# Immersion groups of complex projective spaces 

Tsutomu YASUI

Department of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan<br>(Received August 27, 1982)

## Introduction

Let $M$ be a closed connected smooth $n$-dimensional manifold and let $R^{m}$ be the $m$-dimensional Euclidean space. Let $\left[M \subseteq R^{m}\right]$ be the set of regular homotopy classes of immersions of $M$ into $R^{m}$. If $2 m>3 n+1$ and there exists an immersion of $M$ into $R^{m}$, then the set [ $M \subseteq R^{m}$ ] has the structure of an abelian group (see $\S 1$ or [13]). In this article, we determine the group structure of $\left[C P^{n} \leqq R^{4 n-i}\right]$ for $2 \leqq i \leqq 5$, when there exists an immersion of $C P^{n}$, the complex projective space of complex dimension $n$, into $R^{4 n-i}$.

Theorem. (1) If $n$ is odd and $n \geqq 5$, then
$\left[C P^{n} \subseteq R^{4 n-2}\right]=Z+Z_{2}+Z_{2}$.
(2) If $n$ is odd and $n \geqq 5$, then

$$
\begin{array}{rlrl}
{\left[C P^{n} \subseteq R^{4 n-3}\right]} & =Z_{2} & n \equiv 1(4) \\
& =Z_{2}+Z_{2} & n \equiv 3(4)
\end{array}
$$

(3) Let $n \geqq 6$ and assume that there is an immersion $C P^{n} \subseteq R^{4 n-4}$. Then
$\left[C P^{n} \subseteq R^{4 n-4}\right]=Z+Z_{2} \quad n \equiv 3(4)$,

$$
=Z \quad n \not \equiv 3(4)
$$

(4) Let $n \geqq 6$ and assume that there is an immersion $C P^{n} \subseteq R^{4 n-5}$. Then
$\left[C P^{n} \subseteq R^{4 n-5}\right]=Z_{2}+Z_{2} \quad n \equiv 3(4)$,

$$
=0 \quad n \not \equiv 3(4) .
$$

For completeness' sake, we mention that
$\left[C P^{n} \subseteq R^{4 n-2}\right]=Z$ for $n>4, n \neq 2 r, n \equiv 0(2)$,
$\left[C P^{n} \subseteq R^{4 n-3}\right]=0$ or $\phi$ for $n>4, n \equiv 0(2)$.
These results are given by [9], [12] and [16]**.
In §1, we give the set $\left[C P^{n} \subseteq R^{1 n-i}\right]$ the structure of an abelian group. The proofs of (1) and (2) of the Theorem are given in §§2-4. The proofs of (3)

[^0]
## YASUI, T .

and (4) are obtained more easily than those of (1) and (2), and will be omitted.
§1. Group structures on $\left[M \subseteq R^{n+m}\right]$
Let $p: E \rightarrow B$ be a fibration, where the fibre is $(r-1)$-connected for some $r$. If $X$ is a $C W$-complex of dimension $n$ and if $f: X \rightarrow B$ has a lifting $g: X \rightarrow E$, denote the set of rel-f-homotopy classes of liftings of $f$ to $E$ by $[X, E ; f]$. If $n \leqq 2 r-1$, then the set $[X, E ; f]$ naturally has the structure of an abelian group with identity element [g], according to J.C.Becker [3, Theorem 7.23]. Let $E^{2} \rightarrow E$ denote the pull-back of $p: E \rightarrow B$ by $p$. Then the diagonal map $d: E \rightarrow E^{2}$ is a cross section of $E^{2} \rightarrow E$ and $d g: X \rightarrow E^{2}$ is a lifting of $g$ to $E^{2}$. The group $\left[X, E^{2} ; g\right]$ with identity $[d g]$ is isomorphic to $[X, E ; f]$ by [8, Theoren 3.1].

Now let $M$ be a closed connected smooth $n$-dimensional manifold and $p: B O(m) \rightarrow$ $B O$ be the fibre bundle with fibre $V_{m}=O / O(m)$. Assume that $2 m-2 \geqq n$ and that there is an immersion $M \subseteq R^{n+m}$, i. e. $\left[M \subseteq R^{n+m}\right] \neq \phi$. Let $\nu: M \rightarrow B O$ classify the stable normal bundle of $M$. Then the set of regular homotopy classes of immersions of $M$ into $R^{n+m}$ is in one-to-one correspondence with $[M, B O(m) ; \nu]$ and so with $\left[M, B O(m)^{2} ; f\right]$, if $f: M \rightarrow B O(m)$ classifies the normal bundle of any immersion $M \subseteq R^{n+m}$. Since $2 m-2 \geqq n,\left[M, B O(m)^{2} ; f\right]$ has the structure of an abelian group. The set $\left[M \subseteq R^{n+m}\right]$, therefore, has the structure of an abelian group via this one-to -one correspondnce. L.L.Larmore and E.Thomas called this group the immersion group and denoted it by $I m_{n+m}(M)$ in [13]. If $M$ is an orientable manifold or a spin manifold, we can replace $p: B O(m) \rightarrow B O$ by $p: B S O(m) \rightarrow B S O$ or by $p: B S p i n(m)$ $\rightarrow B S p i n$, respectively.

