開口部の熱性能に関するフィールド簡易測定法及び 簡易評価法の研究

2012 年 3 月

田代達一郎

第1章 序論	1
1.1 本研究の背景	3
1.2 既往の研究	8
1.2.1 開口部の熱貫流率計算法及び測定法	8
1.2.2 開口部の日射熱取得率計算法及び測定法	11
1.2.3 材料の光学特性測定法	
1.2.4 入射日射の計算法	
1.2.5 期間熱負荷計算法	
1.3 本研究の目的	
1.4本論文の構成	
参考文献	
第2章 開口部の斜入射に対する日射熱取得率計算法	
2.1はじめに	
2.2 直達日射に対する開口部の計算法	
2.2.1 フレーム部の計算法	
2.2.2 ガラス部の計算法	40
2.3 散乱日射に対する開口部の計算法	45
2.4計算結果	
2.4.1 計算条件	46
2.4.2 計算結果	53
2.5まとめ	75
参考文献	76
第3章 開口部熱性能のフィールド測定法	77
3.1はじめに	79
3.2 予備測定	80
3.2.1 屋内測定装置(日射熱取得率測定装置)の概要	80
3.2.2 測定サンプルの仕様と測定環境条件	
3.2.3 測定結果と計算結果の比較	
3.3 屋外測定法の開発	85
3.3.1 測定装置及び試験体の概要	85
3.3.2 測定方法	

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

3.4 測定結果	
3.5まとめ	
参考文献	

第4章 カーテンウォールの熱性能計算法	117
4.1はじめに	119
4.2 ビル用開口部の分類	120
4.2.1 日本におけるビル用開口部の分類と構成比率	120
4.2.2 カーテンウォールの分類	123
4.3 カーテンウォールの伝熱開口寸法	125
4.4 カーテンウォールの断面のモデル化	126
4.5 カーテンウォールの熱貫流率計算法	
4.6 カーテンウォールの日射熱取得率計算法	
4.7 カーテンウォールの熱性能計算結果	
4.7.1 計算モデル条件	
4.7.2 設定条件、物性値	
4.7.3 計算結果	135
4.8まとめ	
参考文献	

第5章 カーテンウォールのフレームを考慮した簡易計算法	
5.1はじめに	
5.2 フレーム部の簡易計算用熱性能	
5.2.1 カーテンウォールフレーム部の簡易計算用熱性能	
5.2.2様々な開口仕様に対する簡易計算用熱性能	
5.3 腰部パネル部の簡易計算用熱性能	147
5.4 カーテンウォール全体の簡易計算法	149
5.4.1 詳細計算法と簡易計算法の比較	149
5.4.2 フレームを考慮したカーテンウォール全体の簡易計算法	149
5.5 フレームを考慮したPAL計算	153
5.5.1 計算条件	153
5.5.2 計算結果	155
5.6まとめ	
参考文献	159

第6章 カーテンウォールの斜入射に対する日射熱取得率計算法	
6.1はじめに	
6.2 直達日射に対するカーテンウォールの計算法	
6.2.1 フレーム部の計算法	
6.2.2 ガラス部・腰パネル部の計算法	
6.3 散乱日射に対するカーテンウォールの計算法	
6.4計算結果	
6.4.1 計算条件	
6.4.2 計算結果	
6.5まとめ	
参考文献	
第7章 期間熱負荷計算への影響	
7.1はじめに	
7.2 住宅の期間熱負荷計算に関する開口部の計算法	
7.2.1 従来計算法	
7.2.2フレームを考慮した詳細計算法	
7.2.3 従来計算法にフレームを考慮した簡易計算法	
7.3 斜入射計算法の違いによる期間日射熱取得量の比較	
7.3.1 計算条件	
7.3.2 計算結果	
7.4 住宅モデルにおける窓の期間日射熱取得量の比較	
7.4.1 計算対象建物	
7.4.2 計算条件	
7.4.3計算結果	
7.5 建物モデルにおけるカーテンウォールの期間日射熱取得量の比較	199
7.5.1 計算対象建物	
7.5.2 計算条件	
7.5.3 計算結果	
7.6まとめ	
参考文献	
第8章 結論	
8.1 本論文の要約	

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

謝辞	217
既発表論文一覧	221
Summary	233

第1章 序論

1.1本研究の背景

建物の外皮は、大きく分けて屋根部、壁部、開口部で構成されている。開口部を代表する 窓(まど)は、柱と柱の間の戸(間戸)という語源で、一般的に壁や屋根に施された開口 を意味する。屋根部や壁部は、外界の風雨や日射等を室内へ侵入することを防ぐ役割が主 であるが、窓は自由に開閉ができるため、通気や採光、人の出入といった内と外の繋がり を調節する役割が主である。

窓はガラス等の透明な面材やその他不透明な面材と、それらを躯体に固定し、自由に開閉 できるフレーム(枠及び障子)で構成されている。

透過性のある面材を用いることで、窓を閉めた状態でも、室内にいる居住者は窓を通して 外界の状態が分かるようになった。景色を眺めることで季節を感じ、好ましい外界状態で あれば窓を通して室内へ採り入れ、好ましくなければ閉ざして外界の繋がりを断つことが できる。そのため、面材は経年劣化の少ないガラスが広く普及している。

今からおよそ半世紀前までは、日本の窓フレームを構成する素材は木や鉄だった¹。しか し、外界に素材を露出するため、どちらも腐食による経年劣化等の問題があり、錆に強い、 軽い、加工がしやすい、形状が自在かつ精密に製造できるといったメリットからアルミ製 フレームが普及している。これらのメリットを生かし、現在は用途に応じて様々な開閉形 式のフレームが開発され、住宅用窓のおよそ 94%がアルミ化(アルミ、アルミ熱遮断、ア ルミ樹脂複合等の合計)となっている²⁾。

窓には屋根や壁同様、外界状態を室内へ侵入することを防ぐ役割もあるため、閉めている ときは気密性能、水密性能、耐風圧性能と呼ばれる窓の基本 3 性能以外に、断熱性能、遮 熱性能、採光性能、遮音性能、防火性能、防犯性能等、多くの性能が求められている³³。こ れは、あらゆることに対して安全性や快適性を求め日々進化し続けているためである。日々 生活する建物内においても、季節や時間に関わらず快適な環境で暮らすことを求め、自然 から与えられるエネルギーが不足、過剰となると、我々は、人間によって作られたエネル ギーを使って快適な室内環境を維持している。その結果、温室効果ガスが先進国を中心に 世界中で発生し、地球温暖化現象につながった。特に問題となっている CO₂の排出量を削 減する必要性が世界レベルで認識され、近年対策が行われている。

建築物におけるエネルギー消費は、暖冷房・調湿といった熱負荷が最も多くの割合を占めている⁴⁾。開口部は建築外皮を構成する屋根、壁と比較すると熱性能が劣るため、熱負荷によるエネルギー消費量は、開口部の仕様に強く影響される。よって、建物の省エネルギー 性や室内空間の快適性を評価する上で開口部の熱性能を正確に評価することが極めて重要 となる。

窓の断熱性能は熱貫流率により評価される。熱貫流率は、室内外の気温差により窓を通過 する単位時間、単位面積、単位気温あたりの熱量で定義され、この値が小さいほど通過す る熱量が少なく、断熱性能が高い。 窓の遮熱性能は日射熱取得率により評価される。日射熱取得率は、窓に照射される日射熱 に対する室内への侵入熱量の比で定義され、この値が小さいものほど冷房エネルギー低減 に効果的である。逆にこの値が大きいものほど暖房エネルギー低減に効果的である。値が 大きい場合はブラインド、カーテン等の可変できる付属物を併用することで調整すること ができる。

このような開口部の熱性能を正確に評価するためには、以下の課題が考えられる。

(1) 計算による開口部熱性能評価法の必要性

日本の窓に関する各種性能基準は、工業標準化法⁵に基づき制定されている JIS (Japanese Industrial Standards) により決められている。これまで窓の製品性能に関する各種規格は、 実製品の品質保証を評価することも目的としていたため、実測による評価法のみであった。 そのため、メーカーは、窓の断熱性能については、JIS A 4710⁶に従って製品の実測評価を行 っていたが、様々なフレームやガラスの組合せの熱性能を評価することは不可能であり、 代表試験体寸法により評価を行っていた。しかし、異なるサイズや遮熱性能については対 応できていなかった。

国際的には表 1.1 に示すように、欧州や米国が牽引する形で、窓の断熱性能、遮熱性能の 計算法が国際規格化され整備されつつある。これを受け、日本でも経済産業省から施行さ れたガラスとフレームの組合せを考慮し、窓のサイズ別に断熱性能表示ラベルを製品に貼 って出荷する窓の断熱性能表示制度の制定に伴い、正しく断熱性能を評価するため、窓及 びドアの断熱性能の計算法については、ISO 10077^{7,8)}を参照した JIS A 2102^{9),10)}が制定された。

また、遮熱性能については、ISO 9050¹¹⁾を参照した JIS R 3106¹²⁾が制定されているが、ガ ラスの測定及び計算法であり、フレームを考慮した窓として評価できていない。そのため、 国内の遮熱性能基準はガラスのみの掲載となっている。

このように、現状のままでは建物の熱性能を評価するには不十分であり、今後、窓及びド アの遮熱性能計算法やカーテンウォールの熱性能計算法による評価法の整備が必要である。

また、窓の熱性能を詳細計算により求める方法では、建物の熱負荷計算を実施することは 困難であるため、簡易計算法についても整備が必要である。

表1.1 開口部の熱性能評価法における国際的な状況							
	赤마나는 실망	試験法規格		計算》	赤 杜 台 示 (王文) 1		
刈豕	热性胞	ISO	JIS	ISO	JIS	熱性能評価ワール	
	¥F 최 사 삼	ISO 12567-1	JIS A 4710	ISO 10077-1	IIS A 2102-1	【海外】	
窓全体	的恐性能	ISO 12567-2 (天窓・出窓)	2567-2 JIS A 1492 ・出窓) (天窓・出窓) ISO 15099		WIS (EU) WINDOW (U.S)		
ビル)	遮熱性能	ISO 15099 (規格審議中)		FRAME plus (Canada) 【日本】 WindEye			
カーテン	断熱性能	-	Η	ISO/DIS 12631	-		
全体。		-	-	-	-		
	ISO 10291 断熱性能 ISO 10293		JIS R 3106	JIS R 3106 ISO 1029	ISO 10292		【海外】
ボニフ			(放射率測定)	ISO 15099	013 K 3107	OPTICS (U.S)	
77 77	ISO 9050		JIS R 3106	ISO 9050	JIS R 3106	【日本】	
	區恐住能	(分光測定)	(分光測定)	ISO 15099	(規格審議中)	WindEye	
トルデ 未市 小井 ムド・		_		ISO 10077-2	IIS A 2102-2	【海外】	
7 1/.	的恐吓能	图 张门 主用E -	_	ISO 15099	013 A 2102-2	THERM (U.S)	
フレーム 遮熱性能		-	-	ISO 15099	(規格審議中)	【日本】 TB2D/BEM	

(2) 開口部の斜入射による日射熱取得率評価法の必要性

建物の熱負荷の中で、日射による熱エネルギーの影響は大きい。建物内に取得すれば、冬 期の暖房負荷は軽減され、夏期の冷房負荷は増大する。この日射による熱エネルギーを建 物内に取り込む役割が開口部であり、この取得熱量を正しく評価できなければ、建物の熱 負荷計算は正しく評価できない。

表1.2 開口部の夏期日射侵入率

変が声する古仏			地域(の区分		
おい面するり位	Ι	Π	Ш	IV	V	VI
真北±30度	0.52		0.55			0.60
上記以外	0.52			0.45		0.40

表1.3 ガラス部分の日射侵入率

灾が両する古仏			地域の	の区分		
忘が面するり位	Ι	Π	Ш	IV	V	VI
真北±30度	0.66		0.70	0.60		0.66
上記以外	0.66		0.57	0.49		0.43
庇等の効果	0.	94	0.81	0.	70	0.61

