Immersion groups of complex projective spaces

Tsutomu YASUI

Department of Mathematics, Faculty of Education, Yamagata University, Yamagata, Japan (Received August 27, 1982)

Introduction

Let M be a closed connected smooth *n*-dimensional manifold and let R^m be the *m*-dimensional Euclidean space. Let $[M \subseteq R^m]$ be the set of regular homotopy classes of immersions of M into R^m . If 2m > 3n+1 and there exists an immersion of M into R^m , then the set $[M \subseteq R^m]$ has the structure of an abelian group (see § 1 or [13]). In this article, we determine the group structure of $[CP^n \subseteq R^{4n-i}]$ for $2 \le i \le 5$, when there exists an immersion of CP^n , the complex projective space of complex dimension n, into R^{4n-i} .

Theorem. (1) If n is odd and $n \ge 5$, then $\begin{bmatrix} CP^n \subseteq R^{4n-2} \end{bmatrix} = Z + Z_2 + Z_2.$

- (2) If n is odd and $n \ge 5$, then $\begin{bmatrix} CP^n \subseteq R^{4n-3} \end{bmatrix} = Z_2 \qquad n \equiv 1(4),$ $= Z_2 + Z_2 \quad n \equiv 3(4).$
- (3) Let $n \ge 6$ and assume that there is an immersion $CP^n \subseteq R^{4n-4}$. Then $\begin{bmatrix} CP^n \subseteq R^{4n-4} \end{bmatrix} = Z + Z_2 \quad n \equiv 3(4),$ $= Z \qquad n \ne 3(4).$

(4) Let $n \ge 6$ and assume that there is an immersion $CP^n \subseteq R^{4n-5}$. Then $\begin{bmatrix} CP^n \subseteq R^{4n-5} \end{bmatrix} = Z_2 + Z_2 \quad n \equiv 3(4),$ $= 0 \qquad n \ne 3(4).$

For completeness' sake, we mention that

 $\begin{bmatrix} CP^n \subseteq R^{4n-2} \end{bmatrix} = Z \text{ for } n > 4, \ n \neq 2^r, \ n \equiv 0(2), \\ \begin{bmatrix} CP^n \subseteq R^{4n-3} \end{bmatrix} = 0 \text{ or } \phi \text{ for } n > 4, \ n \equiv 0(2). \end{bmatrix}$

These results are given by [9], [12] and [16]*'.

In §1, we give the set $[CP^n \subseteq R^{\lfloor n-i}]$ the structure of an abelian group. The proofs of (1) and (2) of the Theorem are given in §§2-4. The proofs of (3)

^{*)} In [16, Corollary 3], the results on $[CP^n \subseteq R^m]$ for m = 4n-4, 4n-5 and $n \equiv 1(2)$ are stated, but they are incorrect except the case when m = 4n-5 and $n \equiv 3(4)$. In Y.Nomura's private letter, he tells the author that Y.Nomura has made some mistakes in that article.

YASUI, T.

and (4) are obtained more easily than those of (1) and (2), and will be omitted.

§1. Group structures on $[M \subseteq \mathbb{R}^{n+m}]$

Let $p: E \rightarrow B$ be a fibration, where the fibre is (r-1)-connected for some r. If X is a CW-complex of dimension n and if $f: X \rightarrow B$ has a lifting $g: X \rightarrow E$, denote the set of rel-f-homotopy classes of liftings of f to E by [X, E; f]. If $n \leq 2r-1$, then the set [X, E; f] naturally has the structure of an abelian group with identity element [g], according to J.C.Becker [3, Theorem 7.23]. Let $E^2 \rightarrow E$ denote the pull-back of $p: E \rightarrow B$ by p. Then the diagonal map $d: E \rightarrow E^2$ is a cross section of $E^2 \rightarrow E$ and $dg: X \rightarrow E^2$ is a lifting of g to E^2 . The group $[X, E^2; g]$ with identity [dg] is isomorphic to [X, E; f] by [8, Theorem 3.1].

