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Introduction

Let Mbea closed connected smooth n-dimensional manifold and let Rm be the

m-dimensional Euclidean space. Let [A/ c Rm~\ be the set of regular homotopy classes

of immersions of M into Rm. If 2m > 3n+l and there exists an immersion of M into

Rm, then the set [Af c Rm~] has the structure of an abelian group (see § 1 or [13] ).

In this article, we determine the group structure of [CPn Q Ritl ~'] for 2 ^ i ^ 5, when

there exists an immersion of CPn, the complex projective space of complex dimension

n, into #»-«".

Theorem. (1) If n is odd and n ^ 5, then

\CPn c #»-2] = Z+Z2 + Z2.

(2) If n is odd and n ^ 5, then

[CPn c /?4«-3] = Z2 n = 1(4),

= Z2 + Z2 n = 3(4).

(3) Let n ^ 6 and assume that there is an immersion CPn c Rin~*. Then

[CPn c #«-4] = Z+Z2 n = 3(4),

= Z n £ 3(4).

(4) Let n ^ 6 and assume that there is an immersion CPn £ Rin~5. Then

[CPn c #»-5] = Z2+ Z2 n = 3(4),

= 0 « # 3(4).

For completeness' sake, we mention that

[CPn c /2^-2] = Z for n > 4, n ± 2r, n = 0(2),

[CPn c i?4«-3] = o or <j> for n > 4, « = 0(2).

These results are given by [9], [12] and [16]*'.

In §1, we give the set [CPn Q /J'""1'] the structure of an abelian group. The

proofs of (1) and (2) of the Theorem are given in § § 2 —4. The proofs of (3)

*) In [16, Corollary 3], the results on {_CPn Q Rml for m = 4n-4, 4«-5 and n = 1(2) are

stated, but they are incorrect except the case when m = 4n-5 and n = 3(4). In Y.Nomura's

private letter, he tells the author that Y.Nomura has made some mistakes in that article.
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and (4) are obtained more easily than those of (1) and (2), and will be omitted.

§1. Group structures on [Af C Rn+m~\
Let p : E->B be a fibration, where the fibre is (r-1)-connected for some r. If

X is a CW-complex of dimension n and if /: X-*B hasa lifting g : X-*E, denote the
set of rel-Z-homotopy classes of liftings of / to E by [A", £;/]. If n ^ 2r-l, then
the set [AT, £ ;/] naturally has the structure of an abelian group with identity element
[_g], according to J.C.Becker [3, Theorem 7.23]. Let E^E denote the pull-back
of p : E->B by p. Then the diagonal map d : E-+E2 is a cross section of EP-t-E and
dg : A-).£2 js a lifting of £ to £2. The group [A, £2 ; £] witn identity [_dg~\ is
isomorphic to [A", £;/] by [8, Theoren 3.1].

Now let Af be a closed connected smooth n-dimensional manifold and p '. BO(jri)-*
BO be the fibre bundle with fibre Vm=0/0(m). Assume that 2m-2 ^ n and that
there is an immersion Af c /?"+'«, i. e. [A/ c Rn+t»~\ ^ 0. Let y : M-+BO classify the
stable normal bundle of Af. Then the set of regular homotopy classes of immersions
of M into Rn+m is in one-to-one correspondence with [Af, BO(m) ; y] and so with
[Af, 50(m)2;/]t if / ; M-*BO(m) classifies the normal bundle of any immersion
Af c /?» +»«. Since 2m-2 ^ n, [Af, 50(m)2 ;/] has the structure of an abelian group.
The set [Af c Rn+m~], therefore, has the structure of an abelian group via this one-to
-one correspondnce. L.L.Larmore and E.Thomas called this group the immersion
group and denoted it by Imn+m(Af) in [13]. If Af is an orientable manifold or a
spin manifold, we can replace p '. BO(m)^BO by p '. BSO(m)-+BSO or by p : BSpin(ni)
-+BSpin, respectively.

