Mem. Fac. Fish., Kagoshima Univ. Vol. 26 pp. 165~171 (1977)

平面網地の流水抵抗に関する基礎的研究-I 網地模型実験

今井健彦*•平川栄一**

Basic Studies on the Plane Net set into the flowing Water-II

Experiments on the Plane Netting Models

Takehiko IMAI* and Eiichi HIRAKAWA**

Abstract

Some experiments were carried out on the net-model composed of vinyl-chloride cylindricalbar, with the same method explained in the previous report.

The results obtained are as follows:

1) Concerning the netting-leg, it is possible to denote drag-coefficient C_D , lift-coefficient C_L and friction-coefficient C_F in the following formulae: —

 $C_{D} = f \sin^{\frac{5}{3}} \alpha$ $C_{L} = g \sin^{\frac{5}{3}} \alpha \cdot \cos \alpha$ $C_{F} = h \sin \alpha \cdot \cos^{\frac{1}{3}} \alpha$

2) The maximum value of lift-coefficient, having direct influence for making net-shape, appeared at the attack angle (about 50°) of the netting leg.

予備実験では平面網地模型に、クレモナ蛙又結節網地(網糸直径 4mm, 20番手, 26本, 3 ×3)を用いたが、網地の脚と結節の流水抵抗特性を分離できないこと、結節の構造上2脚 が同一平面になく、脚は彎曲し、更に流水抵抗により網目形状が変わるため解析が複雑にな る等の理由から、網地模型を単純化する必要があり、前報¹⁾に示した流水抵抗特性をもった 塩化ビニル溶接棒(直径 4mm)で無結節網地模型を製作した。

実験は本学部回流水槽で行ない、実験方法は前報と同じ手法を用いた.

実験方法

網地模型は正確な脚長、縮結角を持ち、流水抵抗により網目形状が変化しない平面構造で

^{*} 鹿児島大学水産学部漁具学研究室 Laboratory of Fishing Gear, Faculty of Fisheries, Kagoshima University, Japan

^{**} 長崎県水産改良普及員 Fisheries officer of Nagasaki Prefecture, Japan

なければならず, 且つ製作が容易であることが望ましい. このような理由から素材に塩化ビ ニル溶接棒を用いた.

網地模型の縮結角 φ は 45°(内割縮結:2割9分3厘),37°(2割1厘),30°(1割3分 4 厘),20°(6分)の4種とし、脚長 l は結節部の中心距離が120,80,40mmの3種とした. 従がって網地模型は12種となり、脚長 120mm,目数6目のものを網地模型 A とし、脚長 80mm,目数15目のものを網地模型 B,脚長 40mm,目数60目のものを網地模型 C とした. 模型により目数が異なるのは取付枠の大きさが610×610mm(直径 5 mmの丸鋼材)であり、 網地模型の占有面積をほぼ等しくし、且つ網地模型の流水抵抗値を取付枠の抵抗値より大き くするためである.

脚の直径と目合長の比 d/2l を求めると、それぞれ 0.0167, 0.025, 0.050 となり、トロー 網の網地をほぼ網羅している。

網地模型の流水抵抗値は前報と同様,全抵抗値から枠の抵抗値を差引いた値とし,1脚が 受ける流水抵抗の流水方向成分(抗力成分)D_mと,同直角方向成分(揚力成分)L_mを測定 し,更に隣接した2脚について,D_m,L_mのベクトル和D_r,L_rを求めた.

網地模型は無結節であるため,結節部も脚の一部とし,網地構成の基礎単位を2脚と考えた.

模型網実験では一般に田内の比較則²⁾ に従がって実験流速が設定されるが,網地模型の性 状は漁網と異なり寧ろ剛体であるから,レイノルズの相似則に従うと考えた.回流水槽の性 能や,試作した実験装置の能力を勘案し,トロール曳網中のレイノルズ数と実験時のレイノ ルズ数を等しくするために,網地模型は前述のように実物より大型のものとなった.

測定装置は前報と同一のものであり,網地模型の中心と取付枠の中心が一致し,2脚の2 等分線が水平になるように取付けた.(Fig. 1. 参照)設定迎角は前報と同様16段階であった.

Fig. 1. Schematic drowing of experimental equipments for measuring water resistance of the net model.

回流水槽の水深は 80cm, 流速は 25.8cm/sec, 水温 20°C でレイノルズ数は1.017×10⁸で あった.

流水抵抗の解析

網地模型は平面構造であり、脚の伸縮や彎曲は無視できるので単純な立体幾何学として取 扱うことができる.

