# エミッタ・ホロワの帰還特性のHパラメータによる解析

―― 容量性負荷のナイキスト線図による安定判別 ――

# 川 原 浩 一 郎\*

### (受理 昭和 41 年 11 月 30 日)

# ANALYSIS OF FEEDBACK CHARACTERISTICS OF EMITTER FOLLOWER IN TERMS OF *h* PARAMETER

(Nyquist's criterion for Stability of a Capacitive Load)

## Koichirō KAWAHARA\*

The emitter follower is regarded as a sort of feedback amplifier which has the voltage return ratio of unity.

This viewpoint makes it easy to separate the reverse transmission from the forward amplification in terms of h parameter. Further a polar plot of an open-loop transfer function on the complex plane is applied to analyze the stability of emitter followers variously loaded both in the input and output side.

#### 1. まえがき

エミッタ・ホロワの安定性については、従来主とし てその等価同路中の任意の節点について成立する節点 方程式より導かれる特性方程式の根の性質より検討さ れている.1) その特性方程式の複素周波数についての 次数は容量性負荷を有し、また解析された結果が実験 とほぼ合致する範囲のトランジスタの簡略化高周波等 価回路について計算を行えば通常2次でその根は複素 周波数平面上で必ず左半面に存在していることが知ら れている.<sup>2)</sup> また補償用インダクタンスを電源もしく は負荷側に 挿入すれば 3次の 特性方程式が得られる が、この場合の安定性については、(根が右半面に存 在しないための条件) Hurwitz の 安定判別法または 根軌跡法等により論ぜられている.1) しかし,いずれ も此等の方法は適用される回路の固有の性質、例えば 増巾回路中の帰還部の有無等に従つて解析されるとい うよりは,むしろ,節点方程式より得られた特性方程 式の根の性質について数学的に検討されている. この 点について、多少迂遠では あるが、 回路の 実際的特 性, 即ち伝送特性を中心にして解析を行い, 特性方程 式を伝達関数の極を与える方程式、また入力カインピ ーダンスに変換された形として取り扱い、安定性に関 しては開放ループ伝達関数すなわちループゲインの周 波数軌跡であるナイキスト線図で各種の電源及び負荷 インピーダンスを有するエミッタ・ホロワの負帰還増 巾器としての性質を考察してみる.

#### 2. H パラメータによる負帰還回路の構成

エミッタ・ホロワの諸特性(電圧,電流,電力増巾 度等)は直接その等価回路により計算することができ るが,回路の構成より見て基準となるエミッタ接地形 に帰還ループを持つ電圧帰還のかかつた負帰還増巾器 として取扱うこともできる.帰還増巾器は通常その入 力と帰還部の出力との加算点で帰還ループを開放した とき,回路全体としての電流分布が変らない時にはル ープ・ゲインが容易に算出されるが,トランジスタのご とき電流増巾器ではこの切離しが簡単にできない場合 が多い.そこで入力部で帰還部の出力との加算ができ るように H パラメータを 用いて導出した エミッタ・ ホロワの増巾度を変形して図1のブロック図に示すご とき帰還部の分離された電圧増巾器として考察する.



図1 エミッタ・ホロワの帰還増巾器 としてのブロック図

まず, 順方向には電圧増巾度 A've の普通のエミッ タ接地の基本形があり, これに電圧逆伝送比が β, の

\* 鹿児島大学工学部電気工学教室・助教授

帰還ループが出力側は負荷と並列に,入力側は電源と 直列に接続されたものとして帰還部を分離し,それぞ れの四端子回路をHパラメータで表わし,ループ・ゲ イン *A*'<sub>u\*</sub>・*β*<sub>v</sub> を誘導する.

## 3. 伝達特性およびループゲインの計算

図2に示すごとく回路[I]は能動素子を含む順方向 の増巾回路とし、回路[II]は帰還部で受動素子のみ とする.この接続を実際の回路に適用すれば図3のご





とくなりエミッタ接地形の出力電圧は並列に挿入され た帰還回路により帰還されて,結局コレクタ接地形の 回路に変換されることになる.図2の回路について電 圧増巾度を計算すれば,Hパラメータは直並列の合成 回路では双方のパラメータの和となり次のごとき式が 得られる.

$$A_{g} = \frac{-(\dot{h}_{21} + \ddot{h}_{21})z_{L}}{(z_{g} + \dot{h}_{11} + \dot{h}_{11}') + z_{L}z_{g}(\dot{h}_{22} + \ddot{h}_{22}') + z_{L}((\dot{h}_{11} + \dot{h}_{11}'')(\dot{h}_{22} + \ddot{h}_{22}') - (\dot{h}_{12} + \ddot{h}_{12}'')(\dot{h}_{12}' + \ddot{h}_{21}''))} \quad \dots \dots \dots \dots \dots (1)$$

(1) 式で回路 [II] の H パラメータがすべて零の とき,すなわち帰還電圧が零のときには,回路的に見 れば,2-2' 端子短絡 4-4' 端子開放となり,順方向 利得の基準であるエミッタ接地形に変換される.(1) 式にこの条件を入れると次のごとくなる.

$$A_{ve} = \frac{-\dot{h}_{21}z_L}{z_g + \dot{h}_{11}' + z_L z_g \dot{h}_{22}' + z_L (\dot{h}_{11} \dot{h}_{22}' + \dot{h}_{12}' \cdot \dot{h}_{21}')} \quad (2)$$

(2) 式は前述のごとくエミッタ接地形の電圧増巾度 を表わすもので、この *A*<sub>ve</sub> を 順方向利得の 基準にと り、(1) 式を 変形すれば 次の(3)、(4) 式 が 得られ る.