§2. The group [CPn c /2«»-2] for n = 1(2)

Let n be odd and n ^ 5. Then CPn is a spin manifold and there is an immersion
CPn s /?4»-2 by [7, Theorem 2]. As is stated in §1, [CPrt c i^-2] _. [CP",

5o>i*n(2n-2)2 ;/] where / : CPn^>BSpin(2n-Z) classifies the normal bundle of any

immersion CPn c Rin~z. In the table of [18], C.A. Robinson gives ^-invariants

of the Postnikov tower of BO(f)-+ BO, By a slight modification of them, we have

the Postnikov tower of BSpin(2n—2)2-*BSpin(2n—2) and its ^-invariants as follows :

h
BSpin(2n - 2)2 >Bx Pv

1x i I 1x9
BxK(Z2, 2n-l)xK(Z2, 2n) >BxP„ >BxK{Z2% 2n+i)

i 1x0
BxK(Z, 2n-Z)xK(Z2, 2n-l) >BxK{Z2i 2n)xK(Z2, 2n+l)

I
B = BSpin(2n-2),

P = Wft«2n-2Xl,lx5}2<2«-l),

p» = •Sg2«2ii-ixlt
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where P^->K{Z, 2n-2')xK(Z2, 2«-l) is the principal fibration classified by p and
(p e H2n+1(pfi '• Z2) = z2, and A is a (2n+^-equivalence.

By [14, Theorem 3], there is a decreasing filtration

[CPn, BSpin(2n-Z)2 \f] = FQ D Fx => F2 D 0

such that

Fq/Fx = Ker02"-2, Fl/F2 = Ker r2n-2/Im02»-3t F2 = Coker 02n~3.
Here 0* : Ker d*-*Coker rl is the twisted secondary operation due to the relation

r«"+i©f = 0, and

©*•: H'(CPM ; Z) x Hi**(CP» ; Zi)^H^\CPn ; Za) x H*+*(CPn ; Z2),

©'(a, 6) = (S^a, 5«2ft),

r»": //'+1(CP» ; Z2) x H'+2(CP"; z2)-^H'+3(CP« ; z-,),

rf'(a, A) = 5?2fl.

It is well-known that

H*(CP*;Z) = Z[o/(z«+i), //*(CP»;Z2) = z2[z]/(*«+i) (*=,o2z),

where deg z=2. A simple calculation, using the above results, shows that

Fq/Fi = Ker<p2»-2 = Ker©2"-2 = H2n-2(CP» ; Z) x 0,

Fj/i^ = Kerr2n-2/Im02"-3 = 0 x H2n(CPn ', Z2),
F2 = Goker(p2n-3t

02»-3: oxH2»-2(C/>» ; Z2)-).h2m(CP" ; Z2).

By considering the Postnikov tower of BSpin(2n—2)2^>BSpin(2,n —2), the secondary

operation 02n~3 is an ordinary double secondary operation due to the two relations

Sq2(Sq2p2) = 0, Sq20 + 0Sq2 = 0.

Moreover this operation satisfies the Peterson-Stein type formula (cf. [2, Theorem

6.4]). Let g: CPn-+K(Z, 2n-2) correspond to z»-i e H2n~2(CPn ; Z) and let p2 :

K(Z, 2«-2) -> K(Z2, 2n-2) correspond to jo2f2«-2 e //2h-2(#(Z, 2n-2);Z2).

Consider the diagram

#(Z2, 2n-2)x/C(Z2, 2n-l)->P/,->/:(Z2, 2n)

g (.*, PD i P
CPn^K(Z, 2n-2) >K(Z, 2«-3) x K(Z2, 2h-2)-kK(Z2, 2n-l) x tf(Z2, 2n).

Then the second formula of Peterson-Stein implies that
02«-3(O, z«-i) = 02«-3(5*Of g*P2c2n_2)

= (.<POs(Sq2Pz0, Sq2p2c2n-i) mod Q,

where

Q= (?»0# [CP», *(Z2, 2n-2)xtf(Z2, 2«-l)] + ^[/C(Z, 2n-2), *(Z2, 2n)],
= Sq2H2»-2(CP» ; Z2)+^*//2«(i:(z) 2«-2) ; Z^

= 0.

Since (<pi)(a, 6) =Sq2a, we can easily verify that (p0*(0, Sq2p2c2n.2') =0 and so
02»-3(O, z«-i) = 0. This implies F2 = //2«(C7>« ; Z2). The group extension of 0->£2->
FX->FX/F2-+Q is trivial by [12, Corollary 3.7]. Therefore Fx = Z2+Z2. Further the
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group extension of O-^i-^o-^o/Fi (= Z)->0 is trivial. This shows F0 = [CPn ci
/J4»-2j _ Z+Z2+Z2 for n = 1(2).