## § 2. The group [CP $\left.{ }^{n} \subseteq R^{t n-2}\right]$ for $n \equiv 1(2)$

Let $n$ be odd and $n \geqq 5$. Then $C P^{n}$ is a spin manifold and there is an immersion $C P^{n} \subseteq R^{4 n-2}$ by [7, Theorem 2]. As is stated in §1, [CP $\left.{ }^{n} \subseteq R^{4 n-2}\right]=\left[C P^{n}\right.$, $\left.B S p i n(2 n-2)^{2} ; f\right]$ where $f: C P^{n} \rightarrow B S$ pin $(2 n-2)$ classifies the normal bundle of any immersion $C P^{n} \subseteq R^{1 n-2}$. In the table of [18], C.A. Robinson gives $k$-invariants of the Postnikov tower of $B O(r) \rightarrow B O$. By a slight modification of them, we have the Postnikov tower of $B \operatorname{Spin}(2 n-2)^{2} \rightarrow B \operatorname{Sin}(2 n-2)$ and its $k$-invariants as follows:

$$
\begin{aligned}
& \beta=\left(S q^{2} \rho_{2} l_{2 n-2} \times 1,1 \times S q^{2}{ }_{2} 2 n-1\right), \\
& \varphi i=S q^{2} \imath_{2 n-1} \times 1 \text {, }
\end{aligned}
$$

where $P_{\dot{\beta}} \rightarrow K(Z, 2 n-2) \times K\left(Z_{2}, 2 n-1\right)$ is the principal fibration classified by $\beta$ and $\varphi \in H^{2 n+1}\left(P_{\beta}: Z_{2}\right)=Z_{2}$, and $h$ is a ( $2 n+1$ )-equivalence.

By [14, Theorem 3], there is a decreasing filtration

$$
\left[C P^{n}, B \operatorname{Spin}(2 n-2)^{2} ; f\right]=F_{0} \supset F_{1} \supset F_{2} \supset 0
$$

such that

$$
F_{0} / F_{1}=\operatorname{Ker} \Phi^{2 n-2}, \quad F_{1} / F_{2}=\operatorname{Ker} \Gamma^{2 n-2} / \operatorname{Im} \Theta^{2 n-3}, \quad F_{2}=\operatorname{Coker} \Phi^{2 n-3} .
$$

Here $\Phi^{i}: \operatorname{Ker} \Theta^{i} \rightarrow \operatorname{Coker} \Gamma^{i}$ is the twisted secondary operation due to the relation $\Gamma^{i+1} \theta^{i}=0$, and

$$
\begin{aligned}
\Theta^{i}: & H^{i}\left(C P^{n} ; Z\right) \times H^{i+1}\left(C P^{n} ; Z_{2}\right) \rightarrow H^{i+2}\left(C P^{n} ; Z_{2}\right) \times H^{i+3}\left(C P^{n} ; Z_{2}\right), \\
& \theta^{i}(a, b)=\left(S q^{2} \rho_{2} a, S q^{2 b}\right), \\
\Gamma^{i}: & H^{i+1}\left(C P^{n} ; Z_{2}\right) \times H^{i+2}\left(C P^{n} ; Z_{2}\right) \rightarrow H^{i+3}\left(C P^{n} ; Z_{2}\right), \\
& \Gamma^{i}(a, b)=S q^{2} a .
\end{aligned}
$$

It is well-known that

$$
H^{*}\left(C P^{n} ; Z\right)=Z[z] /\left(z^{n+1}\right), \quad H^{*}\left(C P^{n} ; Z_{2}\right)=Z_{2}[z] /\left(z^{n+1}\right)\left(z=\rho_{2} z\right),
$$

where $\operatorname{deg} z=2$. A simple calculation, using the above results, shows that

$$
\begin{aligned}
& F_{0} / F_{1}=\operatorname{Ker} \Phi^{2 n-2}=\operatorname{Ker} \Theta^{2 n-2}=H^{2 n-2}\left(C P^{n} ; Z\right) \times 0, \\
& F_{1} / F_{2}=\operatorname{Ker} \Gamma^{2 n-2} / \operatorname{Im} \Theta^{2 n-3}=0 \times H^{2 n}\left(C P^{n} ; Z_{2}\right), \\
& F_{2}=\operatorname{Coker} \Phi^{2 n-3}, \\
& \Phi^{2 n-3}: 0 \times H^{2 n-2}\left(C P^{n} ; Z_{2}\right) \rightarrow H^{2 n}\left(C P^{n} ; Z_{2}\right) .
\end{aligned}
$$

