Mem. Fac. Fish., Kagoshima Univ. Vol. 31 pp. 21~33 (1982)

内側壁がぜん動運動する開水路内の 流れについて―― I

中山 博*・奈良迫 嘉 一*

On the Water-Flow in the Open Channel induced by the Peristaltic Motion of the Inside-Walls ----- I

Hiroshi NAKAYAMA and Yoshikazu NARASAKO

Abstract

The pumping effect to push the water towards the progressing peristaltic wave is to be caused by the peristaltic motion of the inside-walls in the central open channel.

For making use of this pumping effect (*Reynolds Number*: 10^3 order), two devices for generating peristaltic wave were set-up on the central bottom of the box-water-tank by the authors; and the variations of the induced water-flow in the central channel were examined with the following results obtained : ——

1. When the amplitude (ε) of the wall was 0.5cm the maximum flow-velocity (V) was obtained at all the measuring points, while when the traveling-wave velocity (C) was 30cm/sec it was obtained at all the seven amplitude ratios (α) along the channel walls.

2. When (C) was kept within 30cm/sec the lesser was the amplitude ratio the higher was the pumping effect; on the other hand, when (C) was promoted beyond 35cm/sec the bumping fluctuation of the surface water came to be more violent, letting the pumping effect become lower.

1.緒 言

ぜん動運動には流路内の流体を波の進行方向に移動させるポンプ作用のほか逆流作用,ト ラッピング作用がある¹⁰.著者等はこの中のポンプ作用に注目して,とりあえずレイノルズ 数 (*Re*) 10³ order の所で工学的利用(将来の可能性として双胴船の船底内側壁取付)を考え, 基礎実験として箱型水槽の中央底部に,ぜん動波発生装置2基を対称に設置,はさまれた中 央開水路のぜん動運動による推力の発生,流れの変化を調べた.

2. 実験装置及び方法

実験装置を Fig. 1 に示す. 箱型水槽(長さ 178cm,幅 88cm,深さ 40cm)の縦中心線をは さんで流線型ぜん動波発生装置 2 基を,それぞれ同位相に合わせ,ぜん動部を向い合わせて

^{*} 鹿児島大学水産学部漁船運用学研究室 (Laboratory of Fishing Vessel Seamanship, Faculty of Fisheries, Kagoshima University)

対称に設置し,位相がずれないように駆動軸にタイミングプーリーを取り付け,タイミング ベルトで連結し,それぞれを可変速電動機で回転させ,ぜん動波を発生させた(**Fig.2 参照**).

Elevation

Fig. 2. Peristaltic wave generating devices.

平均流路幅 H はこのタイミングベルトの長さを変える事により任意の値に調整できる. 平均流路幅 H は Fig. 3 に示す如く、2 基のぜん動波振幅 ϵ の基線間の距離である.ここ で振幅比 $\alpha = H/2 \epsilon$ をとる.ぜん動波発生機構は減速歯車(減速比¾)を介して可変速 電動機により駆動されるカム軸に円型の偏心カム25個が、1 波長 12cm 当り6 個の割合で位 相 60 度、間隔 2 cm で取り付けられている(Fig. 3 参照).カム軸の回転運動は連結棒に伝

Fig. 3. Peristaltic wave generating mechanism.

わり往復運動に変えられて内側壁に振幅 ϵ 0.5cm, 波長 λ 12cm の正弦波4個から成る進 行波変位が強制される.また,進行波速度 C は 20~70cm/sec の間で任意の値をとることが できる.連結棒がカムと接する部分には摩擦を軽減するため,ニードルベアリングを取り付 けてある.ぜん動部長さは48cm,高さ12cm,ぜん動部の内側壁には厚さ0.5mmの軟質塩 化ビニールが張ってある.このぜん動波発生装置の上下に長さ100cm,幅17cm,厚さ1 cm の流線型外蓋をそれぞれ取り付け,周囲を厚さ1 mm のアクリル板で取り巻いてある.以上 の流線型ぜん動波発生装置を使用してポンプ作用を示す水路の誘起流速 V (cm/sec),圧力 pd (kg/cm²)の測定並びに流れの可視化を行った.V, pd については H をそれぞれ 6,7,9,11,13, 15,17 cm に変えて, Cを 20~55cm/sec (5 cm/sec 置き)として測定を行った.測定点としては、 ぜん動波発生部の入口より水平流路中心線に沿うて12cm(1 波長間隔)ごとに A, B, C, D, E の5 点を取り,且つ,それぞれの点において,水面下方 3,6.5,10cm の3 点を選び計15点 とした.水槽水深は13cm である (Fig.1 参照).