$$A_{vc} = \frac{A_{ve}/k}{1 + (A_{ve}/k) \cdot \beta_a} \quad \dots \qquad (3)$$

但し,

$$\begin{array}{c} k = h_{21}/(h_{21} + h_{21}) \\ \beta_v = k \cdot B_v \\ \Delta^{h''} = h_{11}'' h_{22}'' - h_{12}'' h_{21}'' \\ B_v = - [h_{11}' + z_L z_g h_{22}' + z_L (\Delta^{h''} \\ + (h_{11}' h_{22}'' + h_{11}'' h_{22}) \\ - (h_{12}' h_{21}'' + h_{12}'' h_{21}')] / h_{21}' \cdot z_L \end{array} \right\} \cdots (4)$$

そこで新しい等価的な増巾度として  $A'_{ve}=A_{ve}/k$  と すれば、図2の直並列回路は先に挙げた図1のごとき ブロック図で表わされ電圧の加え合せ点において切り 離せば  $A'_{ve}$ ・ $\beta_v$  はこの増巾系の電圧還送比、すなわち ループ・ゲインを考えることになる.

#### 4. ループ・ゲインによる安定性の判別

(3) 式の分母はエミッタ・ホロワの電圧還送差を与 えるもので,帰還回路の還送差を一般形にして次式で 表わしておく.

$$\begin{array}{c} F(p) = 1 + T(p) \\ T(p) = A'_{ve} \cdot \beta_v \end{array} \right\} \quad \dots \quad (5)$$

但し, *p* は使用トランジスタの 遮断角周波数 (エミ ッタ接地時) で基準化した複素角周波数である.

図2の回路 [I], [II] の H パラメータ は 図4のご ときトランジスタの簡略化等価回路については同図右 に示した値となり,此等の定数を(4)式に代入して, 容量性負荷時で電源インピーダンスが純抵抗のときの  $A_{ve}$  および T(p)を求めると次の式が得られる.



但し,  $G=R_L/R_S$ ,  $R_S=R_g+r_{bb'}$ ,  $z_g=R_g$ ,  $K=\omega_{\beta}\cdot C_e R_L$ ,  $p=j(\omega/\omega_{\beta})=jx$ ,  $\dot{\beta}=\dot{\beta}_0/\{1+j(\omega/\omega_{\beta})\}$ 



そこで問題のループ・ゲイン T(p) において p=jxとして (7) 式に代入し、そのベクトル図、すなわち ナイキスト線図を画くことにより、各種の  $z_L$ 、 $z_g$  に ついての安定性を調べることができる、ここでは特に 従来の容量性負荷について得られた (7) 式を実数部 と虚数部とに分離すれば次式が得られる.

$$Re\{T(jx)\} = \frac{(1+\beta_0)(1-x^2K)+x^2(K+1)}{(1-x^2K)^2+(K+1)^2\cdot x^2} = \frac{U}{G}$$

(9) 式より V=0 とおいて x について解くと 軌跡が U 軸を切る点の x が得られるが, これを計算すれば  $x=0, x\to\infty$  となり, この値を (8) 式の x に代入し て, Uの値を求めると,  $U_0=(1+\beta_0)$  G,  $U_{\infty}=0$  とな り, 臨界点  $(-1, j_0)$  を閉ループの内側に含むことは ない. 従つて F(p)=0 の特性根は p 平面の右半面に 来ることはなく,  $R_L$  の付加容量  $C_e$  の如何にかかわ らず安定で成長する持続振動は絶対に起こり得ないこ とが知られる.

図 5-1, 図 5-2 は F(p)=0の特性根が p 平面上 で実根(相異なる実根 ①,等根 ②).および共役複素 根を持つ場合 ③ について 計算したもので,(3) 式の 過渡応答に関しては夫々潜動,臨界,減衰振動<sup>3)</sup>の各 場合に対応するものである.図 5-1 中の ③ の軌跡 で U=-1の直線との2つの交点における角周波数 は,入力インピーダンスの実数部が負となる上限およ び下限を与えるもので,安定性の点から云えばこの周



#### 鹿児島大学工学部研究報告 第7号



図 5-2 T(jx)の軌跡の原点付近の拡大図

波数範囲で入力インピーダンスの虚数部が零となる場 合例えば  $z_g$  が誘導性となつた時等は特性根は p 平面 の右側に移行し,成長する持続振動が現われることに なる.

#### 5. あとがき

電圧または電流についての伝達関数が計算されて, これにナイキストの安定判別法が適用される形に式の 上で変形することはできるが,明確な物理的意義を持 つループ・ゲインを得る一般的な手法は見当らない.

この点については, 直並列形の帰還部の接続を有す る帰還増巾器に おいては H パラメータを 用いてナイ キストの安定判別法の使用が可能であり, またその物 理的意味も明らかである.特にエミッタ・ホロワの特 性の解析には電源インピーダンス *z*<sub>g</sub>, 負荷インピーダ ンス *z*<sub>L</sub> が, 基準化された形すなわち *K*, *G*等で*T*(*p*) に導入されているので、今後それ等の種々の値につい てのナイキスト線図による安定性の解明が統一的に進 められる.特に  $z_g$  がインダクタンスを含む時には、 いわゆる負性抵抗による発振現象が現われるが、この 場合も同様に T(p) の軌跡を求めることにより、その 特性が明かにされる.

終りに色々と有益な御助言を受けた本学武石助教授 に感謝致します.

#### 文 献

- 米山・上野: エミッタ・ホロワのベース抵抗法 による発振抑制, 九連大論文集. 昭和 41 年度, p. 217.
- 1) 川原:トランジスタの容量性負荷を有するエミ ッタ・ホロワのパルス応答について: 鹿大工学部 研究報告.第3号,昭和38年10月, p.11.