By considering the Postnikov tower of $B S \operatorname{Sin}(2 n-2)^{2} \rightarrow B \operatorname{Spin}(2 n-2)$, the secondary operation $\Phi^{2 n-3}$ is an ordinary double secondary operation due to the two relations

$$
S q^{2}\left(S q^{2} \rho_{2}\right)=0, \quad S q^{2} 0+0 S q^{2}=0
$$

Moreover this operation satisfies the Peterson-Stein type formula (cf. [2, Theorem 6.4]). Let $g: C P^{n} \rightarrow K(Z, 2 n-2)$ correspond to $z^{n-1} \in H^{2 n-2}\left(C P^{n} ; Z\right)$ and let $\rho_{2}$ : $K(Z, 2 n-2) \rightarrow K\left(Z_{2}, 2 n-2\right)$ correspond to $\rho_{222 n-2} \in H^{2 n-2}\left(K(Z, 2 n-2) ; Z_{2}\right)$. Consider the diagram

Then the second formula of Peterson-Stein implies that

$$
\begin{aligned}
\Phi^{2 n-3}\left(0, z^{n-1}\right) & =\Phi^{2 n-3}\left(g^{*} 0, g^{*} \rho_{2 \iota 2 n-2}\right) \\
& =(\varphi i)_{g}\left(S q^{2} \rho_{2} 0, S q^{2} \rho_{2 \iota 2 n-2}\right) \bmod Q
\end{aligned}
$$

where

$$
\begin{aligned}
Q & =(\varphi i) \#\left[C P^{n}, K\left(Z_{2}, 2 n-2\right) \times K\left(Z_{2}, 2 n-1\right)\right]+g^{*}\left[K(Z, 2 n-2), K\left(Z_{2}, 2 n\right)\right], \\
& =S q^{2} H^{2 n-2}\left(C P^{n} ; Z_{2}\right)+g^{*} H^{2 n}\left(K(Z, 2 n-2) ; Z_{2}\right) \\
& =0 .
\end{aligned}
$$

Since $(\varphi i)(a, b)=S q^{2} a$, we can easily verify that $(\varphi i)_{g}\left(0, S q^{2} \rho_{22_{2 n-2}}\right)=0$ and so $\Phi^{2 n-3}\left(0, z^{n-1}\right)=0$. This implies $F_{2}=H^{2 n}\left(C P^{n} ; Z_{2}\right)$. The group extension of $0 \rightarrow F_{2} \rightarrow$ $F_{1} \rightarrow F_{1} / F_{2} \rightarrow 0$ is trivial by [12, Corollary 3.7]. Therefore $F_{1}=Z_{2}+Z_{2}$. Further the

## YASUI, T.

group extension of $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow F_{0} / F_{1}(=Z) \rightarrow 0$ is trivial. This shows $F_{0}=\left[C P^{n} \subseteq\right.$ $\left.R^{\nmid n-2}\right]=Z+Z_{2}+Z_{2}$ for $n \equiv 1(2)$.

## §3. The group [ $C P^{n} \subseteq R^{4 n-3}$ ] for $n \equiv 3(4)$

Assume that $n \geqq 5$ and $n \equiv 3(4)$. Then [CP $\left.{ }^{n} \subseteq R^{1 n-3}\right]$ is not an empty set by [7]. Since $w_{2}\left(C P^{n}\right)=0$ and $w_{4}\left(C P^{n}\right)=0$, we consider the principal fibration $q: P_{x v_{4} \rightarrow B S p i n}$ classified by $w_{4} \in H^{4}\left(B S p i n ; Z_{2}\right)$. Let $B \rightarrow P w_{4}$ be the pull-back of $B S p i n(2 n-3) \rightarrow$ $B S p i n$ by $q$. Then the classifying map of the stable normal bundle of any immersion $C P^{n} \subseteq R^{\lfloor n-3}$ has a lifting $f: C P^{n} \rightarrow B$ and $\left[C P^{n} \subseteq R^{4 n-3}\right]=\left[C P^{n}, B^{2} ; f\right]$, where $B^{2} \rightarrow B$ is the pull-back of $p: B \rightarrow P w_{4}$ by $p$. The Postnikov tower of $B^{2} \rightarrow B$ is given by modifying that of $B O(2 n-3) \rightarrow B O$ constructed in [18], as follows :

where

$$
\beta=\left(S q^{2} S q^{1} c_{2 n-3}, S q^{4}(2 n-3), \varphi i=S q^{2} c_{2 n-1} \times 1\right.
$$