Vの測定にはプロペラ式流速計(プロペラ径:20mm ♦,4枚羽根アルミ製,検出方法:磁石-ホール IC 方式,測定範囲:3~100cm/sec)と流速計カウンター(自動連続計測,4桁,パルス数/秒 デジタル表示)を組合せて使用した.

𝗨の測定には試作ピトー管(Fig.4 参照)から、それぞれ直流増幅器を通して、2ペンのレ

コーダに記録させ、これを基にして総圧から静圧を差引いて動圧を求めた。測定条件は流速 測定の時と同様. 試作ピトー管は総圧用として、L型アダプター付拡散形半導体小型圧力変 換器@,静圧用として、直線型アダプター付拡散形半導体小型圧力変換器⑤をそれぞれ使用 し、同一点の総圧と静圧が測定できるように細長い長方形のアルミ板に装着した.

Fig. 4. Test pitot-tube

水路の水中流れの状態を知るために色素流脈法^aによる可視化を行った.トレーサーとしてローダミンB(赤色),インク(青色)を使用した.ローダミンBは水で溶いて使用するので比重が水と同じであるが,インクは水よりも比重が大きく水底に沈むのでアルコールを加えて比重を水と同じにし,L字型に曲げた注射針からトレーサーを水中に注入,撮影を行った.この場合にCが増加すると水面が絶え間なく上下運動を起こし,そのためトレーサーが拡散して撮影できなくなるため,Cを15~20cm/secの範囲に押えて実験を行った. 表面の流れはトレーサーとしてアルミ粉末を水に溶かして使用した.

3. 実験結果及び考察

実験結果を Table 1 (a), (b) に示す. ぜん動運動による流れの発生自体を即ポンプ作用と 考えて、Vの値を測定したが、いずれの測定点においても、C 20~30*cm/sec* まではその値は 徐々に増加し、C 30*cm/sec* で最も高い Vの値を得た. しかし、C 30*cm/sec* を越すと Vは減 少し始め、C 40~45*cm/sec* まで減少、更に 50, 55*cm/sec* と Cが増すと Vはわずかながら再

ReCaMeasuring Points B $(= C \epsilon / \nu)$ (cm/s) $(= H/2 \epsilon)$ ABCDE 0.87×10^3 20116.56.15.46.68.7 0.87×10^3 20116.56.15.46.68.7 0.87×10^3 20116.56.15.46.68.7 0.87×10^3 20116.56.15.46.68.7 13 5.95.54.76.08.1154.84.66.25.36.6 17 5.35.65.35.86.910.713.914.314.7 1.09×10^3 25119.48.88.410.412.0 1.09×10^3 25119.48.88.410.412.0 1.30×10^3 301112.912.711.614.015.6 1.30×10^3 301112.912.711.614.414.3 1.101×10.3 11.614.912.311.614.912.4 1.102×10.3 13.013.013.0 </th <th>Reynolds Number</th> <th rowspan="3">Traveling wave velocity <i>C</i> (cm/s)</th> <th rowspan="3">Amplitude ratio α (= H/2 ϵ)</th> <th colspan="5" rowspan="2">Mean induced flow-velocity (cm/s)</th>	Reynolds Number	Traveling wave velocity <i>C</i> (cm/s)	Amplitude ratio α (= H/2 ϵ)	Mean induced flow-velocity (cm/s)				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pa							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$(=C \varepsilon / \nu)$			А	B	C	D	E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6	7.8	8.2	10.0	10.2	11.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	7.6	7.7	7.6	9.0	10.3
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	7.4	6.8	6.4	7.7	9.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.87×10^{3}	20	11	6.5	6.1	5.4	6.6	8.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.07710		13	5.9	5.5	4.7	6.0	8.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	4.8	4.6	6.2	5.3	6.6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17	5.3	5.6	5.3	5.8	6.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.09×10 ³		6	12.4	11.8	12.3	14.3	14.7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	10.8	9.8	9.9	12.7	13.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	10.6	10.8	10.4	11.8	14.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		25	11	9.4	8.8	8.4	10.4	12.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	9.0	8.3	9.0	9.0	9.9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	9.4	8.4	7.7	10.4	11.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17	7.8	8.9	8.2	9.1	10.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1.30×10 ³	30	6	14.0	12.9	11.8	15.3	16.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			7	11.9	11.3	11.8	13.3	14.5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			9	13.3	12.9	12.5	14.5	16.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			11	12.9	12.7	11.6	14.0	15.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			13	12.5	12.3	11.9	14.3	15.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			15	11.0	10.6	10.3	11.6	14.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			17	9.9	10.1	10.2	11.6	13.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.52×10 ³	35	6	10.4	8.9	9.8	11.0	12.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			7	7.1	7.4	7.8	9.1	12.4
1.52×10^3 35 11 14.0 11.8 10.3 14.3 15.1 13 11.6 10.6 11.4 12.3 15.5			9	11.9	9.9	9.7	13.1	13.6
13 11.6 10.6 11.4 12.3 15.5			11	14.0	11.8	10.3	14.3	15.1
			13	11.6	10.6	11.4	12.3	15.5
15 10.5 9.3 9.6 12.7 13.9			15	10.5	9.3	9.6	12.7	13.9
17 9.1 7.7 8.5 9.7 11.7			17	9.1	7.7	8.5	9.7	11.7