Fig. 2. Explanation of φ , θ , α on the cylindrical bar.

1 脚が流れと成す角 α は縮結角 φ と設定角 θ によって決まる. (Fig. 2. 参照)

$$\cos\alpha = \cos\varphi \cdot \cos\theta \tag{2.1}$$

2脚の抗力成分 Dr と2脚の揚力成分 Lr は,

$$D_{r} = 2D_{m} = 2D_{l}$$

$$= 2(D + F \cos \alpha) \qquad (2.2)$$

$$L_{r} = 2L_{m} = 2L_{l} \frac{\cos \varphi \cdot \sin \theta}{\sin \alpha}$$

$$= 2(L - F \sin \alpha) \frac{\cos \varphi \cdot \sin \theta}{\sin \alpha} \qquad (2.3)$$

但し D_i は1 脚の抗力成分であり, L_i は1 脚の揚力成分である.(Fig. 3. 参照) 抗力, 揚力, 摩擦力を無次元化した抗力係数, 揚力係数, 摩擦係数を用いると, (2.2), (2.3) 式は,

$$D_{r} = \frac{1}{2} C_{Dm} \rho S_{r} U^{2}$$

= $\frac{1}{2} C_{DI} \rho 2S U^{2}$
= $(C_{D} + C_{F} \cos \alpha) \rho S U^{2}$ (2.4)

Fig. 4. Explanation of the area on two legs (Sr).

$$L_{r} = \frac{1}{2} C_{Lm} \rho S_{r} U^{2}$$

$$= \frac{1}{2} C_{DI} \frac{\cos \varphi \cdot \sin \theta}{\sin \alpha} \rho 2S U^{2}$$

$$= (C_{L} - C_{F} \sin \alpha) \frac{\cos \varphi \cdot \sin \theta}{\sin \alpha} \rho S U^{2} \qquad (2.5)$$

但しSは1脚の面積であり、2脚の面積 S. は、(Fig. 4. 参照)

$$S_r = 2S = d\left(2l - \frac{d}{\sin 2\varphi}\right) \tag{2.6}$$

(2.4), (2.5) 式より

$$C_{Dl} = C_{Dm} = C_D + C_F \cos \alpha \tag{2.7}$$

$$C_{Ll} = C_{Lm} \frac{\sin \alpha}{\cos \varphi \cdot \sin \theta} = C_L - C_F \sin \alpha$$
(2.8)

従がって,

$$C_D = C_{Dl} - C_F \cos \alpha \tag{2.9}$$

$$C_L = C_{Ll} + C_F \sin \alpha \tag{2.10}$$

$$C_F = C_{DI} \cos \alpha - C_{LI} \sin \alpha \tag{2.11}$$

即ち,前報と同様に測定値 D_m, L_m から1 脚の C_D, C_L, C_F を求めることができる.

結果及び考察

脚が流れと成す角 α を横軸にとり、 C_{D1} C_{L1} 、を縦軸にとって実験値を示した. (Fig. 5., Fig. 6. 参照)

 C_{D1} の値は模型の迎角 θ が10°未満の場合低い値を示す. C_{L1} の値は φ =45°では θ が20°

Fig. 5. Relationship between the measureddragcoefficient of one bar (C_{Dl}) and the attack angle of bar (α°) on the net-model B.

Fig. 7. Relationship between the drag-coefficient (C_D) and the attack angle of bar (α°) on the net-model B.

Fig. 6. Relationship between the measured liftcoefficient of one bar (C_{Li}) and the attack angle of bar (α°) on the net-model B.

Fig. 8. Relationship between the lift-coefficient (C_L) and the attack angle of bar (α°) on the net-model B.

Fig. 9. Relationship between the frictioncoefficient (C_F) and the attack angle of bar (α°) on the net-model B.

以下の場合, $\varphi = 37^{\circ}$ では θ が10°以下, $\varphi = 30^{\circ}$ 及び $\varphi = 20^{\circ}$ では θ が10°未満で C_{Ll} の値及 びその幅が大きな値を示した.この現象は他の網地模型の場合も同様に表われ, C_{Dl} につい ては迎角 θ が10°未満では取付枠や前方の脚の後流の影響を受けたものと考えられる.迎角 θ が小さな場合の測定値 C_{Lm} は後流の乱れのために変動幅が大きく、 C_{Lm} を小さな値 cos φ ・ sin θ で割ったために後流の影響に加えて実験誤差が大きく表われたものと考えられる.