and $h$ is a $(2 n+1)$-equivalence.
Therefore $\left[C P^{n}, B^{2} ; f\right]=\left[C P^{n}, B \times P_{\varphi} ; f\right]$ and there is a decreasing filtration $\left[C P^{n}, B \times P_{\varphi} ; f\right]=F_{0} \supset F_{1} \supset F_{2} \supset 0$,
such that

$$
F_{0} / F_{1}=\operatorname{Ker} \Phi^{2 n-3}, F_{1} / F_{2}=\operatorname{Ker} \Gamma^{2 n-3} / \operatorname{Im} \theta^{2 n-4}, \quad F_{2}=\operatorname{Coker} \Phi^{2 n-4},
$$

where $\Phi^{i}: \operatorname{Ker} \Theta^{i} \rightarrow \operatorname{Coker} \Gamma^{i}$ is the twisted secondary operation due to the relation $\Gamma^{i+1} \theta^{i}=0$ and

$$
\begin{aligned}
& \theta^{i}: H^{i}\left(C P^{n} ; Z_{2}\right) \rightarrow H^{i+3}\left(C P^{n} ; Z_{2}\right) \times H^{i+4}\left(C P^{n} ; Z_{2}\right), \\
& \theta^{i}(a)=\left(S q^{2} S q^{1} a, S q^{4} a\right), \\
& \Gamma^{i}: H^{i+2}\left(C P^{n} ; Z_{2}\right) \times H^{i+3}\left(C P^{n} ; Z^{2}\right) \rightarrow H^{i+4}\left(C P^{n} ; Z_{2}\right), \\
& \Gamma^{i}(a, b)=S q^{2} a .
\end{aligned}
$$

We briefly have

$$
\begin{aligned}
& F_{0} / F_{1}=0, \quad F_{1} / F_{2}=0 \times H^{2 n}\left(C P^{n} ; Z_{2}\right)=Z_{2}, \\
& F_{2}=\text { Coker } \Phi^{2 n-4}: H^{2 n-4}\left(C P^{n} ; Z_{2}\right) \rightarrow H^{2 n}\left(C P^{n} ; Z_{2}\right) .
\end{aligned}
$$

By considering the Postnikov tower of $B^{2} \rightarrow B$, the secondary operation $\Phi^{2 n-4}$ is an ordinary one due to the relation $S q^{2}\left(S q^{2} S q^{1}\right)+0 S q^{4}=0$. Let $\rho_{2}: K(Z, 2 n-4) \rightarrow$ $K\left(Z_{2}, 2 n-4\right)$ correspond to $\rho_{222 n-4} \in H^{2 n-4}\left(K(Z, 2 n-4) ; Z_{2}\right)$ and let $g: C P^{n} \rightarrow$ $K(Z, 2 n-4)$ correspond to $z^{n-2} \in H^{2 n-4}\left(C P^{n} ; Z\right)$. By the second formula of Peterson-Stein [1,Theorem 5.2], we have

$$
\begin{aligned}
\Phi^{2 n-4}\left(z^{n-2}\right) & =\Phi^{2 n-4}\left(g^{*} \rho_{2}^{2} 2 n-4\right. \\
& =(\varphi i)_{g}\left(S q^{2} S q^{1} \rho_{22} 2 n-4\right.
\end{aligned}, S_{\left.q^{4} \rho_{222 n-4}\right) \bmod Q},
$$

where

$$
Q=S q^{2} H^{2 n-2}\left(C P^{n} ; Z_{2}\right)+0 H^{2 n-1}\left(C P^{n} ; Z_{2}\right)+g^{*} H^{2 n}\left(K(Z, 2 n-4) ; Z_{2}\right) .
$$

Since $(\varphi i)(a, b)=S q^{2} a$, we have $(\varphi i)_{g}\left(0, S q^{4} \rho_{2 L_{2 n-4}}\right)=0$. Moreover $Q=0$ follows from the facts that $H^{2 n}\left(K(Z, 2 n-4) ; Z_{2}\right)=Z_{2}$ generated by $S q^{4} \rho_{222 n-4}, g^{*} S q^{4} \rho_{222 n-4}$ $=S q^{4} z^{n-2}=0$ for $n \equiv 3(4)$ and $S q^{2} z^{n-1}=0$ for $n \equiv 1$ (2). This shows that $\Phi^{2 n-4}=0$ and so

$$
F_{2}=H^{2 n}\left(C P^{n} ; Z_{2}\right)=Z_{2} .
$$

The group extension of $0 \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{1} / F_{2} \rightarrow 0$ is trivial by [12, Corollary 3.7]. The argument made above implies $\left[C P^{n} \subseteq R^{1 n-3}\right]=Z_{2}+Z_{2}$ for $n \equiv 3(4)$.