地域区分毎の代表的な建具枠の仕様設定は以下の通り

I ~Ⅲ地域:「木製又はプラスチック製」及び「木又はプラスチックと金属との複合材料製」の建具 Ⅳ~Ⅵ地域:「金属製」の建具 次世代省エネルギー基準の解説書¹³⁾には、夏期日射侵入率基準値(表 1.2)及びその基準 に対応するガラス部分の日射侵入率(表 1.3)が掲載されている。日射侵入率とは本論文で用 いている日射熱取得率と同義である。

また、同解説書¹³⁾には開口部の日射遮蔽仕様例として、付属物なしで基準をクリアする 例と付属物との組み合わせで基準値をクリアする例が掲載されている。付属物の種類は施 主の趣向が強く引き渡し後選択することが一般的なため、住宅性能表示等で現場確認時に 付属物を装着することは難しい。

これは、冷房負荷低減のための基準だが、冬期の暖房負荷低減に対する部分は除外している。表 1.4¹⁴⁾に示すように、日本のエネルギー消費は冬期の暖房が圧倒的に多く、比較的温暖なIV地域でも全体の 1/4 程度を占めている。さらに、I地域においては、表 1.4 では冷房負荷は 0 であるのに対し表 1.2 及び表 1.3 では上限値を設けている。

	Ia•Ib 地域	Ⅱ地域	Ⅲ地域	Ⅳa•Ⅳb 地域	Ⅴ地域	VI地域
暖房	66,190	44,963	34,469	18,711	12,381	0
冷房	0	204	1,316	3,999	4,057	10,374
給湯	14,913	17,962	18,071	16,892	13,770	10,187
照明	10,867	10,867	10,867	10,867	10,867	10,867
その他	29,639	30,766	32,495	32,640	31,334	30,763
合計	121,609	104,762	97,218	83,109	72,409	62,191

表1.4 戸建て住宅の標準消費エネルギー量(一次エネルギー量 単位 MJ/年・世帯)¹⁴⁾

「日射侵入率」、「遮熱性能」という表記からも日射による熱エネルギーは年間熱負荷を増 大する方向のみで夏期のみを考慮すればよいと建築設計者は考えてしまう。さらに昨今の 「地球温暖化」というキーワードからも冷房負荷が増大しているという認識が強くなって いると考えられる。

また、日本の住宅の熱負荷計算には、SMASH¹⁵⁾や AE-Sim/Heat¹⁶⁾といった計算ソフトが用いられることが一般的である。このソフトは、標準気象データから日射の直達成分と散乱成分(地物反射成分含む)を窓の設置方位及び日射の入射角特性を考慮した計算を行っている。

(1.1)から(1.4)に用いられている算出式を示す。

窓透過直達日射量 = 窓面直達日射量 × 入射角特性	•••(1.1)
窓天空·反射日射量 = 窓面天空·反射日射量 ×0.81	•••(1.2)
入射角特性 = $2.392\cos\theta - 3.8636\cos^3\theta + 3.7568\cos^5\theta - 1.3952\cos^7\theta$	•••(1.3)
室内で取得する熱量 = 窓透過日射量 × 窓の SC 値	• • • (1.4)

算出式(1.3)の余弦の多項式を用いた入射角特性は、3mm 単板の入射角特性曲線と一致する。これでは、多層ガラス時の多重反射の影響が考慮できていないことが分かる。

また、ここで用いる窓の遮熱性能はフレームを考慮しないガラスのみの遮蔽係数(SC値) *1)を伝熱開口面積に積算して用いているため、本来存在するフレーム部分もガラスとして 透過しているとみなされ、年間を通して室内に取得する熱量が大きく見積もられる。その ため、図 1.1 のように夏期の冷房負荷が冬期の暖房負荷を上回りやすくなる。そのため設計 者は、ガラスは断熱性能だけでなく遮熱性能の高い商品がよいと選択してしまう。

このような結果は実態と乖離があるため、正しく評価する必要がある。

図1.1 AE-Sim/Heat による冷暖房負荷計算事例(IV地域)

※1) 3mmの透明板ガラスにおける日照熱などの透過による室内への流入熱量と再放射による熱量の 和を 1.0 として、どれぐらい遮蔽できるかを表す数値

1.2 既往の研究

開口部の熱性能は、断熱性能を熱貫流率、遮熱性能を日射熱取得率で評価している。一方、 建物ではこれらの熱性能を用いて、期間熱負荷を地域に則して計算し評価している。各々 の測定法と計算法に関する既往の研究と動向を概観する。

1.2.1 開口部の熱貫流率計算法及び測定法

(1) 熱貫流率測定法

開口部の熱貫流率の測定法は、国内外において様々な試験法が提案され実施されている。 表 1.1 に示すように国際的には ISO12567-1¹⁷⁾、ISO12567-2¹⁸⁾が規格化され、我が国でもこれ に整合するように JIS A4710⁶⁾が改訂された。これまで国内で行われてきた試験法¹⁹⁾との最 大の相違は、熱貫流率算出に放射の影響を考慮した環境温度差を用いる点である。

(2) 熱貫流率計算法

開口部の熱貫流率の計算法は表 1.1 より、ガラスの計算法とフレームを加えた窓全体の計 算法に分かれる。ガラスの計算法は、JIS R 3107²⁰⁾、ISO10292²¹⁾、ISO15099²²⁾が規格化され ている。フレーム及び窓全体の計算法は、ISO10077-1⁷⁾、ISO10077-2⁸⁾、ISO15099²²⁾が規格 化されており、国内では 2011 年 3 月に ISO10077^{7).8)}を引用した JIS A2102-1⁹⁾、JIS A2102-2¹⁰⁾ が規格化された。また、カーテンウォールについては欧州規格 EN13947²³⁾を基に国際規格と して ISO/DIS 12631²⁴⁾の段階まで作成され現在審議中である。

窓全体の熱貫流率は算出式(1.5)で整理できる。

$$U_{w} = \frac{\sum A_{g}U_{g} + \sum A_{f}U_{f} + \sum l_{g}\phi_{g}}{A_{w}}$$
ここで
$$U_{w}: 窓全体の総合熱貫流率 [W/(m^{2} \cdot K)]$$

$$U_{g}: ガラス部の熱貫流率 [W/(m^{2} \cdot K)]$$

$$U_{f}: フレーム部の熱貫流率 [W/(m^{2} \cdot K)]$$

$$A_{w}: 伝熱開口面積 [m^{2}]$$

$$A_{g}: ガラス部の見付面積 [m^{2}]$$

$$A_{f}: フレーム部の見付面積 [m^{2}]$$

$$l_{g}: ガラス周囲部の長さ [m]$$

$$\psi_{g}: ガラス周囲部の線熱貫流率 [W/(m^{*}K)]$$

フレーム部の断熱性能算出方法は、フレーム部の熱貫流率(*U_f*)と別に複層ガラススペーサ 周辺部の2次元熱流の影響を表す線熱貫流率(*ψ_e*)を算出する。

解析モデルイメージを図 1.2 に示す。また、計算概要イメージを図 1.4 に示す。

JIS A 2102-2¹⁰⁾では、図 1.3 に示すように室内側平滑面と隅角部に異なる表面熱伝達率を与 えて計算している。これは、隅角部では対流が起きにくいことと、隣り合う面が存在し放 射による温度差が小さくなるため、総合熱伝達が小さくなることを考慮している。

図1.2 フレームの熱貫流率解析モデルイメージ

図1.3 水平熱流に対する表面抵抗(JIS A2102-2 引用)

フレーム部の熱貫流率(*U_f*)は、フレームに断熱パネルを挿入した断熱パネルモデル(図 1.2(b))を用いて算出式(1.6)で求める。

$$U_{f} = \frac{L_{f}^{2D} - U_{p}b_{p}}{b_{f}} \cdots (1.6)$$

ここで
$$U_{f}: フレーム部の熱貫流率 [W/(m^{2}\cdot K)]$$

$$L_{f}^{2D}: 断熱パネルモデルの熱コンダクタンス [W/(m \cdot K)]$$

$$U_{p}: 断熱パネルの熱貫流率 [W/(m^{2}\cdot K)]$$

$$b_{f}: フレーム部の見付幅 [m]$$

$$b_{p}: 断熱パネルの見付幅 [m]$$

複層ガラススペーサ部を含むフレームとガラスの間の線熱貫流率(ψ_g)は、フレームに複層 ガラスを挿入した複層ガラスモデル(図 1.2(a))と算出式(1.6) で得られる U_f値を用いて算 出式(1.7) で求める。但し、単板ガラスの場合は熱橋効果がないため無視する。

$$\phi_g = L_{\phi}^{2D} - U_f b_f - U_g b_g \qquad \cdot \cdot \cdot (1.7)$$

ここで

1.2.2 開口部の日射熱取得率計算法及び測定法

(1)日射熱取得率測定法

開口部の日射熱取得率の測定法は表 1.1 より、ガラスの測定法とフレームを加えた窓全体の測定法に分かれる。ガラスの測定法は、分光特性を測定する規格について国際規格では ISO 9050¹¹⁾が規格化され、国内ではこれを引用して JIS R 3106¹²⁾が規格化されている。また、 窓全体の測定法は、1960 年代に太陽光を用いた装置が盛んに研究されていたが、1990 年 代前半までの間はほとんど測定法に関しての研究は実施されていない。90 年代後半から北 米を中心に様々な測定法が提案されてきているが、いまだ確立された方法とはなっていな い。

日射熱取得率の測定法の研究は、1960年代の ASHRAE²⁵⁾の装置に始まり、さまざまな装置が提案され、国内でも 70年代に建築研究所において日射遮蔽効果測定装置²⁶⁾が試作された。この時代までは、光源として太陽光を用いる装置が主で、日射強度を確保するために太陽追尾に多くの工夫が見られる。90年代以降には室内実験装置について、さまざまな提案^{27),28)}がある。これは屋外実験での外乱の影響をさけるなどの理由のほかに、人工光源の発達によるところが大きい。

倉山²⁹⁾は、ISO 15099の規格を基に開口部の熱貫流率・日射熱取得率測定装置を開発した。 これまで測定できなかったフレームを含めた窓全体の遮熱性能測定を可能にした。また、 遮蔽係数では評価できなかった低放射複層ガラスの測定も可能にした。ガラス種の違い、 フレームの色及び窓種の違い、付属物の種類及び色違いを含めた日射熱取得率を計算と比 較して精度よく測定できることを示した。

(2)日射熱取得率計算法

開口部の日射熱取得率の計算法は表 1.1 より、ガラスの計算法とフレームを加えた窓全体の計算法に分かれる。ガラスの計算法は、国際規格では ISO 9050¹¹⁾が規格化され、国内ではこれを引用して JIS R 3106¹²⁾が規格化されている。また、窓全体の計算法は、国際規格では板ガラス、付属遮蔽物、窓フレーム等を含んだ ISO 15099²²⁾が規格化されている。これは米国 ASHRAE STANDARD 142³⁰⁾が原案でそのまま採用されている。国内では、これに相当する規格を現在審議中である。

窓全体の日射熱取得率は算出式(1.8)で整理できる。

$$\eta_{w} = \frac{\sum A_{g} \eta_{g} + \sum A_{f} \eta_{f}}{A_{w}} \qquad \cdot \cdot \cdot (1.8)$$

ここで

η_w:窓全体の総合日射熱取得率 [-]
 η_s:ガラス部の日射熱取得率 [-]
 η_f:フレーム部の日射熱取得率 [-]
 A_w:伝熱開口面積 [m²]
 A_g:ガラス部の見付面積 [m²]
 A_f:フレーム部の見付面積 [m²]