これ等の理由から、 $\varphi=45^{\circ}$ の網地模型の場合は $\theta \ge 25^{\circ}$ の資料について、 $\varphi=37^{\circ}$ の場合 は $\theta \ge 15^{\circ}$, $\varphi=30^{\circ}$ 及び $\varphi=20^{\circ}$ の場合は $\theta \ge 10^{\circ}$ の資料を用いて解析した.

横軸に脚が流れと成す角 α を,縦軸に C_D , C_L , C_P をとり実験値を図示した. (Fig. 7., Fig. 8., Fig. 9. 参照)

網地素材の場合と同様に脚の圧力抵抗 P は sin αの函数と考えると、

$$C_D = f(\sin \alpha) \tag{3.1}$$

$$C_L = g\left(\sin\alpha \cdot \cos\alpha\right) \tag{3.2}$$

$$C_F = h(\sin\alpha \cdot \cos\alpha) \tag{3.3}$$

で表わすことができる.

最小自乗法で回帰曲線式を求め次の式を得た.

網地模型 A の回帰曲線式

$$C_D = 0.83 \sin^{2.6} \alpha$$
$$C_L = 0.80 \sin^{1.5} \alpha \cdot \cos^{1.0} \alpha$$
$$C_F = 0.13 \sin^{1.0} \alpha \cdot \cos^{0.5} \alpha$$

網地模型 B の回帰曲線式

$$C_D = 0.86 \sin^{2.5} \alpha$$
$$C_L = 0.83 \sin^{1.4} \alpha \cdot \cos^{1.0} \alpha$$
$$C_F = 0.11 \sin^{1.0} \alpha \cdot \cos^{0.5} \alpha$$

網地模型 C の回帰曲線式

 $C_{D} = 1.03 \sin^{2.6} \alpha$ $C_{L} = 0.95 \sin^{1.3} \alpha \cdot \cos^{1.0} \alpha$ $C_{F} = 0.11 \sin^{1.0} \alpha \cdot \cos^{0.5} \alpha$

前述の実験式は次の一般式で表わすことができる.

$$C_D = f \sin^2 \alpha \tag{3.4}$$

$$C_L = g \sin^{\frac{\pi}{2}} \alpha \cdot \cos \alpha \tag{3.5}$$

$$C_F = h \sin \alpha \cdot \cos^2 \alpha$$
(3.6)

係数 f,g の値は0.8~1.03を示し, 脚長が短くなると大きな値を示す. 係数 h は前者に比べ値は小さく 0.11~0.13 を示し, 脚長とは無関係な値と思われる.

C_p, *C_L*の回帰曲線式は実験値と良く一致したが、*C_r*は値も小さく寧ろ定数と考えても差しつかえない.尚前報の *C_r*の値と比較すれば、同一素材であるにもかかわらずその値は小さく、0.06~0.07であった.

今回の実験に用いた網地模型素材の直径は同一であったため,係数 f,g は単に脚長により 決まるとしたが、脚の直径と目合長の比,素材の性状に基く特性,結節構造等に関係する係 数であることが予測される.

要 約

前報と同一の実験装置を用い,レイノルズ数1×10³の流れの中で平面網地模型面が流れ と成す角(迎角θ)を種々変えて抗力成分,揚力成分を測定し,次の結果を得た.

1) 平面網地模型の脚の抗力係数 C_D,揚力係数 C_L,摩擦係数 C_F は,

$$C_{D} = f \sin^{\frac{3}{2}} \alpha$$
$$C_{L} = g \sin^{\frac{3}{2}} \alpha \cdot \cos \alpha$$
$$C_{F} = h \sin \alpha \cdot \cos^{\frac{1}{2}} \alpha$$

であり, f, g は係数で0.80~1.03を示し, 脚長が短くなると大きな値を示す. 一方 h は0.11 ~0.13と小さな値を示し, 脚の迎角 α 及び脚長には無関係と思われる.

2) 網成りの形成に直接影響を及ぼす揚力係数 C_k の最大値は, 脚の迎角 α が 50° 付近に 表われ, その値は脚長が短いと大きくなる傾向を示した.

終りに本研究の御指導,御校閲を賜わった本研究室教授肥後伸夫博士に深甚の謝意を表する.

文 献

- 1) 今井健彦・平川栄一(1977):平面網地の流水抵抗に関する基礎的研究-I 鹿大水紀要 26,157 ~164
- Morisaburo TAUTI (1934): A Relation between Experiments on Model and on Full Scale of Fishing Net B. J. S. S. F. 3 (4), 171~177