Remark. As for the case $n \equiv 1(4)$, we can obtain $F_{0} / F_{1}=0, F_{1} / F_{2}=0$ and $F_{2}=$ Cokre $\Phi^{2 n-4}=H^{2 n}\left(C P^{n} ; Z_{2}\right)$ or 0 by the same method as in the case $n \equiv 3(4)$. Hence it follows that $\left[C P^{n} \subseteq R^{4 n-3}\right]=Z_{2}$ or 0 for $n \equiv 1(4)$. In the next section, we will show that $\left[C P^{n} \subseteq R^{4 n-3}\right]=Z_{2}$ for $n \equiv 1(4)$ by a different way.

## § 4. The group $\left[C P^{n} \subseteq R^{4 n-3}\right]$ for $n \equiv 1$ (4)

For $n \geqq 5, n \equiv 1(4)$, there exists an immersion $C P^{n} \subseteq R^{4 n-3}$. To show that [CPn $\left.\subseteq R^{4 n-3}\right]=Z_{2}$ for $n \equiv 1(4)$, we consider another method statad below.
4.1. Another group structure on [ $M \subseteq R^{n+m}$ ]. S.Feder stated in [4] the theorem concerning immersion due to Haefliger-Hirsch [6] as follows:

Assume that there is an immersion of an $n$-dimensional manifold $M$ in $R^{n+m}$. If $2 m-2 \geqq n$, then the set $\left[M \subseteq R^{n+m}\right.$ ] is in one-to-one correspondence with the set of $Z_{2}$-equivariant homotopy classes of $Z_{2}$-equivariant maps of $S(M)$ to $S^{n+m-1}$, where $S(M)$ denotes the tangent sphere bundle of $M$.

Let $P(M)$ be the real projective tangent bundle of $M$ and let $\eta$ be the canonical real line bundle over $P(M)$. Then the $Z_{2}$-equivariant homotopy set of $Z_{2}$-equivariant maps of $S(M)$ to $S^{n+m-1}$ is in one-to-one correspondence with the set of vertical homotopy classes of cross sections of the sphere bundle $\left(S(M) \times S^{n+m-1}\right) / Z_{2} \rightarrow P(M)$ associated with $(n+m) \eta$ over $P(M)$. This bundle is induced from $\left(S^{\infty} \times S^{n+m-1}\right) / Z_{2} \rightarrow$ $R P^{\infty}$ (homotopically equivalent to the natural inclusion $R P^{n+m-1} \subset R P^{\infty}$ ) by $\eta: P(M)$ $\rightarrow R P^{\infty}$, the classifying map of $\eta$. Therefore $\left[M \subseteq R^{n+m}\right]$ is in one-to-one correspondence with $\left[P(M), R P^{n+m-1} ; \eta\right]$, which has the structure of an abelian group by [3]. Thus the set [ $M \subseteq R^{n+m}$ ] has the structure of an abelian group via this one-to-one correspondence.
R.Rigdon stated in his dissertation [17, §8] that this group and the one defined in § 1 are coincident with each other. However we do not use his result in this article because the group of order 2 is uniquely determined and is $Z_{2}$.
4.2. Rreliminaries. By [19, Proposition 1.1], there is a filtration

$$
\left[C P^{n} \subseteq R^{4 n-3}\right]=\left[P\left(C P^{n}\right), R P^{4 n-4} ; \eta\right]=F_{0} \supset F_{1} \supset F_{2} \supset F_{3} \supset 0,
$$

such that

$$
\begin{array}{ll}
F_{0} / F_{1}=\operatorname{Ker} \chi^{4 n-3}, & F_{1} / F_{2}=\operatorname{Ker} \Psi^{4 n-3} \\
F_{2} / F_{3}=\operatorname{Coker} \Phi^{4 n-4}, & F_{3}=\operatorname{Coker} \chi^{4 n-4} .
\end{array}
$$

Here $\chi^{i}: \operatorname{Ker} \Phi^{i} \rightarrow$ Coker $\Psi^{i}$ is a twisted tertiary operation, $\Phi^{i}: \operatorname{Ker} \theta^{i} \rightarrow$ $\operatorname{Ker} \Delta^{i} / \operatorname{Im} \Gamma^{i-1}$ and $\Psi^{i}: \operatorname{Ker} \Gamma^{i} / \operatorname{Im} \theta^{i-1} \rightarrow$ Coker $\Delta^{i}$ are the twisted secondary operations due to the relations $\Gamma^{i+1} \theta^{i}=0, \Delta^{i+1} \Gamma^{i}=0$, and