解析モデルイメージを図 1.5 に示す。

フレーム部、ガラス部の日射熱取得率算出方法は、算出式(1.9)で整理できる。2次元解析 モデルに日射受熱の発熱条件を設定したモデル(図 1.6(a))を用いて、日射を受けた場合の 室内への熱流束から日射を受けない場合(貫流分)の熱流束を差引いた値を日射強度で除 して算出する。

$$\eta_s, \eta_f = \frac{q_{in} - q_{in}(I_s = 0)}{I_s} \qquad \qquad \cdot \cdot \cdot (1.9)$$

ここで

η_g: ガラス部の日射熱取得率 [-]
 η_f: フレーム部の日射熱取得率 [-]
 q_{in}: 各部の入射日射がある場合の室内への熱流束 [W/m²]
 q_{in}(I_s=0): 各部の入射日射がない場合の室内への熱流束[W/m²]
 I_s: 入射日射強度 [W/m²]

このとき、算出式(1.9)に入る *q_{in}*及び *q_{in}(Is=0)*は、図 1.6(b)に示すようにフレームを含む 2 次元熱流計算モデルからガラス単体の 1 次元熱流を差引いて求める。そのため、2 次元 熱流分の影響は、フレームに残ることとなる。

よって、算出式(1.9)のフレーム部の熱流束: qin,f及び qin,f(Is=0)の算出式は以下となる。

$$q_{in,f} = \frac{Q_{in} - Q_{in,g}}{b_f} \qquad \cdot \cdot \cdot (1.10)$$

$$q_{in,f}(I_s = 0) = \frac{Q_{in}(I_s = 0) - Q_{in,g}(I_s = 0)}{b_f} \quad \cdot \cdot (1.11)$$

ここで

 $q_{in,f}$:フレーム部の入射日射がある場合の室内への熱流束 [W/m] Q_{in} :入射日射があるモデル全体の室内への熱流量 [W/m] $Q_{in,g}$:ガラス部の入射日射がある場合の室内への熱流量 [W/m] $q_{in,f}(I_s=0): フレーム部の入射日射がない場合の室内への熱流東 [W/m]$ $Q_{in}(I_s=0): 入射日射がないモデル全体の室内への熱流量 [W/m]$ $Q_{in,g}(I_s=0): ガラス部の入射日射がない場合の室内への熱流量 [W/m]$ b_f :フレーム部の見付長さ [m]

また、ISO 15099²²⁾では、フレームの熱貫流率(U_f)からフレームの日射熱取得率(η_f)を簡易 に求められる計算式を提案している。

$$\eta_f = a_f \frac{U_f}{\frac{A_s}{A_f} h_{ex}} \qquad \cdots \qquad (1.12)$$

ここで

η_f:フレーム部の日射熱取得率 [-]

a_f:フレーム部の日射吸収率 [-]

U_f:フレーム部の熱貫流率 [W/(m²·K)]

A_f:フレーム部の見付面積 [m²]

As:フレーム部の室外側露出表面積 [m]

*h*_{ex}: 室外側表面熱伝達率 [W/(m²·K)]

(b)フレーム部日射熱取得率算出イメージ図1.6 フレーム部の日射熱取得率解析モデルイメージ

1.2.3 材料の光学特性測定法

日射熱取得率計算法には、開口部を構成する材料の放射率、日射反射率・透過率・吸収 率、熱伝導率といった物性値が必要とされる。しかしながら、これらの物性値のうち熱伝 導率以外の光学的データはほとんど整備されていないのが実状である。

JIS ではガラスに関する光学特性測定法¹²⁾は制定されているが、フレーム材やブラインド スラット等の不透明材料については評価する規格がないのが現状である。しかし、不透明 材料についてもガラスの規格¹²⁾を引用して測定することはできる。ここでは、測定方法と 測定結果例を紹介する。

表 1.5,表 1.6 に示す小型ファイバーマルチチャネル分光器と小型積分球により、ブライン ドメーカー3 社のブラインドスラット 653 色とサッシメーカー4 社のアルミ形材 69 色、樹 脂形材 42 色の分光測定を行った。

通常、拡散反射成分がほとんどを占める一般の建築材料の反射率・透過率測定ではあらゆ る方向へ拡散する光を捕捉するために積分球を用いた。光源内蔵の小型ファイバーマルチ チャンネル分光器専用の 1.5 インチ φ の反射率測定用積分球(オーシャンオプティクス製 ISP-REF)である。光トラップの有り無を簡単に切り替えることが可能で、全反射率と拡 散反射率を測定できる。

日射の重価係数で重み付けした日射反射率(300~2100nm)と視感度で重み付けした可視 光反射率(380~780nm)との関係などについて検討した。

製品としてのブラインドスラットは曲面であるが、そのままでは測定できないため、製品 製造過程で抜き取った平らなサンプルとした。

ブラインドスラットの色別サンプル一覧を表 1.7 に示す。サンプルは同じ色系区分でも、 明度、色相、彩度が異なるため、それぞれ L*,a*,b*の最大値、最小値で表現した。

全メーカーのブラインド測定結果についての日射反射率と可視光反射率の相関を図 1.7 に示す。可視光反射率に比べ日射反射率が高いものが相関を悪くしていると考えられる。 これは同じ可視光反射率でも近赤外域での反射率が高い性質を持つということであり、こ の様な特徴を持たせたものに遮熱塗料と呼ばれるものもある。

表 1.5 小型積分球

	ISP-REF積分球			
積分球の径	1.5インチ			
サンプルポートロ径	10.32mm			
積分球コーティング	Spectralon(硫酸バリウムでドープされている)			
反射率	>98%(400-1500nm)、>95%(250-2000nm)			
反射率測定 全反射率/拡散反射率 選択可能				
バルブ/色温度	タングステンハロゲンランプ/3100K			
外観				

表 1.6 小型分光器

	HR2000	NIR256		
ディテクタ	2048 素子リニアシリコンCCD アレイ(SONY製 ILX511)	温度制御256素子InGaAs アレイ		
検出可能範囲	200-1100nm	0.9−2.1µ m		
データ転送速度	13msec	10msec		
積算時間	3msec~65sec	1msec~20sec		
外観		inner all		

表1.7 ブラインドスラットサンプル一覧

代表色	鱼玄区分	サンプル数	L	*	а	*	b	*	
1018 6			永四月 リンノル数	min	max	min	max	min	max
	ブラック	13	22.03	26.55	0.63	1.23	-5.20	-3.71	
	グレー	59	38.74	90.75	-5.96	4.94	-9.87	5.53	
	シルバー	21	67.76	86.66	-1.69	2.31	-2.31	1.60	
	ホワイト	26	84.97	92.23	-1.97	1.86	-1.84	2.17	
	オリーブ	6	71.09	77.26	-2.04	-0.08	11.23	15.57	
	オイスター	4	75.96	80.67	-1.51	1.62	5.66	8.80	
	アイボリー	50	78.48	90.90	-5.73	5.09	4.43	18.82	
	ベージュ	49	55.47	86.57	-2.39	15.09	4.66	38.14	
	ブルー	93	27.93	89.90	-28.99	14.09	-45.69	5.27	
	ラベンダー	32	49.59	86.55	0.49	22.93	-19.34	0.18	
	ピンク	81	50.09	86.12	3.71	39.88	-3.57	16.76	
	レッド	7	32.31	47.11	17.67	49.22	-2.12	23.56	
	オレンジ	8	57.33	82.30	11.98	44.28	19.65	38.23	
	グリーン	110	32.34	89.57	-3.04	-41.55	-7.20	45.18	
	イエロー	48	67.87	89.18	-11.36	22.22	10.94	67.27	
	ゴールド	4	73.35	80.97	0.02	10.40	20.81	21.85	
	ブラウン	24	34.09	70.45	0.86	17.40	0.89	23.85	
	ブロンズ	1	59.	46	-2.	25	17.	78	
	ウッディ	17	34.22	79.36	0.96	18.84	4.85	27.76	
	승計	653							

この関係を調べるため、日射反射率(300~2100nm)の内、近赤外部(800~2100nm)の反射率を可視部(300~780nm)の反射率で除した値の度数分布を図 1.9 に、また日射反射率を可視光反射率で除した値の度数分布を図 1.10 に示す。これらのグラフから日射反射率/可視光反射率が 1.5 倍以上の色を除き図 1.7 の整理をし直すと図 1.8 のようになり、相関が良くなる。

サッシ形材の色別サンプル一覧についてアルミを表1.8に樹脂を表1.9に示す。また、アル ミ、樹脂各々測定結果についての日射反射率と可視光反射率の相関を図1.11,図1.12に示す。 アルミについては、一部ブラウン色の日射反射率/可視光反射率が2倍以上あった。

樹脂については、ブルー、グリーン、レッドや樹脂形材で表面0.2mmのみベース材と異な る色をつける表層押出をしている色の日射反射率/可視光反射率が2倍以上あった。このため、 ブラインドスラット同様これらを除外した形で近似式を求めた。その結果、アルミ、樹脂 共に良い相関を示した。また、日射反射率の全反射にしめる拡散反射成分、正反射成分の 割合は、図1.13、図1.14に示すように概ねアルミで83%:17%、樹脂で87%:13%であった。 これらの結果より、計算に用いる場合、完全拡散と仮定して考えても影響は小さく問題ないと考えられる。

表1.8 サッシ形材サンプル一覧(アルミ)

化主角	色 色系区分	毎季区分 サンプル		L	*	a*		b*	
NAC		已示应力	6末四月 5	リンノル奴	min	max	min	max	min
	ブラック	10	24.70	28.93	0.90	3.82	-5.20	-1.70	
	グレー	10	33.32	84.78	0.30	3.57	-7.04	0.78	
	ブラウン	20	26.13	51.42	-22.38	6.80	-4.17	9.41	
	ステンカラー	15	57.55	85.13	0.27	5.21	1.57	9.46	
	シルバー	4	87.85	90.68	-0.16	0.29	-0.05	0.36	
	ホワイト	9	84.46	96.22	-1.55	0.49	1.58	10.16	
	木目	1	72.38		4.59		14.70		
	合計	69							

表1.9 サッシ形材サンプル一覧(樹脂)

化主角	布玄区公	キンプル教	L*		a*		b*	
NAC	已未应力	リンプル致	min	max	min	max	min	max
	ウッディ	21	34.40	78.53	5.86	17.76	-0.86	30.84
	ブラック	3	24.98	26.24	0.88	1.83	-4.91	-3.70
	グレー	3	32.60	60.52	0.86	2.93	-3.36	-0.68
	ブラウン	3	28.81	32.04	1.61	4.37	-1.73	-0.58
	ステンカラー	1	59.	32	1.8	36	1.0)9
	シルバー	2	56.97	64.89	2.37	2.86	2.46	3.82
	ホワイト	5	83.75	95.99	-1.24	0.54	1.11	7.17
	ベージュ	1	69.	88	17.	19	28.	.00
	レッド	1	41.	20	28.	05	16.	37
	グリーン	1	30.	99	-12	.92	-8.	13
	ブルー	1	26.	41	3.3	31	-19	.10
	合計	42						

また、これらの測定結果より、窓に用いられるアルミフレーム及び樹脂フレームの色を簡 易に区分し、各々の日射吸収率及び反射率を整理すると表 1.10 及び表 1.11 と提案できる。

90

カラー	色系区分	日射 (反射率)	日射 (吸収率)				
	ホワイト	75	25				
	シルバー	75	25				
	ステンカラー	50	50				
	グレー	25	75				
	ブラウン	20	80				

表1.10 アルミフレームの日射吸収率と反射率(%)

表1.11 樹脂フレームの日射吸収率と反射率(%)

10

ブラック

カラー	色系区分	日射 (反射率)	日射 (吸収率)	
	ホワイト	75	25	
	グレー	30	70	
	ブラウン	15	85	
	ブラック	10	90	

1.2.4 入射日射の計算法

建物の開口部は一般的に各方位の壁面及び屋根面に設置されている。これら開口部に対し、 入射日射量を計算予測する必要がある。

国内では、拡張アメダス気象データ³¹⁾が最も普及されている気象データであり、この中に 納められている標準気象データを用いてシミュレーションを行うため、必要な気象データ 計算法はここから引用した。