Now let M be a closed connected smooth *n*-dimensional manifold and $p: BO(m) \rightarrow BO$ be the fibre bundle with fibre $V_m = O/O(m)$. Assume that $2m-2 \ge n$ and that there is an immersion $M \subseteq R^{n+m}$, i. e. $[M \subseteq R^{n+m}] \neq \phi$. Let $\nu: M \rightarrow BO$ classify the stable normal bundle of M. Then the set of regular homotopy classes of immersions of M into R^{n+m} is in one-to-one correspondence with $[M, BO(m); \nu]$ and so with $[M, BO(m)^2; f]$, if $f: M \rightarrow BO(m)$ classifies the normal bundle of any immersion $M \subseteq R^{n+m}$. Since $2m-2 \ge n, [M, BO(m)^2; f]$ has the structure of an abelian group. The set $[M \subseteq R^{n+m}]$, therefore, has the structure of an abelian group via this one-to-one correspondence. L.L.Larmore and E.Thomas called this group the immersion group and denoted it by $Im_{n+m}(M)$ in [13]. If M is an orientable manifold or a spin manifold, we can replace $p: BO(m) \rightarrow BO$ by $p: BSO(m) \rightarrow BSO$ or by $p: BSpin(m) \rightarrow BSpin$, respectively.

§ 2. The group $[CP^n \subseteq R^{in-2}]$ for $n \equiv 1(2)$

Let *n* be odd and $n \ge 5$. Then CP^n is a spin manifold and there is an immersion $CP^n \subseteq R^{4n-2}$ by [7, Theorem 2]. As is stated in §1, $[CP^n \subseteq R^{4n-2}] = [CP^n, BSpin(2n-2)^2; f]$ where $f: CP^n \rightarrow BSpin(2n-2)$ classifies the normal bundle of any immersion $CP^n \subseteq R^{4n-2}$. In the table of [18], C.A. Robinson gives *k*-invariants of the Postnikov tower of $BO(r) \rightarrow BO$. By a slight modification of them, we have the Postnikov tower of $BSpin(2n-2)^2 \rightarrow BSpin(2n-2)$ and its *k*-invariants as follows:

$$BSpin(2n-2)^{2} \xrightarrow{h} B \times P_{\varphi}$$

$$1 \times i \qquad \downarrow \qquad 1 \times \varphi$$

$$B \times K(Z_{2}, 2n-1) \times K(Z_{2}, 2n) \xrightarrow{h} B \times P_{\beta} \xrightarrow{h} B \times K(Z_{2}, 2n+1)$$

$$\downarrow \qquad 1 \times \beta$$

$$B \times K(Z, 2n-2) \times K(Z_{2}, 2n-1) \xrightarrow{h} B \times K(Z_{2}, 2n) \times K(Z_{2}, 2n+1)$$

$$B = BSpin(2n-2),$$

$$\beta = (Sq^{2}\rho_{2\ell_{2n-2}} \times 1, 1 \times Sq^{2}\ell_{2n-1}),$$

where $P_{\beta} \rightarrow K(Z, 2n-2) \times K(Z_2, 2n-1)$ is the principal fibration classified by β and $\varphi \in H^{2n+1}(P_{\beta}; Z_2) = Z_2$, and h is a (2n+1)-equivalence.

By $\lceil 14$, Theorem 3], there is a decreasing filtration

 $[CP^n, BSpin(2n-2)^2; f] = F_0 \supset F_1 \supset F_2 \supset 0$

such that

 $F_0/F_1 = \text{Ker } \varphi^{2n-2}, \quad F_1/F_2 = \text{Ker } \Gamma^{2n-2}/\text{Im } \Theta^{2n-3}, \quad F_2 = \text{Coker } \varphi^{2n-3}.$ Here $\varphi^i : \text{Ker } \Theta^i \rightarrow \text{Coker } \Gamma^i$ is the twisted secondary operation due to the relation $\Gamma^{i+1}\Theta^i = 0$, and

$$\begin{aligned} \Theta^{i} &: H^{i}(CP^{n}; Z) \times H^{i+1}(CP^{n}; Z_{2}) \to H^{i+2}(CP^{n}; Z_{2}) \times H^{i+3}(CP^{n}; Z_{2}), \\ \Theta^{i}(a, b) &= (Sq^{2}\rho_{2}a, Sq^{2}b), \\ \Gamma^{i} &: H^{i+1}(CP^{n}; Z_{2}) \times H^{i+2}(CP^{n}; Z_{2}) \to H^{i+3}(CP^{n}; Z_{2}), \\ \Gamma^{i}(a, b) &= Sq^{2}a. \end{aligned}$$