$$
\begin{aligned}
\Theta^{i}: & H^{i-1}(X ; \underline{Z}) \rightarrow H^{i+1}\left(X ; Z_{2}\right) \times H^{i+3}\left(X ; Z_{2}\right) \times H^{i+3}\left(X ; Z_{3}\right), \\
& \quad \Theta^{i}(a)=\left(S q^{2} \widetilde{\rho}_{2} a, S q^{4} \widetilde{\rho}_{2} a, \mathscr{P}_{2}^{1} \tilde{\rho}_{3} a\right), \\
\Gamma^{i}: & H^{i}\left(X ; Z_{2}\right) \times H^{i+2}\left(X ; Z_{2}\right) \times H^{i+2}\left(X ; Z_{3}\right) \rightarrow H^{i+2}\left(X ; Z_{2}\right) \times H^{i+3}\left(X ; Z_{2}\right), \\
& \Gamma^{i}(a, b, c)=\left(\left(S q^{2}+v S q^{1}+v 2\right) a,\left(S q^{2} S q^{1}+v 2 S q^{1}\right) a+\left(S q^{1}+v\right) b\right), \\
\Delta^{i}: & H^{i+1}\left(X ; Z_{2}\right) \times H^{i+2}\left(X ; Z_{2}\right) \rightarrow H^{i+3}\left(X ; Z_{2}\right), \\
& \Delta^{i}(a, b)=\left(S q^{2}+v^{2}\right) a+\left(S q^{1}+v\right) b,
\end{aligned}
$$

where $X=P\left(C P^{n}\right), \underline{Z}$ and $\underline{Z}_{3}$ are the non-trivial local systems on $P\left(C P^{n}\right)$ induced by $v \in H^{1}\left(P\left(C P^{n}\right) ; Z_{2}\right)$ (the first Stiefel-Whitney class of the double covering $S\left(C P^{n}\right) \rightarrow$ $\left.P\left(C P^{n}\right)\right), \tilde{\rho}_{p}: H^{i}(X ; \underline{Z}) \rightarrow H^{i}\left(X ; \underline{Z}_{p}\right)$ is the reduction $\bmod p$, and $\mathscr{P}_{3}^{1}$ is the reduced power operation $\bmod 3$ in local system [5].

As is well-known, $1, v, \cdots, v^{2 n-1}$ form a base of the $H^{*}\left(C P^{n} ; Z_{2}\right)$-module $H^{*}\left(P\left(C P^{n}\right) ; Z_{2}\right)$ and the ring structure is given by the relation

$$
v^{2 n}=\sum_{i=1}^{2 n} w_{i}\left(C P^{n}\right) v^{2 n-i},
$$

while the twisted integral cohomology group $H^{i}\left(P\left(C P^{n}\right) ; \underline{Z}\right)$ is the direct sum of some copies of $Z_{2}$ for $i \geqq 2 n$ by [17, Proposition 9.2]. Let $\tilde{\beta}_{2}: H^{i-1}\left(X ; Z_{2}\right) \rightarrow$ $H^{i}(X ; \underline{Z})$ be the Bockstein operator, where $\underline{Z}$ is the local system due to $v \in H^{1}\left(X ; Z_{2}\right)$. Then there is a relation

$$
\tilde{\rho}_{2} \tilde{\beta}_{2}(x)=\left(S q^{1}+v\right) x \quad \text { for } x \in H^{*}\left(X ; Z_{2}\right)
$$

By the above results and the Bockstein exact sequence of $P\left(C P^{n}\right)$, we have the following results:

$$
\begin{aligned}
& H^{4 n-4}\left(P\left(C P^{n}\right) ; \underline{Z}\right)=0, \\
& H^{4 n-5}\left(P\left(C P^{n}\right) ; \underline{Z}\right)=Z_{2}+Z_{2}+Z_{2}
\end{aligned}
$$

generated by $\left\{\tilde{\beta}_{2}\left(v^{2 n-2} z^{n-2}\right), \tilde{\beta}_{2}\left(v 2 n-4 z^{n-1}\right), \tilde{\beta}_{2}\left(v^{2 n-6} z^{n}\right)\right\}$, $\tilde{\rho}_{2}: H^{4 n-5}\left(P\left(C P^{n}\right) ; \underline{Z}\right) \rightarrow H^{4 n-5}\left(P\left(C P^{n}\right) ; Z_{2}\right)$ is an isomorphism, $H i\left(P\left(C P^{n}\right) ; Z_{3}\right)=0 \quad$ for $i \geqq 2 n$.
4.3. Calculation of $\left[C P^{n} \subseteq R^{4 n-3}\right]$ for $n \equiv 3(4)$. A simple calculation yields