(1) 直散分離法

通常入手できる日射量観測値は、水平面全天日射量であることが多い。しかし建物の日射 受熱量を評価する場合は壁や屋根等の任意面が受ける日射量が必要となる。任意面が受け る日射量を計算するためには、直達日射量と散乱日射量の両方を知らなければならない。 そのため、水平面全天日射量を直達成分と散乱成分に分離する必要がある。このように水 平面全天日射量を直達・散乱成分に分離する方法を直散分離法と呼ぶ。

水平面全天日射量、法線面直達日射量、散乱日射量には次の関係式が成り立つ。

 $I_{G} = I_{b} \sinh + I_{d}$ ・・・(1.13) ここで I_{G} :水平面全天日射量 [W/m²] I_{b} :法線面直達日射量 [W/m²] I_{d} :水平面散乱日射量 [W/m²]

h :太陽高度 [°]

水平面全天日射量(I_G)が既知の場合、法線面直達日射量(I_b)もしくは水平面散乱日射量 (I_d)の推定式(モデル)が与えられれば、もう一方の日射成分は容易に計算することがで きる。

$$I_{d} = I_{G} - I_{b} \sinh \qquad \cdot \cdot \cdot (1.14)$$
$$I_{b} = \frac{I_{G} - I_{d}}{\sinh} \qquad \cdot \cdot \cdot (1.15)$$

水平面全天日射量から直達日射もしくは散乱日射を推定するモデルはこれまで国内外に 研究者により多くのモデルが提案されているが、本論文ではEA気象データが推奨するPerez モデルを参照した。

晴天・曇天問わず時別の水平面全天日射量と露点温度により法線面直達日射量を推定する モデルであり次式で計算できる。

$$I_{b} = I_{0} \{ K_{nc} - [A + B \exp(mC)] \} X (K_{t}, Z, W, \Delta K_{t}) \qquad \cdot \cdot \cdot (1.16)$$

$$K_{nc} = 0.866 - 0.122 \text{m} + 0.0121 \text{m}^2 - 0.000653 \text{m}^3 + 0.000014 \text{m}^4$$

•••(1.17)

$$K_t = \frac{I_G}{I_0 \sinh} \qquad \cdot \cdot \cdot (1.18)$$

 $K_t \leq 0.6$

$$A = 0.512 - 1.560K_t + 2.286K_t^2 - 2.222K_t^3 \qquad \cdot \quad \cdot \quad (1.19)$$
$$B = 0.370 + 0.962K_t \qquad \cdot \quad \cdot \quad (1.20)$$

$$C = -0.280 + 0.932K_t - 2.048K_t^2 \qquad \cdot \cdot \cdot (1.21)$$

 $K_{t} > 0.6$

$$A = -5.743 + 21.77K_t - 27.49K_t^2 + 11.56K_t^3 \qquad \cdot \quad \cdot \quad (1.22)$$

$$B = 41.40 - 118.5K_t + 66.05K_t^2 + 31.90K_t^3 \qquad \cdot \cdot \cdot (1.23)$$

$$C = -47.01 + 184.2K_t - 222.0K_t^2 + 73.81K_t^3 \qquad \cdot \quad \cdot \quad (1.24)$$

$$K_{t}' = \frac{K_{t}}{\left[1.031 \exp\left(\frac{-1.4}{0.9 + \frac{9.4}{m}}\right) + 0.1\right]} \quad \cdot \cdot (1.25)$$
$$\Delta K_{t}' = 0.5 \left(\left|K_{ti}' - K_{ti+1}'\right| + \left|K_{ti}' - K_{ti-1}'\right|\right) \quad \cdot \cdot (1.26)$$

$$W = \exp(0.07T_d - 0.075) \qquad \cdot \cdot \cdot (1.27)$$

$$m = \frac{1.0}{\sinh + 0.15 (93.885 - Z_d)^{-1.253}} \cdot \cdot \cdot (1.28)$$

$$I_0$$
 :法線面大気外日射量 [W/m²]
 I_G :水平面全天日射量 [W/m²]
 K_t :晴天指数 [-]
 Z : 王頂魚 [red]

$$Z_d$$
 : 天頂角 [°]

h : 太陽高度 [°] $T_d : 露点温度 [℃]$ W : 可降水量 [cm] m : relative air mass[-] i : 当該時刻[-] $X(K'_i, Z, W, \Delta K'_i) : coefficient function[-]$

(2) 斜面日射量の計算

斜面日射量は、観測または直散分離により得られた法線面直達日射量、水平面散乱日射量 を斜面に変換し、地表面反射日射量を加算して次式で得られる。

 $I_{T,G} = I_{T,b} + I_{T,d} + I_{T,r}$ (1.29)

$$I_{T,b} = I_b \cos i \qquad \qquad \cdot \cdot \cdot (1.30)$$

$$I_{T,d} = I_d F \qquad \qquad \cdot \cdot \cdot (1.31)$$

$$I_{T,r} = I_G \frac{1 - \cos\beta}{2}\rho \qquad \qquad \cdot \cdot \cdot (1.32)$$

ここで

- *I_{T,G}* :斜面全日射量 [W/m²]
- *I_{T,b}* :斜面直達日射量 [W/m²]
- *I_{T,d}* :斜面散乱日射量 [W/m²]
- *I_{T,r}* : 地表面反射日射量 [W/m²]
- *I*_G : 水平面全天日射量 [W/m²]
- *I*_b :法線面直達日射量 [W/m²]
- *I*_d :水平面散乱日射量 [W/m²]
- *i* : 直達日射量の入射角 [°]
- β :水平面に対する斜面の傾斜角 [°]
- ρ : アルベド [-]

式(1.32)は斜面に入射する反射日射が斜面全面の地物で完全拡散されると仮定されている。 式(1.31)の F は斜面散乱日射量が水平面散乱日射量に占める割合を表す関数であり、各モ デルの天空放射輝度分布の取り扱いにより異なる。天空の放射輝度分布が一様と仮定した 場合は Isotropic モデルがよく用いられる。しかし、実際の天空の放射輝度分布は太陽の位 置や天空の状態(晴天や曇天等)により著しく変化するため、近年では、天空の放射輝度 分布を考慮した種々のモデルが提案されている。本論文では EA 気象データが推奨する Isotropic モデル及び Perez モデルを参照した。

・Isotropic モデル

天空の放射輝度分布を一様と仮定し、斜面から天空を見る形態係数によって斜面散乱日射 量を計算するモデルである。

$$F = \frac{1 + \cos\beta}{2} \qquad \qquad \cdot \cdot \cdot (1.33)$$

・Perez モデル

散乱日射量を分布が一様な散乱日射量、準直達日射量、地平線付近からの散乱日射量の3 成分に分け、8種類の天空状態別に散乱日射量に占める各成分比を決定するモデルである。

式(1.34)の第1項は一様散乱日射量、第2項は準直達日射量、第3項は地平線付近からの 散乱日射量を表している。なお、*ε*による *F*₁₁~*F*₂₃の値を表 1.12 に示す。

表 1.12 Perez モデルの係数値

3	<i>F</i> ₁₁	F ₁₂	F ₁₃	F ₂₁	F 22	F 23
1.000~1.065	-0.008	0.588	-0.062	-0.06	0.072	-0.022
1.065~1.230	0.13	0.683	-0.151	-0.019	0.066	-0.029
1.230~1.500	0.33	0.487	-0.221	0.055	-0.064	-0.026
1.500~1.950	0.568	0.187	-0.295	0.109	-0.152	-0.014
1.950~2.800	0.873	-0.392	-0.362	0.226	-0.462	0.001
2.800~4.500	1.132	-1.237	-0.412	0.288	-0.823	0.056
4.500~6.200	1.06	-1.6	-0.359	0.264	-1.127	0.131
6.200~	0.678	-0.327	-0.25	0.156	-1.377	0.251

1.2.5 期間熱負荷計算法

期間熱負荷を算出する方法には、大きく分けて簡易計算法とシミュレーションによる計算 法がある。シミュレーションは詳細に算出することが目的であり、計算モデル作成に時間 を要する。そのため、代表モデルで性能評価されることが多い。戸建住宅分野では SMASH や AE-Sim/Heat 等がこれに該当する。ビル分野では HASP、BEST 等がこれに該当する。簡 易計算法は表計算ソフトで簡易に計算できることが目的であり、建物の仕様及び建設地域 が把握できれば計算に時間は要さない。ビルはほとんど全てがオリジナル仕様と言っても 過言ではなく、代表モデルという評価は難しい。国内の省エネルギー基準³²⁾³³⁾では、PAL 計算(Perimeter Annual Load, 年間熱負荷係数)³⁴⁾で評価することが義務付けられている。 以下に PAL 計算で用いられている拡張デグリーデー法³⁴⁾について概説する。

拡張デグリーデー法は、建物外皮の貫流熱・透過日射熱・内部発熱・実効放射熱・換気熱の移動と建物の使用スケジュールを考慮して様々な地域・方位の暖冷房負荷を算出する。 期間暖冷房負荷の算出式を以下に示す。

(1) 期間暖房負荷算出式

$$Q_{H} = 0.0864 \cdot k_{H} \sum_{if 0>0} \left\{ \left(U_{T}^{*} + C_{v} \cdot V \cdot A_{p} \right) \cdot \left(\theta_{d} - \theta_{o} \right) - \eta_{T} \cdot I_{s} + \frac{\varepsilon}{\alpha_{o}} \cdot U_{T}^{*} \cdot I_{\ell} - G \cdot A_{p} \right\}$$

$$\cdot \cdot \cdot (1.35)$$

$$= 0.0864 \cdot k_{H} \cdot U_{T} \cdot \sum_{if \ 0>0} \left(\theta_{ref} - \theta_{o} - \rho \cdot I_{s} + \frac{\varepsilon}{\alpha_{o}} \cdot \sigma \cdot I_{\ell} \right) \qquad (1.36)$$

$$= 0.0864 \cdot k_H \cdot U_T \cdot EHD$$

· · · (1.37)

ここで

 Q_H :期間暖房負荷 [MJ/年] k_H :各種建物用途に対する暖房期間の地域補正係数 [-] EHD :拡張暖房デグリーデー [K·day/年] U_T^* :外皮の総熱貫流率 [W/K] C_v :容積比熱 [MJ/(m²·K)] V :取入外気量 [m³/(m²·h)] A_p : ペリメーターゾーンの床面積 [m²] θ_d :設定室温 [°C] θ_o :外気温 [°C] η_T :総日射侵入率 [-]

*I*_s :日射量 [W/m²]

 ε :長波放射率 [-] α_{o} :外表面の熱伝達率 [W/(m²·K)] I_{ℓ} :実効放射量 [W/m²] G :内部発熱密度 [W/m²] $U_{T} = U_{T}^{*} + C_{v} \cdot V \cdot A_{p}$:総熱貫流率 [W/K] $\theta_{ref} = \theta_{d} - G \cdot A_{p}/U_{T}$:設定室温 [°C] $\rho = \eta_{T}/U_{T}$:侵入貫流比 [K·m²/W] $\sigma = U_{T}^{*}/U_{T}$ 0.0684 は単位変換 (day→hour、Wh→MJ) のための係数

(2) 期間冷房負荷算出式

$$Q_{C} = 0.0864 \cdot k_{C} \sum_{i \neq 0 > 0} \left\{ \left(U_{T}^{*} + C_{v} \cdot V \cdot A_{p} \right) \cdot \left(\theta_{o} - \theta_{d} \right) + \eta_{T} \cdot I_{s} - \frac{\varepsilon}{\alpha_{o}} \cdot U_{T}^{*} \cdot I_{\ell} + G \cdot A_{p} \right\}$$

$$\cdot \cdot \cdot (1.38)$$

$$= 0.0864 \cdot k_{C} \cdot U_{T} \cdot \sum_{if \mid 0 > 0} \left(\theta_{o} - \theta_{ref} + \rho \cdot I_{s} - \frac{\varepsilon}{\alpha_{o}} \cdot \sigma \cdot I_{\ell} \right) \qquad (1.39)$$

$$= 0.0864 \cdot k_C \cdot U_T \cdot ECD$$

ここで

 Q_c : 期間冷房負荷 [MJ/年]

k_c:各種建物用途に対する冷房期間の地域補正係数 [-]