§3. The group \_CPn c /?4»-3] for n = 3(4)

Assume that n ;> 5 and n = 3(4). Then[CPrt c /?<«-3] isnot an empty set by [7].
Since w2(CPn) = 0 and a>4(CPn)=0, we consider the principal fibration q : Pu^-^-BSpin
classified by w4 e H^BSpin ; Zg). Let 5->Pu>4 be the pull-back of 5SJ&m(2n-3)->
fiS/>i'n by q. Then the classifying map of the stable normal bundle of any immersion
Cpn c /Ji»-3 has a lifting / : CPn^B and \CPn c #4«-3] = [Ci^ #2;/], where B2-*B
is the pull-back of p '. B->Pw4 by p. The Postnikov tower of B2->B is given by
modifying that of jBO(2«-3)->BO constructed in [18], as follows :

h
B2 >B x P9

1xi I 1x <p
Bx K(Z2, 2n-1) x tf(Z2,2n) >Bx P„ >Bx K^, 2n+1)

I lx£
BxK^Zz, 2n-3) >BxK(Z2, 2n)xK(Z2, 2n+ l)

where

P = (Sq2Sqh2n-3, $<l*l2n-z), <pi = Sq2l2n_1xl

and A is a (2n+^-equivalence.

Therefore [CPn, fi2;/] = [CP*, BxP9\f] and there is a decreasing filtration

[CP», flxPp ;/] = F0 3 F! z> F2 => 0,

such that

Ffl//?! = Ker <P2" - 3, FJF2 = Ker T2w - 3/Im 6»2""4, F2 = Coker 02«- 4f

where 0» : Ker @'-»-Coker r* is the twisted secondary operation due to the relation

ri+1e{ = 0 and

@« : //'(CP» ; Z2)-)>//«'+3(CP« ; Zz) x/f'+4(CF« ; Za),

0'(a) = (5??5?la, Sqla),

rt: hh-*(cp« ; z2) xtfi+3(CP» ; zfy-tW+^cp* ; z£,

r«'(a, A) =5?2a.

We briefly have

iV^i = 0, Fx/F2 = 0 x //2«(CF« ; Z2) = Z2,

F2 = Coker <p2«-4 : //2«-4(CP» ; Z£-+H2»(CPn ; Z£.

By considering the Postnikov tower of B2-+B, the secondary operation 02n_1 is an
ordinary one due to the relation ^(fy'tyi) + OSq* = 0. Let p2 : K(Z, 2n-4)->

K(Z2, 2n-4) correspond to p2t2n-A e //2«-4(/c(z, 2n-4) ; Z2) and let 5 : CPn^»
K(Z, 2n-4) correspond to z»~2 e H2n~*(CPn ; Z). By the second formula of

Peterson-Stein [1,Theorem 5.2], we have
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02«-4(2„-2) = 02»-4(g*p2C2n-4')

= (?Og(Sq2fyp2C2rt-4, WPMn-d mod Q,
where

Q = Sq2H2»-2(CP» ; Z2)+0H2«-i(CP" ; Z2)+g*H2«(A-(Z, 2n-4) ; Z£.

Since (pi)(fl» *) = 5'?2fl. we have (pOs(0, StfPMn-A) = 0. Moreover Q = 0 follows
from the facts that H2n(K(Z, 2n-4) ; Z2) = Z2 generated by SqAp2i2n-Ai g*Sq<p2t2n-A

= Sqiz"-2 = 0 for n = 3(4) and fy2Z«-i = 0 for n s 1(2). This shows that (p2""4 = 0

and so

F2 = H2»(CPn ; Za) = Z2.

The group extension of 0 -• F2-»>F1->.F1/F2->0 is trivial by [12, Corollary 3.7]. The

argument made above implies [CPn £ R*n~z~\ = Z^+Z^ for n —3(4).

Remark. As for the case n = 1(4), we can obtain Fq/Fi = 0, Fi/F2 = 0 and

F2 = Cokre <Z>2"-4 = H2»(CPH ; Z2) or 0 by the same method as in the case n = 3(4).

