Corrections to "The Reduced Symmetric Product of a Complex Projective Space and the Embedding Problem"

Tsutomu Yasui
(Reccived February 25, 1972)

There is a mistake in $\$ 5$ of my previous note [6], and the results (2) and (3) of theorem 5.5 on pages 28 and 39 are incorrect. This theorem should be replaced by

Theorem 5.5. Let $n \geq 4$.
(1) There exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n}$.
(2) There exist countable isotopy classes of embeddings of $C P^{n}$ in $R^{4 n-1}$.
(3) There exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n-2}$ for $n \neq 2^{r}$.

This note contains some corrections of $[6, \S 5]$ and the proof of (2) and (3) of the above.

1. Some Correcitions. In this note, denote simply by $S Z$ the quotient manifold $S Z_{n+1,2}$ of [6. (1.3)] and let λ be the real line bundle associated with the double covering $Z_{n+1,2} \longrightarrow S Z$. (In $[6, \S 5]$, we consider also λ as the real line bundle associated with the double covering $C P^{n} \times C P^{n}-\Delta \longrightarrow\left(C P^{n}\right)^{*}$.) Let \mathscr{B} be the S^{m-1}-bundle associated with $m \lambda$ and let $\mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)$ be the bundle of coefficients with fiber $\pi_{i}\left(S^{m-1}\right)$ associated with \mathscr{B}. Then the obstructions for the existence of a non-zero cross section of $m \lambda$ are the elements of $H^{i+1}\left(S Z ; \mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)\right)$ and the obstructions for two given non-zero cross sections being homotopic are the elements of $H^{i}\left(S Z ; \mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)\right.$). If m is even, then the bundle of coefficients $\mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)$ is trivial since $m \lambda$ is orientable, and so the above cohomology groups with local coefficients coincide with the ordinary cohomology groups.

Therefore the cohomology groups $H^{*}\left(S Z ; \pi_{i}\left(S^{m-1}\right)\right)$ for odd m in $[6, \S 5$, pp. 38-39] should be replaced by $H^{*}\left(S Z ; \mathscr{B}\left(\pi_{i}\left(S^{m-1}\right)\right)\right)$.
2. Proof of Theorem 5.5. (2). By [4, §37.5] and [6, Prop. 5.2 (2)], it is sufficient to show that $H^{4 n-2}\left(S Z ; \mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n-2}\right)\right)\right)=Z$. Since $(4 n-1) \lambda$ is unorientable, the bundle of coefficients $\mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n-2}\right)\right)$ with fiber $\pi_{4 n-2}\left(S^{4 n-2}\right)=$ Z is not trivial by [4, $\S 38.12]$. Let \mathscr{B}^{\prime} be the tangent sphere bundle of $S Z$. Because $S Z$ is a ($4 n-2$)-dimensional unorientable manifold by [6, Th. 4.15], the bundle of coefficients $\mathscr{B}^{\prime}\left(\pi_{4 n-3}\left(S^{4 n-3}\right)\right.$) with fiber $\pi_{4 n-3}\left(S^{4 n-3}\right)=Z$ is not
trivial by $[4, \S 38.12]$. Since $\pi_{1}(S Z)=Z_{2}$, which is easily seen, two bundles of coefficients $\mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n-2}\right)\right)$ and $\mathscr{B}^{\prime}\left(\pi_{4 n-3}\left(S^{4 n-3}\right)\right)$ with fiber Z are equivalent. Therefore we obtain $H^{4 n-2}\left(S Z ; \mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n} 2\right)\right)\right)=H^{4 n-2}\left(S Z ; \mathscr{B}^{\prime}\left(\pi_{4 n-3}\left(S^{4 n-3}\right)\right)\right)$. Referring to $[4, \S 39.5]$, we have $H^{4 n-2}\left(S Z ; \mathscr{B}^{\prime}\left(\pi_{4 n-3}\left(S^{4 n-3}\right)\right)\right)=Z$ and so $H^{4 n-2}\left(S Z ; \mathscr{B}\left(\pi_{4 n-2}\left(S^{4 n-2}\right)\right)\right)=Z$.
3. Proof of Theorem 5.5. (3). Consider the $S^{4 n-3}$-bundle $p: E \longrightarrow S Z$ associated with $(4 n-2) \lambda$. It is sufficient to show that there exists a unique homotopy class of cross sections of this sphere bundle. Since $(4 n-2) \lambda$ is orientable, there exists a Postnikov system $\left\{E_{i}, p_{i}, h_{i}\right\}_{i \geq 1}$ where $p_{i}: E_{i} \longrightarrow E_{i-1}$ is the principal fibration with fiber $K\left(\pi_{4 n-4+i}\left(S^{4 n-3}\right), 4 n-4+i\right)$ induced by $k^{i}: E_{i-1} \longrightarrow K\left(\pi_{4 n-4+i}\left(S^{4 n-3}\right), 4 n-3+i\right)$ and $h_{i}: E \longrightarrow E_{i}$ is a ($4 n-3+i$)-equivalence ${ }^{(*)}$ and a lifting of $h_{i-1}\left(E_{0}=S Z, h_{0}=p\right)$.