ECD: 拡張冷房デグリーデー [K・day/年]

暖冷房負荷計算には、多くの変数が存在するが、拡張暖冷房デグリーデー(EHD、ECD) は地域、方位、侵入貫流比(ρ)、参照温度(θ_{ref})を変数として拡張デグリーデー表³⁵⁾にまと められている。よって、ユーザーはこの表の値と総熱貫流率(U_T)と地域補正係数(k_H,k_C)を乗 じることにより簡易に計算できる。

拡張デグリーデー法において、式(1.35)及び式(1.40)が示すように、開口部を含む外皮の熱 貫流率及び日射熱取得率が期間暖房負荷、期間冷房負荷に直接影響していることがわかる。

但し、日射による侵入熱量は、垂直入射時の日射熱取得率に壁面に照射される日射量を乗 じた形になっている。

さらにこれらの性能はガラスとブラインドのみで、フレームを含んでいない性能で計算している。

1.3本研究の目的

本研究では、ISO、JIS 等の規格や既往の研究を基に、建物の熱負荷計算をより精度よく 計算で評価できることを目的としている。

開口部の熱性能を評価する上で、熱貫流率と日射熱取得率は重要な性能と言える。

建築の開口部と言っても、窓と呼ばれる単体の開口部だけでなく、ガラスカーテンウォー ルのような全面ガラスでできた開口部もある。

製品の性能を評価するためには計算法と測定法があるが、それぞれに利点と難点があるため、両者が互いに補完することが望ましいと考える。

屋内で行う測定法は、決められた条件下で製品の性能が得られる利点はある。しかし、設備の構築や試験の実施には多大な費用及び時間が必要であり、再現性や測定条件の変更等 に難点がある。屋外で行う測定法は、実際の現象の中で行うため、実用的な結果が得られ るが屋内のように決められた条件にならないため、現象を把握するという点で難点がさら に増える。

対して計算法は、条件の変更が容易で再現性があり多くの評価を短時間で実行することが できる。海外では計算による評価が広く行われ、規格の整備や評価ツールの開発が進んで いる。但し、あくまでも計算は実際に起きている現象から得られる性能を簡易に再現でき る手段であり、理論を追い求めて実際に起きている現象と乖離があっては使うことはでき ない。また、詳細に解析で求めただけでは、一般的に広く普及できない。

そのため、本研究では測定法と計算法の両面から以下の3つの課題に取り組むこととした。 ①建物全体で取得する日射熱を正しく計算で評価する

・フレームを考慮した斜入射に対する日射熱取得率計算法を開発する

- ・計算法だけでなく測定法で得られた結果と比較を行い実証する
- ・従来の熱負荷計算法と比較し影響を確認する

②カーテンウォールの熱性能計算法の開発する

・フレームを考慮したカーテンウォールの熱性能計算法を開発する

・窓同様、斜入射に対する日射熱取得率計算法を開発する

③簡易計算法を開発する

・建物の熱負荷計算に使えるように、解析を必要としない簡易な計算法を提案する

得られた成果を統合することで現在の日射による侵入熱量の考え方を変えることに貢献 でき、住宅や建築物でのより熱性能のバランスのよい商品の選択が促進され、暖冷房エネ ルギー消費量削減の促進と地球環境への影響低減の一助となると考える。

1.4本論文の構成

本論文は8章より構成され、各章の概要は以下の通りである。

第1章では、序論として本研究の社会的背景と目的を述べ、関連する既往の研究を概説 して本研究の位置付けを述べる。

第2章では、斜入射時における窓フレームを考慮した開口部の日射熱取得率の詳細計算 法について述べる。直達成分は、窓面に対して垂直入射だけでなく斜入射で日射があたっ た場合のガラスの入射角度特性、フレーム自身の色違いによる受熱分の影響及びフレーム からガラス面に落とす影の影響を考慮して計算を行った。その結果、フレームの色違いに よる受熱分及びフレームから落とす影の影響は小さいため、計算に考慮しなくてもよいこ とを示した。散乱成分については、地面に対して垂直に設置される窓という特性を考慮し て入射角度を半球積分で求めた結果、垂直入射分の約0.81倍より小さい値となることを確 認し、各種ガラス種及び、フレームを考慮した場合の計算値を示した。

第3章では、実製品を使って簡易にフィールドで斜入射に対する日射熱取得率が測定で きる装置について述べる。詳細に全ての現象を測定していないため、測定結果を計算結果 と比較すると、多少差異はあるものの、計算と類似した傾向が測定結果データに表れるこ とを示した。この結果、直達成分・散乱成分ともに計算法を用いてもよいことを示した。 その他、フィールド測定データから窓の熱貫流率の比較を行った。

第4章では、窓以外の開口部として、カーテンウォールのフレームを考慮した熱性能計 算法について述べる。国際的な規格が確立していないため、伝熱開口面積のとりかたにつ いて欧州規格を基に検討した。また、窓フレーム部の汎用的計算法をカーテンウォールに 応用し、解析モデル化範囲及び断熱・遮熱性能の算出方法を検討した。構造の異なる6種 類のフレームで検討した結果、開口部、腰部それぞれで共通の傾向があることを示した。

第5章では、カーテンウォールのフレームを建物の熱負荷計算に用いることができる簡易計算法について述べる。第4章の詳細計算結果を基に、簡易計算法を提案した。また、 腰部の日射熱取得率は、表面をガラスで構成しているため、PAL計算で行われている壁の 日射熱取得率計算法では過小評価となる。そのため、ガラスカーテンウォール用の簡易計 算法を提案した。詳細計算法と簡易計算法の差は数%以内となることを示した。 第6章では、カーテンウォールで第2章と同様の斜入射に対する計算法について述べる。 カーテンウォールでは、フレーム面とガラス面を極力フラットにする傾向があるため、開 口部におけるフレームが落とす影の影響は小さく、計算に考慮しなくてもよいことを示し た。また、日よけ部材がついた場合は、PAL 計算に用いられている日よけ効果計算式と比 較して、直達成分については日よけ効果計算式をそのまま用いてもよいことを示した。

第7章では、第2章及び第6章の結果を用いて、地域別の侵入熱量を、従来のシミュレ ーションで用いられている計算法と比較した。また、フレームと斜入射を考慮した場合、 建物の熱負荷計算に及ぼす影響を確認した。

第8章では、結論として本研究で得られた検討結果及び知見をまとめた。さらに今後の 研究によって解決すべき課題を整理し、展望を述べる。

図 1.14 に本論文の構成と流れを示す。

図 1.14 本論文の構成と流れ

参考文献

- 1) 潮田健次郎:熱意力闘「私の履歴書」,日本経済新聞出版社,2011.9
- 2) 平成 22 年度版「住宅用建材使用状況調査」,(社)日本サッシ協会,2011.3
- 3) "わかりやすいサッシ・ドア性能"「BASIS」2010, (社) 日本サッシ協会,2010
- 4) 自立循環型住宅への設計ガイドライン,(財)建築環境・省エネルギー機構,2006
- 5) 工業標準化法,2005.7.26 改正
- 6) JIS A 4710:2004, 建具の断熱性試験方法
- 7) ISO 10077-1:2006, Thermal performance of windows, doors and shutters -- Calculation of thermal transmittance -- Part 1:General
- 8) ISO 10077-2:2003, Thermal performance of windows, doors and shutters -- Calculation of thermal transmittance -- Part 2:Numerical method for frames
- 9) JIS A 2102-1:2011, 窓及びドアの熱性能-熱貫流率の計算-第1部:一般
- 10) JIS A 2102-2:2011, 窓及びドアの熱性能-熱貫流率の計算-第2部:フレームの数値計算
- 11) ISO 9050:2003, Glass in building Determination of light transmittance, solar direct transmittance, total solar energy transmittance, ultraviolet transmittance and related glazing factors
- 12) JIS R 3106:1998, ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法
- 13) 住宅の省エネルギー基準の解説,(財)建築環境・省エネルギー機構,2009
- 14) http://www.nedo.go.jp/
- 15) SMASH for Windows Ver.2 ユーザーマニュアル: (財)建築環境・省エネルギー機構,2004
- 16) AE-Sim/Heat 操作マニュアル:(株)山内設計室,2009
- 17) ISO12567-1:2010, Thermal performance of windows and doors -- Determination of thermal transmittance by the hot-box method -- Part 1: Complete windows and doors
- 18) ISO12567-2:2005, Thermal performance of windows and doors -- Determination of thermal transmittance by hot box method -- Part 2: Roof windows and other projecting windows
- 19) JIS A 4710:1996, 建具の断熱性試験方法
- 20) JIS R 3107:1998, 板ガラス類の熱抵抗及び建築における熱貫流率の算定方法
- 21) ISO10292:1994, Glass in building -- Calculation of steady-state U values (thermal transmittance) of multiple glazing
- 22) ISO 15099:2003, Thermal performance of windows, doors and shading devices Detailed calculations
- 23) EN13947:2006, Thermal performance of curtain walling -- Calculation of thermal transmittance
- 24) ISO/DIS 12631, Thermal performance of curtain walling -- Calculation of thermal transmittance
- 25) C. W. Pennington, William A. Smith, Erich A. Farber and John C. Reed, Experimental analysis of solar heat gain through insulating glass with indoor shading, p27-37, ASHRAE JOURNAL, Feb., 1964
- 26) 建設省総合技術開発プロジェクト「省エネルギー住宅システムの開発報告書」,(財)住 宅・建築省エネルギー機構,1983
- 27) S. J. Harrison and F.M. Dubrous, Determination of Window Thermal Characteristics Using Solar-Simulator-Based Test Method, p912-919, ASHRAE Transaction, 1990
- 28) S.J. Harrison and FM. Dubrous, Uncertainties in the Evaluation of Window SHGC and U-Values Measured Using an Indoor Solar Simulator Facility, p 638, ASHRAE Transaction, 1992
- 29) 倉山千春:開口部の日射熱取得率測定法に関する研究 開口部の断熱・遮熱性能 その 1,日本建築学会環境系論文集,第604号,pp.15-22,2006年6月
- 30) ASHRAE standard 142 draft, Standard Method for Determining and Expressing the Heat Transfer and Total Optical Properties of Fenestration Products
- 31) 赤坂裕 他: 拡張 AMeDAS 気象データ 1981-2000,日本建築学会,2005
- 32) エネルギーの使用の合理化に関する法律, 2008.5.30 改正
- 33) 平成 15 年経済産業省・国土交通省告示第1号: 建築物に関わるエネルギーの使用の合理化に関する建築主の判断基準, 2003.2.24 改正
- 34) 建築物の省エネルギー基準と計算の手引(平成18年度版),(財)建築環境・省エネル ギー機構,2006.9
- 35) 改訂拡張デグリーデー表,(財) 建築環境・省エネルギー機構,2003.5
- 36) 田中俊六 他:最新建築環境工学,井上書院,1989
- 37) 遮熱計算法に関する研究報告書,(社)リビングアメニティ協会, 平成13年度(2002.3),
 平成14年度(2003.3), 平成15年度(2004.3), 平成16年度(2005.3), 平成19年度(2008.3)

第2章 開口部の斜入射に対する日射熱取得率計算法

2.1はじめに

建物の熱負荷の中で、日射による熱エネルギーの影響は大きい。建物内に取得すれば、冬 期の暖房負荷は軽減され、夏期の冷房負荷は増大する。この日射による熱エネルギーを建 物内に取り込む役割が開口部であり、この取得熱量を正しく評価できなければ、建物の熱 負荷計算は正しく評価できない。