Hence it follows that [CPn c f?4«-3-j = z2 or 0 for n = 1(4). In the next section,

we will show that [CPn c /j4«-3j = z2 for n = 1(4) by a different way.

§4. The group \_CPn c /J*""3] for n = 1(4)

For n ^ 5, n = 1(4), there exists an immersion CPn c i?4«-3# To show that [CPn

c i?4M-3-j = z2 for n = 1(4), we consider another method statad below.

4.1. Another group structure on [Af c i?n+m]. S.Feder stated in [4] the theorem

concerning immersion due to Haefliger-Hirsch [6] as follows :

Assume that there is an immersion of an n-dimensional manifold Af in Rn+m.

If 2m-2 ^ n, then the set [Af c /?»+»»] is in one-to-one correspondence with the set

of Z2-equivariant homotopy classes of Z^equivariant maps of S(M) toSn+w'~1, where
5(Af) denotes the tangent sphere bundle of Af.

Let P(Af) be the real projective tangent bundle of Af and let -q be the canonical

real line bundle over P(Af). Then the Z2-equivariant homotopy set of Z^equivariant
maps of 5(Af) to 5W+W_I is in one-to-one correspondence with the set of vertical
homotopy classes of cross sections of the sphere bundle (5(Af)x5w+w|-1)/Z2->P(Af)
associated with (n+m)7) over P(Af). This bundle is induced from (53°x,Sw+,w-1)/Z2->
RP°° (homotopically equivalent to the natural inclusion Rpn +m-i c Rp°°) by -q \ P(Af)
-+RP°°t the classifying map of rj. Therefore [Af c #»+»'] is in one-to-one corres

pondence with [P(Af), jRP» +»»-i ; rf\t which has the structure of an abelian group
by [3]. Thus the set [Af c #«+»»] has the structure of an abelian group via this
one-to-one correspondence.

R.Rigdon stated in his dissertation [17, §8] that this group and the one defined
in § 1 are coincident with each other. However we do not use his result in this article

because the group of order 2 is uniquely determined and is Z2.
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4.2. Rreliminaries. By [19, Proposition 1.1], there is a filtration

\VPn c /?4»-3] = IPCCP"-), i2P4«"4 ; 7)-} = F0 Z> Fx D F2 Z) F3 D 0,

such that

Fo/Fx = Ker xAn~3, Ei/E2 = Ker ^4»-3>

F2/F3 = Coker 04""4, F3 = Coker x4""4.

Here %' : Ker 0» -*• Coker W* is a twisted tertiary operation, Q* : Ker 6* -*•

Kcr/i'/lm r/_1 and W{ I Ker r'/Im 0,_1 -> Coker J' are the twisted secondary

operations due to the relations ir,,+1 8' = 0, J' +1^", = 0, and

6{: //'-*(*; Z)->/f'+1(*; Z2) x //'+3(X; z$ x H^\X; z3),

@»(a) = (Sq2p2at Sqip2a, &>\p?fl) ,
71': tf(X; Zz) x H«'+2(jr; Z2) x //«'+2(Z; z3)->//»+2(;r; Z2) x H«+3(*; Z£,

r!(a, b, e) = ((5g2+p5"?l+»2)fl, (Sq*Sql+iflSql)a + (Sql+v~)b),

j«: ««+i(jr; z& x w\x; z2)->H<+3(*; z2),

J'(fl, 6) = (Sq2+Dr)a+(Sq\+v)b,

where A" = P(CPn'), Z and Z3 are the non-trivial local systems on P(fiPnr) induced by

v GHKP(CPn^) ; ZzXthe first Stiefel-Whitney class of the double covering S(CPn^)-+
P(CP»')'), pp : H>(X ; Z)-*H'(X ;ZP) is the reduction mod p, and &\ is the reduced

power operation mod 3 in local system [5].
As is well-known, l,i>, •••,»2«-i form a base of the H*(CPn ; Z2)-module

H*(P(CPn>) ; Z2) and the ring structure is given by the relation

V2n = 22«j Wi(CPn~)v2»-i,

while the twisted integral cohomology group H'(P(CPn) ; Z) is the direct sum of
some copies of Z2 for 1 ^ 2« by [17, Proposition 9.2]. Let p2 : &-*(*', Z2)-»
tf'C-X"; Z) be the Bockstein operator,whereZ is the local system due to v e H\X; Z2).

