \bar{y}^{\prime}+(-1)^{p-1}(s / r) \bar{x}^{\prime} \otimes \bar{y}\right]
\end{aligned}
$$

while

$$
\begin{aligned}
\beta_{r}\left(x^{\prime} \otimes \rho_{r} y^{\prime}\right) & =\beta_{r}\left(\left[\rho_{r} \bar{x}^{\prime}\right] \otimes\left[\rho_{r} \bar{y}^{\prime}\right]\right)=\beta_{r}\left[\rho_{r}\left(\bar{x}^{\prime} \otimes \bar{y}^{\prime}\right)\right] \\
& =\left[(1 / r)\left(r \bar{x} \otimes \bar{y}^{\prime}+(-1)^{p-1} \bar{x}^{\prime} \otimes s \bar{y}\right)\right] \\
& =\left[\bar{x} \otimes \bar{y}^{\prime}+(-1)^{p-1}(s / r) \bar{x}^{\prime} \otimes \bar{y}\right]
\end{aligned}
$$

This show the first relation of (6.1). The second is obtained in a similar way.

References

[1] D.R. Bausum, Embeddings and immersions of manifolds in Euclidean space, Trans Amer. Math. Soc., 213 (1975), 263-303.
[2] R. Greenblatt, The twisted Bockstein coboundary, Proc. Cambridge Phillos. Soc.. 61 (1965), 295-297.
[3] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv., 37 (1962), 155-176.
[4] A. Haefliger, Plongements de variétés dans le domaine stable, Séminaire Bourbaki 15 (1962/63), $\mathrm{n}^{\circ} .245$.
[5] L.L. Larmore, The cohomology of ($\left.\Lambda^{2} X, \Delta X\right)$, Canad. J. Math., 25 (1973), 908-921.
[6] S.S. MacLane, Homology, Grund. Math. Wis., 114. Springer-verlag, 1963.
[7] J.F. McClendon, Obstruction theory in fiber spaces, Math. Z., 120 (1971), 1-17.
[8] J.W. Milnor and J.D. Stasheff, Characteristic Classes, Ann. of Math. Studies, 76, Princeton Univ. Press., 1974.
[9] E. Rees, Embedding odd torsion manifolds, Bull. London Math. Soc., 3 (1971), 356362.
[10] R.D. Rigdon, Immersions and embeddings of manifolds in Euclidean space, Thesis, Univ. of California at Berkelay, 1970.
[11] H. Samelson, A note on the Bockstein operator, Proc. Amer. Math. Soc., 15 (1964), 450-453.
[12] E.H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[13] E. Thomas, Embedding manifolds in Euclidean space, Osaka J. Math., 13 (1976), 163-186.
[14] T. Yasui, Note on the enumeration of embeddings of real projective spaces, Hiroshima Math. J., 3 (1973), 409-418.
[15] T. Yasui, The enumeration of embeddings of lens spaces and projective spaces, Hiroshima Math. J., 8 (1976), 235-253.
[16] T. Yasui, On the map defined by regarding embeddings as immersions, Hiroshima Math. J., 13 (1983), 457-476.
[17] T. Yasui, Notes on enumerating embeddings of unorientable n-manifolds in Euclidean (2n-1)-space for odd n, Bull. of Yamagata Univ., Nat. Sci., 11 (1984), 39-49.
[18] T. Yasui, Enumerating embeddings of n-manifolds in Euclidean ($2 n-1$)-space, J. Math. Soc. Japan, 36 (1984), 555-576.
[19] T. Yasui, Eunmerating embeddings of homologically ($k-1$)-connected n-manifolds in Euclidean (2n-k)-space, J. Math. Soc. Japan, 38 (1986), 113-126.
[20] G. Yo, Cohomology operations and duality in a manifold, Sci. Sinica, 12 (1963), 1469-1487.

[^0]: *Department of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan

[^1]: *) The author has proved this lemma using results on pp.908-915 in [5]. He thinks that the expresions " r is a power of 2 or" in $I(i v)$ and II(v) of [5, Theorem 20] should be omitted.