It is well-known that

$$H^*(CP^n; Z) = Z[z]/(z^{n+1}), \quad H^*(CP^n; Z_2) = Z_2[z]/(z^{n+1}) \ (z=\rho_2 z),$$

where deg z=2. A simple calculation, using the above results, shows that

 $F_0/F_1 = \text{Ker } \phi^{2n-2} = \text{Ker } \Theta^{2n-2} = H^{2n-2}(CP^n; Z) \times 0,$ $F_1/F_2 = \text{Ker } \Gamma^{2n-2}/\text{Im } \Theta^{2n-3} = 0 \times H^{2n}(CP^n; Z_2),$ $F_2 = \text{Coker } \phi^{2n-3},$ $\phi^{2n-3}: 0 \times H^{2n-2}(CP^n; Z_2) \to H^{2n}(CP^n; Z_2).$

By considering the Postnikov tower of $BSpin(2n-2)^2 \rightarrow BSpin(2n-2)$, the secondary operation Φ^{2n-3} is an ordinary double secondary operation due to the two relations

 $Sq^2(Sq^2\rho_2) = 0$, $Sq^{20} + 0Sq^2 = 0$. Moreover this operation satisfies the Peterson-Stein type formula (cf. [2, Theorem 6.4]). Let $g: CP^n \to K(Z, 2n-2)$ correspond to $z^{n-1} \in H^{2n-2}(CP^n; Z)$ and let $\rho_2: K(Z, 2n-2) \to K(Z_2, 2n-2)$ correspond to $\rho_{2\ell_2n-2} \in H^{2n-2}(K(Z, 2n-2); Z_2)$. Consider the diagram

Then the second formula of Peterson-Stein implies that

$$\Phi^{2n-3}(0, z^{n-1}) = \Phi^{2n-3}(g^*0, g^*\rho_{2\ell_{2n-2}})$$

= $(\varphi i)_g(Sq^2\rho_{20}, Sq^2\rho_{2\ell_{2n-2}}) \mod Q$

where

$$Q = (\varphi i)^{\#} [CP^{n}, K(Z_{2}, 2n-2) \times K(Z_{2}, 2n-1)] + g^{\#} [K(Z, 2n-2), K(Z_{2}, 2n)],$$

= $Sq^{2}H^{2n-2}(CP^{n}; Z_{2}) + g^{*}H^{2n}(K(Z, 2n-2); Z_{2})$
= 0.

Since $(\varphi i)(a, b) = Sq^2 a$, we can easily verify that $(\varphi i)_g(0, Sq^2\rho_{2\ell_2n-2}) = 0$ and so $\Phi^{2n-3}(0, z^{n-1}) = 0$. This implies $F_2 = H^{2n}(CP^n; Z_2)$. The group extension of $0 \rightarrow F_2 \rightarrow F_1 \rightarrow F_1/F_2 \rightarrow 0$ is trivial by [12, Corollary 3.7]. Therefore $F_1 = Z_2 + Z_2$. Further the

group extension of $0 \rightarrow F_1 \rightarrow F_0 \rightarrow F_0/F_1$ (= Z) $\rightarrow 0$ is trivial. This shows $F_0 = [CP^n \subseteq R^{4n-2}] = Z + Z_2 + Z_2$ for $n \equiv 1(2)$.