地球温暖化対策に向けて改正された省エネ法¹⁾及び住宅の省エネルギー基準²⁾は、住宅分 野の省エネルギーの普及・定着を主眼に改正されたものであり、この中でも開口部熱性能 は住宅熱性能に大きく影響を及ぼす部位であり多くの要望がある。

これまでの研究³により、開口部の断熱性能及び遮熱性能の計算法及び測定法を確立して きた。住宅熱負荷計算^{4,5)}もこの値を用いて行われている。

しかしながらこの計算法及び測定法の日射の入射角度は開口部に対して垂直入射のみで あり、斜入射を考慮していない。

垂直入射では、窓フレームからガラス面へ影を落とすことはほぼないが、斜入射を考慮す ると窓フレームからフレーム自身やガラス面へ影を落とすこととなる。この影の影響がど の程度あるのか、現状の垂直入射時の日射熱取得率から予測が可能なのか、個々の入射角 で解析する必要があるか明確にする必要がある。

また、斜入射は直達成分を考慮した場合であり、天空及び地物反射といった散乱成分を考 慮した場合も必要となる。

ここでは、斜入射及びフレームを考慮した直達成分の開口部の日射熱取得率計算法及び散 乱成分を考慮した開口部の日射熱取得率計算法について述べる。

2.2 直達日射に対する開口部の計算法

垂直入射と斜入射の計算法の違いは、日射の入射角度が異なることと、窓フレーム材のよ うな不透明材料に日射があった場合、その先に透過せず影を作ることを考慮した計算プロ グラムとすることである。よって、窓及び各部の日射熱取得率を算出する式は基本的に垂 直入射時と同じと考えてよいが、フレームからガラス面へ落とす影の影響を考慮する必要 がある。

直達日射に対する窓全体の日射熱取得率は算出式(2.1)で整理できる。

$$\eta_{w}(\theta) = \frac{\sum A_{g} \eta_{g}(\theta) S_{f}(\theta) + \sum A_{f} \eta_{f}(\theta)}{A_{w}} \qquad (2.1)$$

ここで

 $\eta_w(\theta)$:入射角 θ に対する窓全体の総合日射熱取得率 [-] $\eta_g(\theta)$:入射角 θ に対するガラス部の日射熱取得率 [-] $\eta_f(\theta)$:入射角 θ に対するフレーム部の日射熱取得率 [-] $S_f(\theta)$:入射角 θ に対するフレーム部影による日射熱取得減衰係数 [-] A_w :伝熱開口面積 [m²] A_g :ガラス部の見付面積 [m²] A_f :フレーム部の見付面積 [m²]

2.2.1 フレーム部の計算法

フレーム部の直達日射に対する日射熱取得率算出方法は、算出式(2.2)で整理できる。また、 解析モデルイメージを図 2.1 に示す。2次元解析モデルに日射受熱の発熱条件を設定したモ デル(図 2.1(b))を用いて、日射を受けた場合の室内への熱流束から日射を受けない場合(貫 流分)の熱流束を差引いた値を日射強度で除して算出する。

$$\eta_f(\theta) = \frac{q_{in,f}(\theta) - q_{in,f}(I_s = 0)}{I_s} \qquad (2.2)$$

ここで

η_f(θ):入射角θに対するフレーム部の日射熱取得率 [-] q_{in,f}(θ):入射角θに対するフレーム部の入射日射がある場合の室内への熱流束 [W/m²] q_{in,f}(I_s=0):フレーム部の入射日射がない場合の室内への熱流束[W/m²]

 I_s :入射日射強度 [W/m²]

このとき、算出式(2.2)に入る q_{inf}は、図 2.1(a)に示すようにフレームを含む 2 次元熱流 計算モデルから、斜入射は考慮しているがフレームが落とす影の影響を受けていないガラ ス単体の 1 次元熱流を差引いて求める。そのため 2 次元熱流分の影響及び影の影響は、フ レームに残ることとなる (q_{inf}(Is=0)は同様に 2 次元熱流分の影響はフレーム部に残る形と なる)。しかし、この計算手法では純粋なフレーム成分ではないため式(2.1)が成り立たない。

本計算プログラムを用いた場合、斜入射時のガラス面へ落とす影の影響についてガラスの 透過分は考慮せず、日射吸収による再放熱分のみ判定しているため、解析結果後の熱流量 (Q_{in}) に影長さ分の熱流量を別途加算するもしくは、ガラス長さ (b_s) から影長さ (b_s) を除い た残りの分の熱量だけを解析結果後の熱流量 (Q_{in}) から差し引く必要がある。

よって、算出式(2.2)のフレーム部の熱流束: qinf 及び qinf (Is=0)の算出式は以下となる。

$$q_{in,f}(\theta) = \frac{Q_{in}(\theta) + q_{in,g}(\theta) \cdot b_s - q_{in,g}(\theta) \cdot b_g}{b_f} = \frac{Q_{in}(\theta) - q_{in,g}(\theta) \cdot (b_g - b_s)}{b_f} \cdot \cdot \cdot (2.3)$$

$$q_{in,f}(I_s = 0) = \frac{Q_{in}(I_s = 0) - q_{in,g}(I_s = 0) \cdot b_g}{b_f} \cdot \cdot \cdot (2.4)$$

ここで

q_{in,f}(θ):入射角 θ に対するフレーム部の入射日射がある場合の室内への熱流束 [W/m²]

Q_{in}(θ):入射角θに対する入射日射があるモデル全体の室内への熱流量 [W/m] *q_{in,g}(θ)*:入射角θに対するガラス部の入射日射がある場合の室内への熱流束

 $[W/m^2]$

 $q_{in,f}(I_s=0): フレーム部の入射日射がない場合の室内への熱流束 [W/m]$ $<math>Q_{in}(I_s=0): 入射日射がないモデル全体の室内への熱流量 [W/m]$ $q_{in,g}(I_s=0): ガラス部の入射日射がない場合の室内への熱流束 [W/m]$ $<math>b_f: フレーム部の見付長さ [m]$ $b_g : ガラスの見付長さ [m]$ $b_s: フレームからガラス面に落ちる影の見付長さ [m]$

斜入射特性を考慮した日射熱取得率の計算は、既往の研究³⁾より境界要素法二次元定常熱解析プログラム「TB2D/BEM (Thermal Bridge Computation by 2-Dimensional Boundary Elements Method)」³⁾を用いた。日射は方向ベクトルで与えているため、2次元断面に(x, y)成分を入力する。上下枠のような横部材に垂直な日射を与える場合は、(1,0)となる。

斜入射の場合は3次元の入射角を考慮するため、(x,y)成分だけでは、横部材断面(上下 フレーム)は太陽方位角度が考慮できない。また、縦部材断面(縦フレーム)は太陽高度 が考慮できない。そこで、プロファイル角を別途角度で与える方法とした。入射角度のイ メージを図2.2に示す。断面内で示すことができる入射方位角φと断面図中に示すことので きないプロファイル角θという2つの角度で表現している。入射方位角φは、2次元方向ベクトル(x,y)で示す。プロファイル角θは入力データ内で数値により指定する。解析にあたっては日射の受照のある枠面やガラス面仮想面では、各面の法線方向と入射方位角を計算し、その角度の余弦の大きさにしたがった発熱を与える。図2.2(b)の縦部材の場合、外気側をy軸の正方向、室内側を負の方向とするとき、日射の方向ベクトルは次式で表される。

図2.1 窓の斜入射を考慮した解析モデルイメージ図(嵌め殺し窓)

 $x = \cosh \times \sin \phi$ ・・・(2.5) $y = -\cosh \times \cos \phi$ ・・・(2.6)同様に横部材の場合は外気側をx軸の負の方向、室内側を正方向とすると次式で表される。 $x = \cosh \times \cos \phi$ ・・・(2.7) $y = \sinh$ ・・・(2.8)

図2.2 部材断面別の斜入射の表現と日射の方向

フレーム部の表面にはフレーム色特有の日射吸収率が値で与えられており、日射を受照、 吸収、発熱をする。吸収率が設定されているということは、残り(1-日射吸収率)は日射反 射率となる。本計算プログラムでは、反射成分を完全拡散として 1 回反射のみ考慮してい る。また、計算モデル内に含まれているガラス部は、反射成分について自動的に計算を行 う設定にはなっていない。鏡面反射とみなして反射した日射を受けるフレーム材表面の日 射吸収率の日射受照割合を 1+日射反射率とすることで反射日射に応じた吸収を行うように なっている。

2.2.2 ガラス部の計算法

(1) ガラスの斜入射日射特性

ガラスの斜入射計算は板硝子協会でまとめた近似式を用いた³⁾。

板硝子メーカー各社から提供された各種板ガラスデータを基に基準化した透過率・反射率 に整理し、入射角度別の日射透過率及び日射反射率は次式のように入射角度の余弦の 5 次 の多項式で近似している。

$$\tau(\theta) = \tau(0) \sum_{i=0}^{5} m_{i} \cos^{i} \theta \qquad \cdots (2.9)$$

$$\rho(\theta) = \rho(0) + (1 - \rho(0)) \sum_{i=0}^{5} m_{i} \cos^{i} \theta \qquad \cdots (2.10)$$
ここで
$$\tau(0) : 垂直入射 (入射角度 0^{\circ}) のときの日射透過率 [-]$$

$$\rho(0) : 垂直入射 (入射角度 0^{\circ}) のときの日射反射率 [-]$$

 $\rho(\theta): 入射角度 \theta$ のときの日射反射率 [-]

垂直入射時の日射透過率・反射率はガラスの板厚により異なる値となるが、入射角特性の 曲線は板厚によらない形で整理されている。

また、表 2.1 に基準化透過率・反射率の近似式の係数(mi)を示す。

板ガラス品種分類	透過率 反射率	m ₀	<i>m</i> ₁	<i>m</i> ₂	m ₃	m4	m ₅
本田フロート セギラフ	Т	0.000	2.552	1.364	-11.388	13.617	-5.146
透明ノロード板カリス	ρ _g	1.000	-5.189	12.392	-16.593	11.851	-3.461
	Т	0.000	2.273	1.631	-10.358	11.769	-4.316
Low-Eガラス	ρ _g	1.000	-5.084	12.646	-18.213	13.967	-4.316
	ρ _f	1.000	-4.387	9.175	-11.152	7.416	-2.052

表2.1 基準化透過率・反射率の近似式の係数

※ τ:透過率、 ρ_g: ガラス面反射率、 ρ_f: 膜面反射率

(2) ガラス部の多重反射計算

図 2.3 に示すような 2 層で構成された複層ガラスを考える。ガラス 1 及びガラス 2 の日射 吸収率、日射透過率、日射反射率をそれぞれ *a*₁、 *τ*₁、 *ρ*₁及び *a*₂、 *τ*₂、 *ρ*₂とする。

1番目と2番目の層で構成された複層ガラスの透過率 $\tau_{I,2}$ 、反射率 $\rho_{I,2f}$ (front 側からの入射に対する反射率) は多重反射を考慮して次式で表わされる^の。

$$\tau_{1,2} = \tau_1 \tau_2 \Big(1 + \rho_{1b} \rho_{2f} + \rho_{1b}^2 \rho_{2f}^2 \cdots \Big) = \frac{\tau_1 \tau_2}{1 - \rho_{1b} \rho_{2f}} \qquad \cdot \cdot \cdot (2.11)$$

$$\rho_{1,2f} = \rho_{1f} + \tau_1^2 \rho_{2f} + \tau_1^2 \rho_{1b} \rho_{2f}^2 + \dots = \rho_{1f} + \frac{\tau_1^2 \rho_{2f}}{1 - \rho_{1b} \cdot \rho_{2f}} \qquad (2.12)$$

ここで

τ_{1,2}:1番目と2番目の層に挟まれた部分の透過率 [-]
 ρ_{1,2f}:1番目と2番目の層に挟まれた部分のフロント側入射に対する反射率 [-]
 τ₁:1番目の層の透過率 [-]
 τ₂:2番目の層の透過率 [-]
 ρ_{1f}:1番目の層のフロント側入射に対する反射率 [-]
 ρ_{1b}:1番目の層のバック側入射に対する反射率 [-]
 ρ_{2f}:2番目の層のフロント側入射に対する反射率 [-]