Table 1 (a). The mean flow-velocity induced by peristaltic motion of the inside wall.

	Traveling wave velocity <i>C</i> (cm/s)	$\begin{array}{c} \text{Amplitude} \\ \text{ratio} \\ \\ \\ (= \text{H/2 } \epsilon) \end{array}$	Mean induced flow-velocity (cm/s) Measuring Points				
Re							
$(= C \varepsilon / \nu)$			А	В	C	D	Е
	40	6	8.4	6.7	7.3	10.4	12.9
		7	6.1	6.1	6.9	8.7	11.2
		9	6.8	6.1	6.7	8.1	9.4
1.74×10^{3}		11	6.7	6.9	7.3	6.7	7.7
		13	6.9	6.2	6.1	7.8	9.9
		15	7.0	6.4	7.2	6.7	8.9
		17	7.6	6.2	7.8	8.1	9.9
		6	8.6	7.0	8.3	10.9	13.4
		7	6.2	6.1	7.5	9.5	11.3
		9	6.5	6.3	7.4	8.6	9.9
1.96×10^{3}	45	11	6.9	6.1	6.2	7.2	8.6
		13	7.1	6.4	6.9	8.0	9.5
		15	8.7	7.9	8.3	9.9	10.2
		17	7.3	6.4	6.3	7.8	8.0
	50	6	8.7	8.2	9.7	12.3	14.0
2.18×10 ³		7	7.6	7.1	8.0	10.3	12.9
		9	8.5	7.7	7.7	9.9	10.9
		11	8.2	6.9	7.3	8.2	9.3
		13	8.9	8.3	8.5	8.4	10.4
		15	9.9	8.6	8.6	10.2	11.3
		17	9.5	8.7	8.4	10.1	10.9
	55	6	8.2	8.2	9.9	12.7	14.0
		7	8.5	7.9	8.8	11.7	13.7
		9	8.9	8.1	8.6	10.6	12.1
2.39×10^{3}		11	7.6	7.0	7.3	8.3	10.1
		13	9.2	8.1	8.6	9.0	11.1
		15	9.4	8.8	9.4	10.0	10.5
		17	10.2	9.1	9.4	10.1	11.3

Table 1 (b). The mean flow-velocity induced by peristaltic motion of the inside wall.

Fig. 5. Traveling-wave velocity and the mean induced flow-velocity at E point.

Fig. 6. Amplitude ratio and the mean induced flow-velocity at E point.

び増加し始める (**Fig.5**参照). また, C 20~30*cm/sec* の間では α を小さくするほど V は 一般に増加する傾向にある. しかし C 35*cm/sec* になるとこれは崩れ, C 55*cm/sec* まで α の減少に比例した Vの増加とはならない (**Fig.6**参照).

文献^{3,4,5}によると閉塞された管内において流路の一方の側面を静止させ,他方の側面をぜん動運動させた場合,流路内の流線の模様は山の部分に正流領域,谷の部分に逆流領域を生じ,平均流量の増大(進行波速度の増大,振幅比の減少)と共に逆流領域が狭くなり閉じ込められ,その結果,流路はほぼ一定の誘起流速値をもっている.