§3. The group $[CP^n \subseteq R^{4n-3}]$ for $n \equiv 3(4)$

Assume that $n \ge 5$ and $n \equiv 3(4)$. Then $[CP^n \subseteq R^{in-3}]$ is not an empty set by [7]. Since $w_2(CP^n) = 0$ and $w_4(CP^n) = 0$, we consider the principal fibration $q: P_{w_4} \rightarrow BSpin$ classified by $w_4 \in H^4(BSpin; Z_2)$. Let $B \rightarrow P_{w_4}$ be the pull-back of $BSpin(2n-3) \rightarrow BSpin$ by q. Then the classifying map of the stable normal bundle of any immersion $CP^n \subseteq R^{in-3}$ has a lifting $f: CP^n \rightarrow B$ and $[CP^n \subseteq R^{in-3}] = [CP^n, B^2; f]$, where $B^2 \rightarrow B$ is the pull-back of $p: B \rightarrow P_{w_4}$ by p. The Postnikov tower of $B^2 \rightarrow B$ is given by modifying that of $BO(2n-3) \rightarrow BO$ constructed in [18], as follows:

where

 $\beta = (Sq^2Sq^1\iota_{2n-3}, Sq^4\iota_{2n-3}), \quad \varphi i = Sq^2\iota_{2n-1} \times 1$ and h is a (2n+1)-equivalence.

Therefore $[CP^n, B^2; f] = [CP^n, B \times P_{\varphi}; f]$ and there is a decreasing filtration $[CP^n, B \times P_{\varphi}; f] = F_0 \supset F_1 \supset F_2 \supset 0$,

such that

 $F_0/F_1 = \text{Ker } \phi^{2n-3}, F_1/F_2 = \text{Ker } \Gamma^{2n-3}/\text{Im } \Theta^{2n-4}, F_2 = \text{Coker } \phi^{2n-4},$ where $\phi^i : \text{Ker } \Theta^i \rightarrow \text{Coker } \Gamma^i$ is the twisted secondary operation due to the relation $\Gamma^{i+1} \Theta^i = 0$ and

$$\begin{aligned} &\Theta^{i}: H^{i}(CP^{n}; Z_{2}) \rightarrow H^{i+3}(CP^{n}; Z_{2}) \times H^{i+4}(CP^{n}; Z_{2}), \\ &\Theta^{i}(a) = (Sq^{2}Sq^{1}a, Sq^{4}a), \\ &\Gamma^{i}: H^{i+2}(CP^{n}; Z_{2}) \times H^{i+3}(CP^{n}; Z^{2}) \rightarrow H^{i+4}(CP^{n}; Z_{2}), \\ &\Gamma^{i}(a, b) = Sq^{2}a. \end{aligned}$$

We briefly have

 $F_0/F_1 = 0, \qquad F_1/F_2 = 0 \times H^{2n}(CP^n ; Z_2) = Z_2,$ $F_2 = \text{Coker } \Phi^{2n-4} : H^{2n-4}(CP^n ; Z_2) \rightarrow H^{2n}(CP^n ; Z_2).$

By considering the Postnikov tower of $B^2 \rightarrow B$, the secondary operation φ^{2n-4} is an ordinary one due to the relation $Sq^2(Sq^2Sq^1) + 0Sq^4 = 0$. Let $\rho_2 : K(Z, 2n-4) \rightarrow K(Z_2, 2n-4)$ correspond to $\rho_{2\ell_2n-4} \in H^{2n-4}(K(Z, 2n-4); Z_2)$ and let $g: CP^n \rightarrow K(Z, 2n-4)$ correspond to $z^{n-2} \in H^{2n-4}(CP^n; Z)$. By the second formula of Peterson-Stein [1, Theorem 5.2], we have

Immersion groups of complex projective spaces

$$\begin{split} \Phi^{2n-4}(z^{n-2}) &= \Phi^{2n-4}(g^*\rho_{2\ell_{2n-4}}) \\ &= (\varphi i)_g(Sq^2Sq^1\rho_{2\ell_{2n-4}}, Sq^4\rho_{2\ell_{2n-4}}) \mod Q, \end{split}$$

where

 $Q = Sq^{2}H^{2n-2}(CP^{n}; Z_{2}) + 0H^{2n-1}(CP^{n}; Z_{2}) + g^{*}H^{2n}(K(Z, 2n-4); Z_{2}).$