$$
F_{\mathrm{c}} / F_{1}=0, \quad F_{1} / F_{2}=0, \quad F_{3}=0
$$

and

$$
F_{2} / F_{3}=\operatorname{Coker} \Phi^{4 n-4}: \operatorname{Ker} \Theta^{4 n-4} \rightarrow \operatorname{Ker} \Delta^{4 n-3} / \operatorname{Im} \Gamma^{4 n-4},
$$

where
$\operatorname{Ker} \Theta^{4 n-4}=Z_{2} \quad$ generated by $\tilde{\beta}_{2}\left(v^{2 n-6} z^{n}+v^{\left.2 n-4 z^{n-1}+v^{2 n-2} z^{n-2}\right)}\right.$,
Ker $\Delta^{4 n-3} / \operatorname{Im} \Gamma^{4 n-4}=H^{4 n-2}\left(P\left(C P^{n}\right) ; Z_{2}\right) \times 0$.
For the rest of this section, we devote ourselves to showing that $\Phi^{4 n-4}=0$ on $P\left(C P^{n}\right)$.
Let $\left(C P^{n}\right)^{*}=\left(C P^{n} \times C P^{n}-\Delta C P^{n}\right) / Z_{2}$ be the reduced symmetric product of $C P^{n}$ ( $\triangle C P^{n}$ is the diagonal of $C P^{n}$ ) and let $j: P\left(C P^{n}\right) \rightarrow\left(C P^{n}\right)^{*}$ be the embedding induced from the $Z_{2}$-equivariant map $\bar{j}: S\left(C P^{n}\right) \rightarrow C P^{n} \times C P^{n}-\triangle C P^{n}$ defined by $\bar{j}(u)=$ ( $\exp (u), \exp (-u))$. Then, if $v$ stands for the first Stiefel-Whitney class of the double covering $C P^{n} \times C P^{n}-\triangle C P^{n} \rightarrow\left(C P^{n}\right)^{*}, j^{*}(v)=v \in H^{1}\left(P\left(C P^{n}\right) ; Z_{2}\right)$. Hence we study $\Phi^{4 n-4}$ on ( $\left.C P^{n}\right)^{*}$. Using the results of [4, Theorem 4.3] and [19, (4.8-10)], we have

```
Ker \(\Phi^{4 n-4}=H^{4 n-5}\left(\left(C P^{n}\right)^{*} ; \underline{Z}\right)\),
    \(=Z_{2}\) genertaed by \(\tilde{p}_{2}^{-1}\left(v x 2^{r+1}-3 y s\right)\left(n=2^{r}+s, \quad 0<s<2^{r}\right)\),
```

Ker $\Delta^{4 n-3} / \operatorname{Im} \Gamma^{4 n-4}=0$, and so we have

$$
\Phi^{4 n-4}=0 \quad \text { on }\left(C P^{n}\right)^{*}
$$

To prove $\Phi^{4 n-4}=0$ on $P\left(C P^{n}\right)$, it is sufficient to show that $j^{*}\left(\tilde{\rho}_{2}{ }^{-1}\left(v x 2^{r+1}-3 y s\right)\right)=$ $\tilde{\beta}_{2}\left(v^{2 n-6} z^{n}+v^{2 n-4} z^{n-1}+v^{\left.2 n-2 z^{n-2}\right)}\right.$, because the secondary operation $\Phi^{4 n-4}$ is natural for maps. Since $\tilde{\rho}_{2}$ is an isomorphism on $H^{4 n-5}\left(P\left(C P^{n}\right) ; \underline{Z}\right)$, it is sufficient to show that

$$
\begin{equation*}
j *\left(v x 2^{r+1}-3 y y^{i}\right)=v^{2 n-5} z^{n}+v^{2 n-3 z n-1}+v^{2 n-1} z^{n-2} . \tag{*}
\end{equation*}
$$

Let $\Lambda^{2} M\left(=M \times M / Z_{2}\right)$ be the 2 -fold symmetric product of $M$, the set of unordered pairs of elements of $M$, and let $\Delta M$ denote the set of unordered pairs $\{x, x\}$. Then $\Lambda^{2} C P^{n}-\triangle C P^{n}=\left(C P^{n}\right)^{*}$. As the $Z_{2}[v]$-algebra, the cohomology $H^{*}\left(A^{2} C P^{n}, \Delta C P^{n} ; Z_{2}\right)$ is completely described in [10, Theorem 11] and the action of the Steenrod algebra on $H^{*}\left(\Lambda^{2} C P^{n}, \Delta C P^{n} ; Z_{2}\right)$ is given by [10, Lemma 10], Moreover, the following results are known in [20, Lemmas 1.4-5];