また、front側からの入射に対する1番目と2番目の層での吸収率は次式で計算される。

$${}_{1}a_{2} = a_{1}\left(1 + \tau_{1}\rho_{2f} + \tau_{1}\rho_{1b}\rho_{2f}^{2} + \cdots\right) = a_{1}\left(1 + \frac{\tau_{1}\rho_{2f}}{1 - \rho_{1b}\rho_{2f}}\right) \quad (2.13)$$

$${}_{2}a_{2} = a_{2}\tau_{1}\left(1 + \rho_{b1}\rho_{2f} + \rho_{1b}^{2}\rho_{2f}^{2} + \cdots\right) = \frac{a_{2}\tau_{1}}{1 - \rho_{1b}\rho_{2f}} \qquad \cdot \cdot (2.14)$$

ここで

 1a2:1番目の層の front 側入射に対する吸収率 [-]

 2a2:2番目の層の front 側入射に対する吸収率 [-]

 a1:1番目の層の吸収率 [-]

 a2:2番目の層の吸収率 [-]

図2.32層で構成された複層ガラス

(3) ガラス部の日射熱取得率の計算基礎式

ガラス部の日射熱取得率は、ガラスの入射する日射エネルギーに対する室内へ伝達される 熱エネルギーの比で表わされる。ここで、室内側へ伝達される熱とは、ガラスを直接透過 する成分とガラスに吸収されて室内側に再放出される成分を合計したものである。但し、 室内外温度差による貫流熱分は室内への伝達熱に含めないので日射熱取得率の定義は次式 となる。

$$\eta_{g} = \tau_{e} + \frac{q_{i} - U_{g}(T_{e} - T_{i})}{I_{e}}$$
 (2.15)

なお、熱貫流率 U_g は日射がない場合の室内外温度差 1K あたりの熱流束として次式で表わす。

$$U_g = \frac{q_i}{T_e - T_i} \bigg|_{I_s = 0}$$
 (2.16)

ここで

 η_g :ガラス部の日射熱取得率 [-] au_e :ガラス部の日射透過率 [-] q_i :ガラスに吸収され室内側へ再放出される熱流束 [W/㎡] U_g :ガラス部の熱貫流率 [-] I_s :入射日射強度 [W/㎡] T_e:室外温度 [K]

T_i : 室内温度 [K]

これは式(1.9)の q_{in} の熱流束からガラス特有の透過分 τ_e を除いた q_i としているため同義となり、フレームで用いた式(2.2)と同じ次式で表現できる。

$$\eta_{g} = \frac{q_{in} - q_{in}(I_{s} = 0)}{I_{s}} \qquad \cdot \cdot \cdot (2.17)$$

ここで

η_g: ガラス部の日射熱取得率 [-]
 q_{in}: 入射日射がある場合の室内への熱流束 [W/m²]
 q_{in} (I_s=0): 入射日射がない場合の室内への熱流束[W/m²]
 I_s: 入射日射強度 [W/m²]

JIS R 3106:1998⁶より、2 層から構成される複層ガラス部の日射熱取得率 η_g は、それぞれ を面材とみなした多重反射計算(収束計算)と一次元熱平衡計算から次式で整理している。

$$\eta_{g} = \tau_{e} + N_{1} \cdot a_{e,1} + N_{2} \cdot a_{e,2} \qquad \cdot \cdot \cdot (2.18)$$

$$N_1 = \frac{R_e}{R_e + R_{1,2} + R_i} \quad , \quad N_2 = \frac{R_e + R_{1,2}}{R_e + R_{1,2} + R_i} \quad \cdot \cdot \cdot (2.19)$$

ここで

η_s:ガラス部の日射熱取得率 [-]
n:ガラスを構成する面材の数 [-]
τ_e:ガラス部の日射透過率 [-]
a_{e,1}:1番目の層の日射吸収率 [-]
N₁:1番目の層に吸収される日射熱が室内側へ伝達される割合 [-]
a_{e,2}:2番目の層の日射吸収率 [-]
N₂:2番目の層に吸収される日射熱が室内側へ伝達される割合 [-]
R_e:室外側表面熱伝達抵抗 [m² K/W]
R_i:室内側表面熱伝達抵抗 [m² K/W]
R_{l,2}:1番目と2番目の層の間の中空層の熱抵抗 [m² K/W]

式(2.18)では式(2.15)のようにガラスに吸収されて室内側へ再放出される熱流束 q_iをガラスが受ける日射量 I_sで除する代わりに、各層の吸収日射量をガラスが受ける日射量 I_sで除した各層の日射吸収率 a_{e,1}、a_{e,1}を用いて、これに各層に吸収される日射熱が室内側へ伝達

される割合 N₁、N₂を乗じたものの各層の総和をとることで、式(2.15)の第2項を算出して いる。このようにすることで、式(2.18)の右辺の第2項以降は日射吸収による室内への熱伝 達のみが考慮され、式(2.15)のように室内側温度差による貫流熱分を扱うことが不要となっ ている。各層に吸収される日射熱が室内側へ伝達される割合は室内外間の全熱抵抗に対す るその層の室外までの熱抵抗の比によって求められる。ただし、ガラスの熱抵抗は表面熱 伝達抵抗や中空層熱抵抗に比べて小さいため、ここでは無視されている。

2.3 散乱日射に対する開口部の計算法

直達日射の入射角 θ における透過率: $\tau(\theta)$ 、吸収率: $a(\theta)$ 、反射率: $\rho(\theta)$ を用いて、 散乱日射に対する τ_{dif} 、 a_{dif} 、 ρ_{dif} を求める。

窓面を覆う半球の散乱日射(天空日射及び地面反射日射)を均一に受けている状態として、 半球上の微小面から窓面へ照射される日射量に微小面位置のプロファイル角 θ から決まる 直達入射に対する光学特性を乗じて、これを半球について積分すると散乱日射に対する光 学特性が得られる⁸。

$$\tau_{dif} = \int_{0}^{\frac{\pi}{2}} 2\sin\theta\cos\theta \cdot \tau(\theta)d\theta \qquad \cdot \cdot \cdot (2.20)$$

$$a_{dif} = \int_{0}^{\frac{\pi}{2}} 2\sin\theta\cos\theta \cdot a(\theta)d\theta \qquad \cdot \cdot \cdot (2.21)$$

$$\rho_{dif} = \int_{0}^{\frac{\pi}{2}} 2\sin\theta\cos\theta \cdot \rho(\theta)d\theta \qquad \cdot \cdot \cdot (2.22)$$

ここで

 $<math>
 au_{dif}
 : 散乱日射に対する窓面の透過率 [-]
 <math>
 a_{dif}
 : 散乱日射に対する窓面の吸収率 [-]
 <math>

ho_{dif}
 : 散乱日射に対する窓面の反射率 [-]
 <math>
 \tau(\theta)
 : 入射角 \theta 時の直達日射に対する窓面の吸収率 [-]
 <math>
 a(\theta)
 : 入射角 \theta 時の直達日射に対する窓面の吸収率 [-]
 <math>
 \rho(\theta)
 : 入射角 \theta 時の直達日射に対する窓面のの吸収率 [-]$

(2.20)、(2.21)、(2.22)より散乱日射に対する日射熱取得率は次式で表わすことができる。

$$\eta_{dif} = \int_{0}^{\frac{\pi}{2}} 2\sin\theta\cos\theta \cdot \eta(\theta)d\theta \qquad \cdot \cdot \cdot (2.23)$$

$$\Xi \equiv \overline{C}$$

η_{dif}:散乱日射に対する窓面の日射熱取得率 [-]

η(θ):入射角 θ 時の直達日射に対する窓面の日射熱取得率 [-]

これは、ガラス部の日射熱取得率($\eta_{g,dif}$)についてだが、太陽高度及び太陽方位によらな ければフレームを含んだ窓全体の日射熱取得率(η_{wdif})でも同じ式が成り立つ。

2.4計算結果

2.4.1 計算条件

計算対象窓種は、FIX 窓、縦辷り出し窓、引き違い窓の3種類とした。図2.4 に姿図、図2.5~2.7 に断面図を示す。また、ガラスは普通複層、断熱低放射複層、遮熱低放射複層の3種類とした。窓の仕様と環境条件を表2.2 に、計算方位、高度条件と入力ベクトル、プロファイル角一覧を表2.3 に、ガラスの入射角度別光学特性値を表2.4~2.6 示す。

(a)FIX 窓

(b)縦辷り出し窓

(c)引き違い窓

図 2.4 計算対象窓種

表2.2 窓の仕様と環境条件

室内側表面熱伝	達率	[W/(m ^² K)]	7	7.69 (隅角部:5.0)					
室外側表面熱伝	達率	[W/(m ^² K)]		25						
表面熱伝達率の	温度依存性		老	き慮せず一定とす	3					
	室内側温度	[°C]	25							
	室外側温度	[°C]		30						
百昍冬卅	日射量	[W/m]		500,0						
支刑木什	太陽高度	[°]		0 , 20 , 45 , 70						
	太陽方位角	[°]	-70 , -45 , -20 , 0 , 20 , 45 , 70							
	入射角	[°]	28	L)						
フレーム種類										
フレーム色(日射	·吸収率 : a)		ブラック(0.925)	ステン(0.502)	ホワイト(0.198)					
	引き違い窓-標準	[m]	W:1.690	× H:1.370 (2.32ı	nໍ、21.2%)					
総理及ひ	引き違い窓-小	[m]	W:0.780	× H:0.770 (0.601	nໍ、39.1%)					
は怒用ロー	開き窓-標準	[m]	W:0.640	× H:1.370 (0.881	nໍ 、 25.1%)					
(面積 フレーム	開き窓-小	[m]	W:0.405	× H:0.770 (0.31ı	nໍ、39.9%)					
面積比率)	FIX窓-標準	[m]	W:1.690	× H:1.370 (2.32	m 、9.9%)					
	FIX窓-小	[m]	W:0.405	× H:0.770 (0.31ı	n ໍ、26 .1%)					
ガラス種類			普通複層	断熱低放射 複層	遮熱低放射 複層					
ガラス仕様			FL3+A12+FL3	FL3+A12+LE3	LE3+A12+FL3					
中空層	日射有条件	[W/(mK)]	0.0817	0.0302	0.0303					
等価熱伝導率	日射無条件	[W/(mK)]	0.0796	0.0294	0.0294					

第2章	開口部の斜入	射に対する	日射熱取得	率計算法

表2.3	計算方位、高度	要条件と	入力べ	クトル、	プロフ	アイル	角一覧	表			
				入射角度	別の方向	うべクトル	/		高度↓		
	x	1	1	1	1	1	1	1			
上下办	У	-8.033	-3.886	-2.924	-2.747	-2.924	-3.886	-8.033			
1*1+	φ(方位角)	-70	-45	-20	0	20	45	70			
	i(入射角)	83.3	76	71.3	70	71.3	76	83.3	70		
	x	2.747	1	0.364	0	-0.364	-1	-2.747			
左右縦枠	У	-1	-1	-1	-1	-1	-1	-1			
	θ(プロファイル角)	82.904	75.567	71.118	70	71.118	75.567	82.904			
	x	1	1	1	1	1	1	1			
上下协	У	-8.033	-3.886	-2.924	-1	-1.064	-1.414	-2.924			
上下梓	φ(方位角)	-70	-45	-20	0	20	45	70			
	i(入射角)	76	60	48.4	45	48.4	60	76	45		
	x	2.747	1	0.364	0	-0.364	-1	-2.747			
左右縦枠	У	-1	-1	-1	-1	-1	-1	-1			
	θ(プロファイル角)	71.118	54.736	46.781	45	46.781	54.736	71.118			
	x	1	1	1	1	1	1	1			
⊢下办	У	-8.033	-3.886	-2.924	-0.364	-0.387	-0.515	-1.064			
<u> </u>	φ(方位角)	-70	-45	-20	0	20	45	70			
	i(入射角)	71.3	48.4	28	20	28	48.4	71.3	20		
	x	2.747	1	0.364	0	-0.364	-1	-2.747			
左右縦枠	У	-1	-1	-1	-1	-1	-1	-1			
	θ(フ [゚] ロファイル角)	46.781	27.236	21.173	20	21.173	27.236	46.781			
	x	1	1	1	1	1	1	1			
上下办	У	-8.033	-3.886	-2.924	0	0	0	0			
<u> </u>	φ(方位角)	-70	-45	-20	0	20	45	70			
	i(入射角)	70	45	20	0	20	45	70	0		
	x	2.747	1	0.364	0	-0.364	-1	-2.747			
左右縦枠	У	-1	-1	-1	-1	-1	-1	-1			
	θ (プロファイル角)	0	0	0	0	0	0	0			
		-70	-45	-20	0	20	45	70	←方位角		