しかしながらわれわれの開水路内側壁のぜん動運動の場合は、流路内の流れは、上流測定 点 A, B において表層、中層、底層とも V はあまり差はないが中央 C 点に至るにつれ差を 生じ、下流 D, E 点ではその差が一層大きくなる。この場合いずれも表層部が早く底層部が 遅い傾向にある。また、水表面の波は C 30*cm/sec* までは C とほぼ同程度の速度で進むが、 35cm/sec 以上になると、水表面の波は C に追従できずその代り水面の上下運動が激しくなり流れを乱して V は低下する.

*pa*の測定については直線型アダプター付小型圧力変換器のデータが多少不安定ではあったが,定性的には *V* 同様,表層が最も大きく底層が小さい(**Fig. 7** 参照).

Fig. 7. Induced flow-velocity and Dynamic pressure at the respective measuring points.

データの不安定な理由としてはアダプターが長すぎ空気中に露出している部分が気温の変化,室内の空気の流れに敏感に反応する事,その上,メーカー側でアダプター部分にシリコ ンオイルを真空封入した際に空気が混入したのではないか等が懸念された.

以上 A 点から進入した流れは B 点ないし C 点まで来る間に少し V が落ち, 更に D, E

点と進むにつれて加速され最終 E 点で最高の V となる (Fig. 8 参照).

Fig. 8. The mean induced flow-velocity at the respective measuring points.

一般にぜん動壁による水路の最大断面積をつくる領域で波の進行方向と同方向の流れ(正流),また,最小断面積をつくる領域で波の進行方向と反対方向の流れ(逆流)を生じ,V の増加と共に逆流領域が狭くなる傾向がある(Fig.9(a)参照).

この場合,明らかに流路中央部分の流跡線は流路方向への輸送距離が大きくなった「の」 の字形の運動をなし(Fig.9(b)参照)全体として底層から中,表層へ向かう斜めの上昇流 が形成される(タフト法).

以上,開水路の場合も閉塞管内側壁のぜん動運動と同様,進行波速度 30cm/sec までは振幅比に反比例したポンプ作用,換言すれば推力の発生を認める事ができた.しかし,流路の 導入部から流出部に至る流れの変化はきわめて複雑で今後,更に詳細な実験検討の必要があ り,ぜん動波発生装置,特にカム機構の小型化,能率化による模型自航試験を計画して検討 を進めて行きたい.

 α : 11, C: 15 cm/s, surface ASA 400, T: 1/15, Storoboscope : 7200r/m Tracer : Aluminium powder

α : 11, C: 30 cm/s, surface
 ASA 400, T: 1/30, Storoboscope : 10800 r/m
 Tracer : Aluminium powder

Fig. 9 (a). Photograph of flow pattern in the central water channel.

 α : 11, C: 20 cm/s, Middle layer ASA 400, T: 1/250 Tracer : Rhodamine B

Fig. 9 (b). Photograph of flow pattern in the central water channel.

4.結論

1)本装置において振幅 0.5cm の場合,いずれの測定点,振幅比 (6~17)においても進行波速度 30cm/sec で最も大きい誘起流速 ($\alpha = 6$,平均 16.2cm/sec)を得た.

2)進行波速度 30cm/sec までは振幅比を小さくするほど、ポンプ効果は高まるが 35cm/sec 以上になると水面の上下運動が激しくなり、ポンプ効果は低下した.

謝 辞

本研究にあたって,実験に協力していただいた高岡勝義技官並びに学部学生,島崎裕,稲 尾賢一,徳竹公司郎,音地高広の諸君に深く謝意を表する.

文 献

- 1) 鮎川恭三・古川真一 (1977): 壁がぜん動運動する流路の流れ. 日本機械学会講演論文集, No. 775-1, 124-126.
- 2) 浅沼 強編 (1977): "流れの可視化ハンドブック", 180-184 (朝倉書店, 東京).

- 鮎川恭三・河合達雄・木村正樹 (1979): ぜん動流路内の流線および流跡線. 愛媛大学紀要. 第Ⅲ 部(工学), Vol. IX, No. 2, 51-63.
- 4) 鮎川恭三・河合達雄・古川真一 (1979): 壁がぜん動する流路内の圧力特性.愛媛大学紀要.第Ⅲ
 部(工学), Vol. IX, No. 2, 37-50.
- 5) 木村正樹・鮎川恭三・河合達雄 (1978): 壁がぜん動運動する流路内の流れ (流線と流跡線).日本 機械学会講演論文集, No. 784-8, 103-105.