Since $(\varphi i)(a, b) = Sq^2a$, we have $(\varphi i)_g(0, Sq^4\rho_{2\ell 2n-4}) = 0$. Moreover Q = 0 follows from the facts that $H^{2n}(K(Z, 2n-4); Z_2) = Z_2$ generated by $Sq^4\rho_{2\ell 2n-4}$, $g^*Sq^4\rho_{2\ell 2n-4}$ $= Sq^4z^{n-2} = 0$ for $n \equiv 3(4)$ and $Sq^2z^{n-1} = 0$ for $n \equiv 1(2)$. This shows that $\varphi^{2n-4} = 0$ and so

 $F_2 = H^{2n}(CP^n; Z_2) = Z_2.$

The group extension of $0 \to F_2 \to F_1 \to F_1/F_2 \to 0$ is trivial by [12, Corollary 3.7]. The argument made above implies $[CP^n \subseteq R^{4n-3}] = Z_2 + Z_2$ for $n \equiv 3(4)$.

Remark. As for the case $n \equiv 1(4)$, we can obtain $F_0/F_1 = 0$, $F_1/F_2 = 0$ and $F_2 = \text{Cokre } \Phi^{2n-4} = H^{2n}(\mathbb{CP}^n; \mathbb{Z}_2)$ or 0 by the same method as in the case $n \equiv 3(4)$. Hence it follows that $[\mathbb{CP}^n \subseteq \mathbb{R}^{4n-3}] = \mathbb{Z}_2$ or 0 for $n \equiv 1(4)$. In the next section, we will show that $[\mathbb{CP}^n \subseteq \mathbb{R}^{4n-3}] = \mathbb{Z}_2$ for $n \equiv 1(4)$ by a different way.

§ 4. The group $[CP^n \subseteq R^{4n-3}]$ for $n \equiv 1(4)$

For $n \ge 5$, $n \equiv 1(4)$, there exists an immersion $CP^n \subseteq R^{4n-3}$. To show that $[CP^n \subseteq R^{4n-3}] = Z_2$ for $n \equiv 1(4)$, we consider another method statad below.

4.1. Another group structure on $[M \subseteq R^{n+m}]$. S.Feder stated in [4] the theorem concerning immersion due to Haefliger-Hirsch [6] as follows:

Assume that there is an immersion of an *n*-dimensional manifold M in \mathbb{R}^{n+m} . If $2m-2 \ge n$, then the set $[M \subseteq \mathbb{R}^{n+m}]$ is in one-to-one correspondence with the set of \mathbb{Z}_2 -equivariant homotopy classes of \mathbb{Z}_2 -equivariant maps of S(M) to \mathbb{S}^{n+m-1} , where S(M) denotes the tangent sphere bundle of M.

Let P(M) be the real projective tangent bundle of M and let η be the canonical real line bundle over P(M). Then the Z_2 -equivariant homotopy set of Z_2 -equivariant maps of S(M) to S^{n+m-1} is in one-to-one correspondence with the set of vertical homotopy classes of cross sections of the sphere bundle $(S(M) \times S^{n+m-1})/Z_2 \rightarrow P(M)$ associated with $(n+m)\eta$ over P(M). This bundle is induced from $(S^{\infty} \times S^{n+m-1})/Z_2 \rightarrow RP^{\infty}$ (homotopically equivalent to the natural inclusion $RP^{n+m-1} \subset RP^{\infty}$) by $\eta : P(M) \rightarrow RP^{\infty}$, the classifying map of η . Therefore $[M \subseteq R^{n+m}]$ is in one-to-one correspondence with $[P(M), RP^{n+m-1}; \eta]$, which has the structure of an abelian group by [3]. Thus the set $[M \subseteq R^{n+m}]$ has the structure of an abelian group via this one-to-one correspondence.

R.Rigdon stated in his dissertation [17, §8] that this group and the one defined in §1 are coincident with each other. However we do not use his result in this article because the group of order 2 is uniquely determined and is Z_2 .