Since h_{2} is a $(4 n-1)$-equivalence and $S Z$ is a ($4 n-2$)-dimensional manifold $[6, \mathrm{Th} .4 .15],[S Z, E ; i d]$ is equivalent, as a set, to $\left[S Z, E_{2} ; i d\right]$ by [2, Th. 3.2] where $[X, Y ; i d]$ denotes the set of homotopy classes of cross sections of a fibration $Y \longrightarrow X$. Using the methods of [3], we shall showe that [SZ, $\left.E_{2} ; i d\right]$ consists of one element.

Let $F=\Omega K(Z, 4 n-2)=K(Z, 4 n-3)$ and let $C=K\left(Z_{2}, 4 n-1\right)$ which is considered as a topological group. Since the first invariant k^{1} represents the Euler class of $(4 n-2) \lambda$, which is zero for $n \neq 2^{r}$, we have $E_{1}=F \times S Z$. Let

$$
m: F \times E_{1}=F \times(F \times S Z) \longrightarrow E_{1}=F \times S Z
$$

be the action defined by

$$
m(\nu,(\mu, x))=(\nu \vee \mu, x) \quad \text { for } \quad x \in S Z, \quad \nu, \mu \in F
$$

where $\nu^{\vee} \mu$ is the composite of loops ν and μ in $F[3, \S \S 2-3]$. Let $f=k^{2}: E_{1}=$ $F \times S Z \longrightarrow C$ and let

$$
\begin{aligned}
& f_{1}:\left(F \times E_{1}, * \times E_{1}\right) \longrightarrow(C, *) \\
& \tilde{f}_{2}: P F \times E_{1} \longrightarrow P C, \quad f_{2}: \Omega F \times E_{1} \longrightarrow \Omega C,
\end{aligned}
$$

[^0]denote the maps defined by
\[

$$
\begin{aligned}
& f_{1}(\nu, y)=f(m(\nu, y)) \cdot[f(m(*, y))]^{-1} \\
& \tilde{f}_{2}(\mu, y)(t)=f_{1}(\mu(t), y), \quad f_{2}=\tilde{f}_{2} \mid \Omega F \times E_{1}
\end{aligned}
$$
\]

where $P F$ (resp. $P C$) denotes the path space of F (resp. C) and $\nu \in F, y \in E_{1}$, $\mu \in P F, t \in I[3, \S 4]$. By the definition of f_{2}, it follows that

$$
f_{2}\left(\xi^{\vee} \zeta, y\right)=f_{2}(\xi, y)^{\vee} f_{2}(\zeta, y) \quad \text { for } \quad \xi, \zeta \in \Omega F, \quad y \in E_{1} .
$$

Let η be the homotopy class of a cross section $s: S Z \longrightarrow E_{1}$ of $p_{1}: E_{1} \longrightarrow S Z$ and let θ be the homotopy class of $f=k^{2}$. Define

$$
\Delta(\theta, \eta):[S Z, \Omega F] \longrightarrow[S Z, \Omega C]
$$

as follows; for a map $a: S Z \longrightarrow \Omega F$, let $b: S Z \longrightarrow \Omega C$ be the map given by

$$
\begin{equation*}
b(x)=f_{2}(a(x), s(x)) \quad \text { for } \quad x \in S Z \tag{1}
\end{equation*}
$$