Then there is a relation

ft&OO = <Sq\+v)x for x e H*(X; Z2).
By the above results and the Bockstein exact sequence of P(CPn), we have the
following results :

//4»-4(P(CP») ; Z) = 0,

H4»-5(P(CP») ^Zj^Zz+Zi + Zz

generated by {/92(»2«-2Zn-2) ( ^(^h-^b-i), ^2(o2«-62»)} ,
jo2 : H4«-5(P(CPW) ; Z)-*H4»-5(P(CP") ; Z2) is an isomorphism,
Hi(P(CPn) ; Z3) = 0 for 1 ^ 2n.

4.3. Calculation of [CPn £ f?1""3] for n s 3(4). A simple calculation yields
F0/F! = 0, F!/F2 = 0, F3 = 0

and

F2/Fz = Coker<p4«-4 : Ker <94w-4 -> Ker J4«-3/im r4""4,

where
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Ker©4"-4 = Z2 generated by ^2(o2«-62«+y2«-42»-i+i;2»«-2zn-2)t

KerJ4»-3/Imr4"-4 = H4"-2(P(CPW) ; Z2)xO.
For the rest of this section, we devote ourselves to showing that 04m"4 = Oon P(CPn).

Let (CPny = (CPnxCPn - ACPn}/Z2 be the reduced symmetric product of CPn
(ACPn is the diagonal of CPn) and let j :P(CPn)^(CPn)* be the embedding induced
from the Zz-equivariant map j : S(CP")^CP» xCPn-ACPn defined by ](u) =
(exp(u), exp (-«)). Then, if vstands for the first Stiefel-Whitney class of the double
covering CPnxCPn-ACPn-> (CF»)*, j*00= » e HKKCP"} ', Z£. Hence we study
04«-4 on (CF*)*. Using the results of [4, Theorem 4.3] and [19, (4.8-10)],

we have

Ker 0*>~4 = H4»-5((CP")*;Z),

= Z2 genertaed by Pf^vx2^1-^ (» = 2r+s, 0 < *<2r),
Ker#»-3/Imr4"-4 = 0,

and so we have

04n-4 _ o on (CPny.

To prove 04»~4 = 0 on P(CPns), it is sufficient to show that j*(p2~l(vx2r -3?*)) =
^82(t;2n-6z«+o2n-4Z«-i+i;2»f-2Z«-2)) because the secondary operation 04w-4 is natural
for maps. Since ft, is an isomorphism on ff4«-5(P(CP") ; Z), it is sufficient to show
that

(*) J*(px2r+l-3y?) = 02M-5Z«+D?«-32»-l+i;2H-l2n-2.
Let A2M(= AfxAf/Z2) be the 2-fold symmetric product of Af, the set of

unordered pairs of elements of Af, and let AM denote the set of unordered pairs
{x, x}. Then A2CPn-ACPn = (CPn)*. As the Z£v}-algebra, the cohomology
H*(A?CPn, ACP" ; Z2) is completely described in [10, Theorem 11] and the
action of the Steenrod algebra on H*U2CPn, ACPn ; Z2) is given by [10, Lemma 10],
Moreover, the following results are known in [20, Lemmas 1.4-5] ;

f/4«-5((CP»)* ; Z2)—>i/»»-5(P(CP») ; Z2)—>Hi"-*(A2CPn,ACP" ; Z2)

is exact (cf. [11, §5]), where

btyzf) = v*+iAti.
We now return to the proof of (*). By this result, we have

5(»2»-5Z») = v2»-4Az"t 5(»2»-3Zn-l) = v2n-?/lzn-lj
5(02«-l2«-2) = y2«^«-2.

Further we have

v2nJ[zn-2 = »4(i>2»i-4yfz»-2) = V2n-2AZn-l + v2»-*Az»

by [10, Theorem 11, (ii) and (iv)]. Therefore Im j* = Ker8 = Z2 generated by
02n-5zn+v2*t-3zn-l+v2n-iz»-2. Hence (*) follows from the above result and the fact

that H4"-5((OPn)* ; Z2) = Z2 generated by o*2r+1-3ys [19, (4,9)]. This implies
that 04n"4 =0 and so F2/F3 = Z2. This completes the proof of [CPn c /?<"-3] = Z2
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for n = 3(4).
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