YASUI, T.

4.2. Rreliminaries. By [19, Proposition 1.1], there is a filtration

 $[CP^n \subseteq R^{4n-3}] = [P(CP^n), RP^{4n-4}; \eta] = F_0 \supset F_1 \supset F_2 \supset F_3 \supset 0,$ such that

$F_0/F_1 = \operatorname{Ker} \chi^{4n-3},$	$F_1/F_2 = \operatorname{Ker} \Psi^{4n-3},$
$F_2/F_3 = \operatorname{Coker} \Phi^{4n-4},$	$F_3 = \operatorname{Coker} \chi^{4n-4}.$

Here χ^i : Ker $\phi^i \to \text{Coker } \Psi^i$ is a twisted tertiary operation, ϕ^i : Ker $\theta^i \to \text{Ker } \Delta^i/\text{Im } \Gamma^{i-1}$ and Ψ^i : Ker $\Gamma^i/\text{Im } \theta^{i-1} \to \text{Coker } \Delta^i$ are the twisted secondary operations due to the relations $\Gamma^{i+1}\theta^i = 0$, $\Delta^{i+1}\Gamma^i = 0$, and

$$\begin{split} &\Theta^{i}: H^{i-1}(X; \underline{Z}) \to H^{i+1}(X; Z_{2}) \times H^{i+3}(X; Z_{2}) \times H^{i+3}(X; \underline{Z}_{3}), \\ &\Theta^{i}(a) = (Sq^{2}\tilde{\rho}_{2}a, Sq^{4}\tilde{\rho}_{2}a, \mathscr{P}_{3}^{1}\tilde{\rho}_{3}a), \\ &\Gamma^{i}: H^{i}(X; Z_{2}) \times H^{i+2}(X; Z_{2}) \times H^{i+2}(X; \underline{Z}_{3}) \to H^{i+2}(X; Z_{2}) \times H^{i+3}(X; Z_{2}), \\ &\Gamma^{i}(a, b, c) = ((Sq^{2}+vSq^{1}+v^{2})a, (Sq^{2}Sq^{1}+v^{2}Sq^{1})a + (Sq^{1}+v)b), \\ &\Delta^{i}: H^{i+1}(X; Z_{2}) \times H^{i+2}(X; Z_{2}) \to H^{i+3}(X; Z_{2}), \\ &\Delta^{i}(a, b) = (Sq^{2}+v^{2})a + (Sq^{1}+v)b, \end{split}$$

where $X = P(CP^n)$, \underline{Z} and \underline{Z}_3 are the non-trivial local systems on $P(CP^n)$ induced by $v \in H^1(P(CP^n); Z_2)$ (the first Stiefel-Whitney class of the double covering $S(CP^n) \rightarrow P(CP^n)$), $\tilde{\rho}_p : H^i(X; \underline{Z}) \rightarrow H^i(X; \underline{Z}_p)$ is the reduction mod p, and \mathscr{P}_3^1 is the reduced power operation mod 3 in local system [5].

As is well-known, $1, v, \dots, v^{2n-1}$ form a base of the $H^*(CP^n; Z_2)$ -module $H^*(P(CP^n); Z_2)$ and the ring structure is given by the relation

 $v^{2n} = \sum_{i=1}^{2n} w_i(CP^n) v^{2n-i},$

while the twisted integral cohomology group $H^{i}(P(\mathbb{CP}^{n}); \mathbb{Z})$ is the direct sum of some copies of Z_{2} for $i \geq 2n$ by [17, Proposition 9.2]. Let $\tilde{\beta}_{2}: H^{i-1}(X; \mathbb{Z}_{2}) \rightarrow$ $H^{i}(X; \mathbb{Z})$ be the Bockstein operator, where \mathbb{Z} is the local system due to $v \in H^{1}(X; \mathbb{Z}_{2})$. Then there is a relation

 $\tilde{\rho}_2 \tilde{\beta}_2(x) = (Sq^1+v)x \text{ for } x \in H^*(X; \mathbb{Z}_2).$