Put $\Delta(\theta, \eta)[a]=[b]$ in $[S Z, \Omega C]$. Then $\Delta(\theta, \eta):[S Z, \Omega F] \longrightarrow[S Z, \Omega C]$ is well-defined and a homomorphism. Since $[S Z, \Omega C]$ is isomorphic to $H^{4 n-2}(S Z$; Z_{2}), we regard $\Delta(\theta, \eta)$ as $\Delta(\theta, \eta):[S Z, \Omega F] \longrightarrow H^{4 n-2}\left(S Z ; Z_{2}\right)$. For the determination of $\Delta(\theta, \eta)$, we prepare some results.

Let σ denote the suspension homomorphism of the path fibration $\Omega A \longrightarrow$ $P A \xrightarrow{p} A$ and $H^{i}(A)$ stand for $H^{i}\left(A ; Z_{2}\right)$ unless otherwise stated. Consider the following diagram:

The commutativity of this diagram implies that

$$
\begin{equation*}
(\sigma \times i d) f_{1}^{*}=f_{2}^{*} \sigma \tag{2}
\end{equation*}
$$

Let ι and \bar{c} denote the $\bmod 2$ reductions of the characteristic classes of $F=$ $K(Z, 4 n-3)$ and ΩF, and let ι^{\prime} and $\bar{\iota}^{\prime}$ denote the characteristic classes of $C=$ $K\left(Z_{2}, 4 n-1\right)$ and ΩC, respectively. Then

$$
\begin{equation*}
\sigma(\iota)=\bar{\iota}, \quad \sigma\left(\iota^{\prime}\right)=\bar{\iota}^{\prime} \tag{3}
\end{equation*}
$$

By the definition of $f_{1}: F \times E_{1} \longrightarrow C$, we have

$$
\begin{equation*}
f_{1}^{*}\left(\iota^{\prime}\right)=m^{*} f^{*}\left(\epsilon^{\prime}\right)-1 \times f^{*}\left(\iota^{\prime}\right) \quad \text { in } \quad H^{4 n-1}\left(F \times E_{1}\right) . \tag{4}
\end{equation*}
$$

Now $f^{*}\left(\epsilon^{\prime}\right)$ is the element of $H^{4 n-1}(F \lessdot S Z) \cap \operatorname{Ker} h_{1}^{*}$ and $H^{4 n-1}(F \times S Z) \cap \operatorname{Ker} h_{1}^{*}$ $=H^{4 n-1}(F) \otimes H^{0}(S Z)+H^{4 n-3}(F) \otimes H^{2}(S Z)$ has $\left\{S q^{2} \iota \otimes 1, \iota \otimes v^{2}, \iota \otimes c_{1}\right\} \quad$ as basis by $\left[6\right.$, Th. 4,9]. Hence $f^{*}\left(c^{\prime}\right)$ has the form $f^{*}\left(c^{\prime}\right)=\varepsilon_{1} S q^{2} \iota \otimes 1+$ $\varepsilon_{2} \iota \otimes v^{2}+\varepsilon_{3} \iota \otimes c_{1}$, where $\varepsilon_{i}=0$ or $1(i=1,2,3)$. Referring to [5, IV], we have $\varepsilon_{1}=\varepsilon_{2}=1 . \quad \varepsilon_{3}=0$ and so

$$
\begin{equation*}
f^{*}\left(c^{\prime}\right)=S q^{2} \iota \otimes 1+\iota \otimes v^{2} \tag{5}
\end{equation*}
$$

By the definition of $m: F \lessdot(F \lessdot S Z) \longrightarrow F \times S Z, m^{*}: H^{*}(F) \otimes H^{*}(S Z) \longrightarrow$ $H^{*}(F) \otimes H^{*}(F) \otimes H^{*}(S Z)$ is given by
(6) $\quad m^{*}(x \otimes y)=x \otimes 1 \otimes y+1 \otimes x \otimes y \quad$ for the primitive element $x \in H^{*}(F)$.