$$
H^{4 n-5}\left(\left(C P^{n}\right)^{*} ; Z_{2}\right) \xrightarrow{j^{*}} H^{1 n-5}\left(P\left(C P^{n}\right) ; Z_{2}\right) \xrightarrow{\delta} H^{4 n-4}\left(\Lambda^{2} C P^{n}, \Delta C P^{n} ; Z_{2}\right)
$$

is exact (cf. [11, §5]), where

$$
\delta(v i z j)=v i+1 \Lambda z j
$$

We now return to the proof of (*). By this result, we have

$$
\begin{array}{ll}
\delta\left(v^{2 n-5}-5 z^{n}\right)=v^{2 n-4} \Lambda z^{n}, & \delta\left(v 2 n-3 z^{n-1}\right)=v^{2 n-2} \Lambda z^{n-1} \\
\delta\left(v 2 n-1 z^{n-2}\right)=v^{2 n} \Lambda z^{n-2} .
\end{array}
$$

Further we have

$$
v^{2 n} \Lambda z^{n-2}=v^{4}\left(v^{2 n-4} \Lambda z^{n-2}\right)=v^{2 n-2} \Lambda z^{n-1}+v^{2 n-4} \Lambda z^{n}
$$

by [10, Theorem 11, (ii) and (iv)]. Therefore $\operatorname{Im} j^{*}=\operatorname{Ker} \delta=Z_{2}$ generated by $v^{2 n-5} z^{n}+v^{2 n-3} z^{n-1}+v^{2 n-1} z^{n-2}$. Hence (*) follows from the above result and the fact that $H^{4 n-5}\left(\left(C P^{n}\right)^{*} ; Z_{2}\right)=Z_{2}$ generated by $v x^{2^{r+1}-3 y s}[19,(4,9)]$. This implies that $\Phi^{4 n-4}=0$ and so $F_{2} / F_{3}=Z_{2}$. This completes the proof of $\left[C P^{n} \subseteq R^{1 n-3}\right]=Z_{2}$

## YASUI, T.

for $n \equiv 3(4)$.

## References

[1] J.Adem, Sobre operaciones cohomologicas secundarias, Bol. Soc. Mat. Mexicana, 7 (1962), 95-110.
[2] J.Adem and S.Gitler, Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana, 9(1964), 37-50.
[3] J.C.Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc., 133(1968), 447-475.
[4] S.Feder, The reduced symmetric product of projective spaces and the generalized Whitney theorem, Illinois J. Math., 16(1972), 323-329.
[5] S.Gitler, Cohomology operations with local coefficients, Amer. J. Math., 85(1963), 156-188.
[6] A.Haefliger and M.W.Hirsch, Immersions in the stable range, Ann. of Math., 75 (1962), 231-341.
[7] I.M.James, Some embeddings of projective spaces, Proc. Camb. Phil. Soc., 55 (1959), 294-298.
[8] I.M.James and E.Thomas, Note on the classification of cross sections, Topology, 4 (1966), 351-359.
[9] I.M.James and E.Thomas, On the enumeration of cross sections, Topology, 5(1966), 95-114.
[10] L.L.Larmore, The cohomology of ( $\Lambda^{2} X, \Delta X$ ), Can. J. Math., 25 (1973), 908-921.
[11] L.L.Larmore and R.D.Rigdon, Enumerating immersions and embeddings of projective spaces, Pacific J. Math., 64(1976), 471-492.
[12] L.L.Larmore and E. Thomas, Group extensions and principal fibrations, Math. Scand., 30(1972), 227-248.
[13] L.L.Larmore and E.Thomas, Group extensions and twisted cohomology theories, Illinois J. Math., 17(1973), 397-410.
[14] J.F.McClendon, Higher order twisted cohomology operations, Inventions Math., 7(1969), 183-214.
[15] J.F.McClendon, Obstruction theory in fiber spaces, Math. Z., 120(1971), 1-17.
[16] Y.Nomura, The enumeration of immersions, Sci. Reports, College of General Education, Osaka Univ., 20(1971), 1-21.
[17] R.D.Rigdon, Immersions and embeddings of manifolds in Euclidean space, Dissertation 1970.
[18] C.A.Robinson, Modified Postnikov towers for $p: B O(n) \rightarrow B O$, preprint.
[19] T.Yasui, The enumeration of embeddings of lens spaces and projective spaces, Hiroshima Math. J., 8(1978), 235-253.
[20] T.Yasui, On the maps defined by regarding embeddings as immersions, preprint.


[^0]:    *) In [16, Corollary 3], the results on $\left[C P^{n} \subseteq R^{m}\right]$ for $m=4 n-4,4 n-5$ and $n \equiv 1(2)$ are stated, but they are incorrect except the case when $m=4 n-5$ and $n \equiv 3(4)$. In Y.Nomura's private letter, he tells the author that Y.Nomura has made some mistakes in that article.