By the above results and the Bockstein exact sequence of $P(CP^n)$, we have the following results:

 $\begin{array}{l} H^{4n-4}(P(CP^{n})\;;\;\underline{Z})=0,\\ H^{4n-5}(P(CP^{n})\;;\;\underline{Z})=Z_{2}+Z_{2}+Z_{2}\\ \text{generated by }\{\tilde{\beta}_{2}(v^{2n-2}z^{n-2}),\;\;\tilde{\beta}_{2}(v^{2n-4}z^{n-1}),\;\;\tilde{\beta}_{2}(v^{2n-6}z^{n})\},\\ \tilde{\rho}_{2}:H^{4n-5}(P(CP^{n})\;;\;\underline{Z})\to H^{4n-5}(P(CP^{n})\;;\;Z_{2})\;\text{ is an isomorphism},\\ Hi(P(CP^{n})\;;\;\underline{Z}_{3})=0\;\;\text{for }\;i\;\geq\;2n. \end{array}$

4.3. Calculation of $[CP^n \subseteq R^{4n-3}]$ for $n \equiv 3(4)$. A simple calculation yields $F_0/F_1 = 0$, $F_1/F_2 = 0$, $F_3 = 0$

and

$$F_2/F_3 = \operatorname{Coker} \varphi^{4n-4} : \operatorname{Ker} \Theta^{4n-4} \to \operatorname{Ker} \Delta^{4n-3}/\operatorname{Im} \Gamma^{4n-4},$$

where

Ker $\Theta^{4n-4} = Z_2$ generated by $\tilde{\beta}_2(v^{2n-6}z^n + v^{2n-4}z^{n-1} + v^{2n-2}z^{n-2})$, Ker $\Delta^{4n-3}/\text{Im }\Gamma^{4n-4} = H^{4n-2}(P(CP^n); Z_2) \times 0.$

For the rest of this section, we devote ourselves to showing that $\phi^{4n-4} = 0$ on $P(CP^n)$.

Let $(CP^n)^* = (CP^n \times CP^n - \triangle CP^n)/Z_2$ be the reduced symmetric product of CP^n $(\triangle CP^n$ is the diagonal of CP^n) and let $j: P(CP^n) \rightarrow (CP^n)^*$ be the embedding induced from the Z_2 -equivariant map $\overline{j}: S(CP^n) \rightarrow CP^n \times CP^n - \triangle CP^n$ defined by $\overline{j}(u) =$ $(\exp(u), \exp(-u))$. Then, if v stands for the first Stiefel-Whitney class of the double covering $CP^n \times CP^n - \triangle CP^n \rightarrow (CP^n)^*$, $j^*(v) = v \in H^1(P(CP^n); Z_2)$. Hence we study φ^{4n-4} on $(CP^n)^*$. Using the results of [4, Theorem 4.3] and [19, (4.8-10)], we have

and so we have

 $\Phi^{4n-4} = 0 \quad \text{on } (CP^n)^*.$

(*)

$$j^{*}(vx^{2^{r+1}-3y^{*}}) = v^{2n-5}z^{n}+v^{2n-3}z^{n-1}+v^{2n-1}z^{n-2}.$$

Let $\Lambda^2 M (= M \times M/Z_2)$ be the 2-fold symmetric product of M, the set of unordered pairs of elements of M, and let ΔM denote the set of unordered pairs $\{x, x\}$. Then $\Lambda^2 CP^n - \Delta CP^n = (CP^n)^*$. As the $Z_2[v]$ -algebra, the cohomology $H^*(\Lambda^2 CP^n, \Delta CP^n; Z_2)$ is completely described in [10, Theorem 11] and the action of the Steenrod algebra on $H^*(\Lambda^2 CP^n, \Delta CP^n; Z_2)$ is given by [10, Lemma 10], Moreover, the following results are known in [20, Lemmas 1.4-5];

$$H^{4n-5}((CP^n)^*; Z_2) \xrightarrow{j^*} H^{4n-5}(P(CP^n); Z_2) \xrightarrow{\delta} H^{4n-4}(\Lambda^2 CP^n, \Delta CP^n; Z_2)$$