Using the above preparation, we now compute $\Delta(\theta, \eta)$.

$$
\begin{aligned}
\Delta(\theta, \eta)[a] & =b^{*}\left(\bar{\iota}^{\prime}\right) \\
& =d^{*}(a \times s)^{*} f_{2}^{*}\left(\bar{c}^{\prime}\right) \quad \text { by }(1), \text { where } d \text { is the diagonal map of } S Z \\
& =d^{*}(a \times s)^{*} f_{2}^{*} \sigma\left(\iota^{\prime}\right) \quad \text { by (3) } \\
& =d^{*}(a \times s)^{*}(\sigma \times i d) f_{1}^{*}\left(\iota^{\prime}\right) \quad \text { by }(2) \\
& =d^{*}(a \times s)^{*}(\sigma \times i d)\left(m^{*} f^{*}\left(c^{\prime}\right)-1 \otimes f^{*}\left(\iota^{\prime}\right)\right) \quad \text { by (4) } \\
& =d^{*}(a \times s)^{*}(\sigma \times i d)\left\{m^{*}\left(S q^{2} \iota \otimes 1+\iota \otimes v^{2}\right)-1 \otimes\left(S q^{2} \iota \otimes 1+\iota \otimes v^{2}\right)\right\} \text { by }(5) \\
& =d^{*}(a \times s)^{*}(\sigma \times i d)\left(S q^{2} \iota \otimes 1 \otimes 1+\iota \otimes 1 \otimes v^{2}\right) \quad \text { by }(6) \\
& =d^{*}(a \times s)^{*}\left(S q^{2} \bar{\iota} \otimes 1 \otimes 1+\bar{\iota} \otimes 1 \otimes v^{2}\right) \quad \text { by (3) } \\
& =S q^{2} a^{*}(\bar{\iota})+a^{*}(\bar{\iota}) v^{2} \quad \text { in } \quad H^{4 n-2}(S Z) .
\end{aligned}
$$

The element $c_{1}^{2^{r+1}-2} c_{2}^{s}$ of $H^{4 n-4}(S Z)\left(n=2^{r}+s, 0 \leq s<2^{r}\right.$ is contained in the iamge of the mod 2 reduction and so there exists $a: S Z \longrightarrow \Omega F$ such that $a^{*}(\bar{c})=c_{1}^{2^{r+1}-2} c_{2}^{s}$. For such a map $a, \Delta(\theta, \eta)[a]=S q^{2}\left(c_{1}^{2 r+1}-2 c_{2}^{s}\right)+c_{1}^{2 r+1-2} c_{2}^{s} v^{2} \neq 0$, because $c_{1}^{2 r+1}-2 c_{2}^{s} v^{2} \neq 0$ and $c_{1}^{2 r+1-1}=0$ by [6, Prop. 4.14]. Thus $\Delta(\theta, \eta):[S Z$, $\Omega F] \longrightarrow[S Z, \Omega C]$ is an epimorphism. While $[S Z, F]=H^{4 n-3}(S Z ; Z)=0$ by [6, Th. 4.10]. Using [3, Th. 4.3], [SZ, $\left.E_{2} ; i d\right]$ consists of one element and so there exists a unique isotopy class of embeddings of $C P^{n}$ in $R^{4 n-2}$ for $n \neq 2^{r}$.

Remark. Theorem 5.5. (2) is a special case of A. Haefliger's theorem of $[1,1.3 . \mathrm{e}]$ for $V=C P^{n}, k=1$,

Refernces

[1] A. Haefliger, Plongements de Variétís dans le domaine stable, Séminaire Bourbaki, 150 (1962/3), $\mathrm{n}^{\circ} 245$.
[2] I. James and E. Thomas, Nole on the classification of cross-sections, Topology 4 (1966), 351-359.
[3] -, On the enumeration of cross-sections, Topology 5 (1966), 95-114.
[4] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
[5] E. Thomas, Seminar on Fiber Spaces, Lecture Notes in Math. 13 (1966), Springer-Verlag.
[6] T. Yasui, The reduced symmetric product of a comlex projective space and the embedding problem, Hiroshima Math. J., i(1971), 27-40.

Department of Mathematics
Faculty of Science
Hiroshima University

[^0]: ${ }^{(*)}$ A map $g: X \longrightarrow Y$ is called an n-equivalence for $n \geq 1$ if $g_{*}: \pi_{\eta}(X) \longrightarrow \pi_{q}(Y)$ is isomorphic for $q<n$ and epimorphic for $q=n$.