is exact (cf. [11, §5]), where

$$\delta(v^i z^j) = v^{i+1} A z^j.$$

We now return to the proof of (*). By this result, we have

 $\delta(v^{2n-5}z^n) = v^{2n-4}Az^n, \qquad \delta(v^{2n-3}z^{n-1}) = v^{2n-2}Az^{n-1},$

$$\delta(v^{2n-1}z^{n-2}) = v^{2n}Az^{n-2}.$$

Further we have

 $v^{2n} \Lambda z^{n-2} = v^4 (v^{2n-4} \Lambda z^{n-2}) = v^{2n-2} \Lambda z^{n-1} + v^{2n-4} \Lambda z^n$

by [10, Theorem 11, (ii) and (iv)]. Therefore Im $j^* = \text{Ker } \delta = Z_2$ generated by $v^{2n-5}z^n + v^{2n-3}z^{n-1} + v^{2n-1}z^{n-2}$. Hence (*) follows from the above result and the fact that $H^{4n-5}((CP^n)^*; Z_2) = Z_2$ generated by $vx^{2^{r+1}-3}y^s$ [19, (4, 9)]. This implies that $\phi^{4n-4} = 0$ and so $F_2/F_3 = Z_2$. This completes the proof of $[CP^n \subseteq R^{4n-3}] = Z_2$

for $n \equiv 3(4)$.

References

- [1] J.Adem, Sobre operaciones cohomologicas secundarias, Bol. Soc. Mat. Mexicana, 7 (1962), 95-110.
- J.Adem and S.Gitler, Non-immersion theorems for real projective spaces, Bol. Soc. Mat. Mexicana, 9(1964), 37-50.
- [3] J.C.Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc., 133(1968), 447-475.
- [4] S.Feder, The reduced symmetric product of projective spaces and the generalized Whitney theorem, Illinois J. Math., 16(1972), 323-329.
- [5] S.Gitler, Cohomology operations with local coefficients, Amer. J. Math., 85(1963), 156-188.
- [6] A.Haefliger and M.W.Hirsch, Immersions in the stable range, Ann. of Math., 75 (1962), 231-341.
- [7] I.M.James, Some embeddings of projective spaces, Proc. Camb. Phil. Soc., 55 (1959), 294-298.
- [8] I.M. James and E. Thomas, Note on the classification of cross sections, Topology, 4 (1966), 351-359.
- [9] I.M.James and E.Thomas, On the enumeration of cross sections, Topology, 5(1966), 95-114.
- [10] L.L.Larmore, The cohomology of $(\Lambda^2 X, \Delta X)$, Can. J. Math., 25 (1973), 908-921.
- [11] L.L.Larmore and R.D.Rigdon, Enumerating immersions and embeddings of projective spaces, Pacific J. Math., 64(1976), 471-492.
- [12] L.L.Larmore and E. Thomas, Group extensions and principal fibrations, Math. Scand., 30(1972), 227-248.
- [13] L.L.Larmore and E.Thomas, Group extensions and twisted cohomology theories, Illinois J. Math., 17(1973), 397-410.
- [14] J.F.McClendon, Higher order twisted cohomology operations, Inventions Math., 7(1969), 183-214.
- [15] J.F.McClendon, Obstruction theory in fiber spaces, Math. Z., 120(1971), 1-17.
- [16] Y.Nomura, The enumeration of immersions, Sci. Reports, College of General Education, Osaka Univ., 20(1971), 1-21.
- [17] R.D.Rigdon, Immersions and embeddings of manifolds in Euclidean space, Dissertation 1970.
- [18] C.A.Robinson, Modified Postnikov towers for $p: BO(n) \rightarrow BO$, preprint.
- [19] T.Yasui, The enumeration of embeddings of lens spaces and projective spaces, Hiroshima Math. J., 8(1978), 235-253.
- [20] T.Yasui, On the maps defined by regarding embeddings as immersions, preprint.