表2.4 入射角度別ガラスの光学特性(普通複層:FL3+A12+FL3)

		光学	└ 中 特性(FL	_3+A12+F	-L3)	高度↓
	ρ	0.270	0.286	0.370	0.600	
上下枠	Т	0.551	0.529	0.431	0.225	70
左右縦枠	1α 2	0.101	0.103	0.112	0.099	70
	2α 2	0.079	0.081	0.087	0.077	
	ρ	0.144	0.149	0.188	0.370	
上下枠	т	0.712	0.704	0.658	0.431	45
左右縦枠	1α 2	0.081	0.083	0.087	0.112	70
	2α 2	0.063	0.064	0.067	0.087	
	ρ	0.136	0.136	0.149	0.286	
上下枠	т	0.746	0.740	0.704	0.529	20
左右縦枠	1α 2	0.066	0.070	0.083	0.103	20
	2α 2	0.052	0.054	0.064	0.081	
	ρ	0.134	0.136	0.144	0.270	
上下枠	Т	0.745	0.746	0.712	0.551	0
左右縦枠	1α 2	0.068	0.066	0.081	0.101	0
	2α 2	0.053	0.052	0.063	0.079	
		0	20	45	70	←方位角

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

		光学	\$特性(FL	_3+A12+L	_E3)	高度↓						
	ρ	0.483	0.489	0.527	0.667							
上下枠 左右縦枠	Т	0.200	0.188	0.135	0.049	70						
	1α 2	0.202	0.211	0.243	0.229	70						
	2α 2	0.115	0.112	0.095	0.056							
	ρ	0.412	0.416	0.444	0.527							
上下枠	т	0.320	0.312	0.273	0.135	45						
左右縦枠	1α 2	0.128	0.133	0.151	0.243	40						
	2α 2	0.140	0.139	0.132	0.095							
	ρ	0.422	0.418	0.416	0.489							
上下枠	Т	0.351	0.345	0.312	0.188	20						
左右縦枠	1α 2	0.086	0.095	0.133	0.211	20						
	2α 2	0.143	0.143	0.139	0.112							
	ρ	0.417	0.422	0.412	0.483							
上下枠	Т	0.353	0.351	0.320	0.200	0						
左右縦枠	1α 2	0.089	0.086	0.128	0.202							
	2α 2	0.142	0.143	0.140	0.115							
		0	20	45	70	←方位角						

表2.5 入射角度別ガラスの光学特性(断熱低放射複層:FL3+A12+LE3)

表2.6 入射角度別ガラスの光学特性(遮熱低放射複層:LE3+A12+FL3)

		光学	悼特性(LE	E3+A12+F	FL3)	高度↓
	ρ	0.492	0.505	0.565	0.723	
上下枠	т	0.200	0.188	0.135	0.049	70
左右縦枠	1α 2	0.263	0.263	0.255	0.194	
	2α 2	0.044	0.045	0.045	0.034	
	ρ	0.379	0.385	0.424	0.565	
上下枠	т	0.320	0.312	0.273	0.135	45
左右縦枠	1α 2	0.267	0.267	0.263	0.255	
	2α 2	0.035	0.036	0.040	0.045	
	ρ	0.371	0.371	0.385	0.505	
上下枠	т	0.351	0.345	0.312	0.188	20
左右縦枠	1α 2	0.252	0.256	0.267	0.263	20
	2α 2	0.026	0.028	0.036	0.045	
	ρ	0.367	0.371	0.379	0.492	
上下枠 左右縦枠	т	0.353	0.351	0.320	0.200	
	1α 2	0.254	0.252	0.267	0.263	
	2α 2	0.025	0.026	0.035	0.044	
		0	20	45	70	←方位角

入射角度は同じでも高度と方位が異なれば、フレームの横材と縦材の異なる影の影響があ り、方位角側と高度側で異なった傾向となるか確認するため、以下の条件とした。

太陽高度は、0,20,45,70°の4条件とした。また方位角度は、引き違い窓のような左右非 対称の窓種は負方向から正方向まで-70,-45,-20,0,20,45,70°の7条件とした。開き窓やFIX 窓は左右対称の窓種になるため、垂直から正方向0,20,45,70°の4条件とした。引き違い窓 は高度*方位で合計28通り、開き窓、FIX窓は16通りの組合せとした。 窓フレームはアルミ樹脂複合製とし、フレームの日射吸収率は、明暗3種類想定し、ホワイト(a=0.198)、ステンカラー(a=0.502)、ブラック(a=0.925)とした。FIX窓のみ3色とし、開き窓と引き違い窓はホワイトとブラック2色とした。

各窓のサイズは、それぞれ標準試験体サイズ⁹と出荷頻度が比較的高くフレーム面積比が 大きくなる小さいサイズとした。

また、詳細計算で得られるフレームの受熱による影響やフレームから落とす影の影響を比較する目的で、算出式(2.1)のフレーム部日射熱取得率 $\eta_f(\theta)=0$ 及びフレーム部影による日射熱取得減衰係数 $S_f(\theta)=1$ とみなした簡易計算値を次式で算出した。

$$S_f(\theta) = 1, \eta_f(\theta) = 0 \quad \sharp \vartheta$$

$$\eta_{w(f0)}(\theta) = \frac{\sum A_g \eta_g(\theta) S_f(\theta) + \sum A_f \eta_f(\theta)}{A_w} = \frac{\sum A_g \eta_g(\theta)}{A_w} \qquad \cdot \cdot \cdot (2.24)$$

ここで

 $\eta_{w(f0)}(\theta)$:入射角 θ に対する窓全体のフレーム成分を0とした簡易計算日射熱取得率

[-]

- η_e(θ):入射角 θ に対するガラス部の日射熱取得率 [-]
- $\eta_{f}(\theta)$:入射角 θ に対するフレーム部の日射熱取得率 [-]
- S_f(θ):入射角θに対するフレーム部影による日射熱取得減衰係数 [-]
- A_w : 伝熱開口面積 [m²]
- *A*_g: ガラス部の見付面積 [m²]
- A_f:フレーム部の見付面積 [m²]

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

図2.5 アルミ樹脂複合構造 FIX窓(嵌め殺し窓) 基本断面図

図2.6 アルミ樹脂複合構造 縦すべり出し窓 (開き窓) 基本断面図

図2.7 アルミ樹脂複合構造 引き違い窓 基本断面図

2.4.2計算結果

図 2.8~2.25 に入射角度(cos θ)と各窓種の日射熱取得率の相関を示す。

また、表 2.7~2.15 に各窓種の標準試験体サイズ(フレーム色:ブラック)の計算結果表例 (一部抜粋)を示す。ガラスの仕様については、図 2.8~2.13、表 2.7~2.9 は普通複層、図 2.14~2.19、表 2.10~2.12 は断熱低放射複層、図 2.20~2.25、2.13~2.15 は遮熱低放射複層を 示す。

計算を行った全ての入射角度及びフレームとガラスの組合せ条件において、ガラス部単体の日射熱取得率(*n_g*)よりもフレームを考慮した場合の方が小さい値を示した。フレームを考慮することにより、窓全体の日射熱取得率が減少することを示した。このフレーム面積比率の影響は大きく、フレームを考慮しなければならないことが明確となった。

各図の相関は、入射角度は同じでも高度と方位が異なった条件も含まれている。しかし窓 全体の日射熱取得率は、左右非対称の引き違い窓も含め概ね入射角度と日射熱取得率の相 関がうまく近似できていることが確認できた。つまり、ガラス同様入射角度で簡易に評価 できることが可能だと分かった。影を形成する枠の先端からガラス表面までの見込み方向 の距離が四周同一であるため、縦部材、横部材による影響が小さいと考えられる。

フレームの受熱分及びフレームから落ちる影の影響は、式(2.24)で算出した簡易計算値 ($\eta_{w(f0)}$)と比較することで確認できる。入射角度が垂直に近い $\cos \theta : 0.9 \sim 1.0$ (25 $\sim 0^{\circ}$)の 場合、フレームが受熱した成分の方がフレームから落ちる影の影響より大きくなり、 η_w の 方が若干大きくなっているが、逆に $\cos \theta : 0 \sim 0.7$ (90~45°)の場合、フレームから落ち る影の影響が大きくなっている。

フレームの色(日射吸収率)による窓全体の日射熱取得率の差はほぼないと言ってもよい 結果となった。

垂直入射時の窓全体の日射熱取得率(η_w)は、ガラスの日射熱取得率(η_g)にフレーム面積比 分を除いた値、つまり式(2.24)で算出した結果との差はごくわずかであり同等であると言え る。フレームの受熱成分の影響はごくわずかであることがわかる。

また、フレームから落とす影の影響がでる入射角度 cos θ : 0~0.5(60°以上)の場合、伝熱 開口面積が 0.8 m²以上あり、フレーム面積比率が 20%台のサイズでは、簡易算出値(η_{w(f0)})と の比率は標準的なサイズで 25%以上であった。フレームから落とす影の影響を無視できな いことがわかった。

図 2.9 と図 2.10 より、フレーム面積比率が同程度であれば影の影響度合いも同じとは言えない。当然ではあるが、ガラス面積が大きい方(伝熱開口面積が大きい方)が、影の影響は小さくなる。

伝熱開口面積が小さい場合、フレーム面積比率が大きくなるため影の影響は大きくなる。 しかし、伝熱開口面積が小さいということは、元々の取得熱量も小さい。

表 2.7~2.15 より、フレーム部の日射熱取得率(η)は、入射角度が大きくなると負の値を示

した。本来、外部から受熱している成分がある以上わずかでも室内に伝導により侵入し、 日射熱取得率は正の値を示すと考えるのが通常である。しかし、フレームが落とす影はフ レーム自身にも影を落とし、ガラス面にも影を落とす。影の部分は受熱していないため放 熱面となりやすい。また、これらを含めたガラスとフレームの2次元熱流分を全てフレー ムに残した結果であり、最終的に算出される窓全体の日射熱取得率ではこの影響も含んで 計算している。よって、この結果は正しいと言える。

但し、住宅の熱負荷計算等にこの結果を用いる場合、角度毎にフレームの日射熱取得率が 異なるのは簡便な方法ではない。

引き違い窓のような7断面のフレーム部日射熱取得率を評価するにあたり、フレーム色1 条件につき224モデル(貫流分の計算7モデルも含む)の解析を行なわなければならない。 フレーム部の日射熱取得率の影響は小さいため、フレーム部の日射熱取得率は垂直入射時 の値一定とし、ガラス面に落とす影長さ(ガラス面積に占める影面積比率)を考慮するだ けで十分な精度を有すると考える。

図 2.10 入射角とη値の相関(普通複層+縦辷り出し窓:標準 06013)

図 2.12 入射角とη値の相関(普通複層+引き違い窓:標準 16513)

第2章 開口部の斜入射に対する日射熱取得率計算法

59

図 2.18 入射角とη値の相関(断熱低放射複層+引き違い窓:標準 16513)

第2章 開口部の斜入射に対する日射熱取得率計算法

図 2.22 入射角とη値の相関(遮熱低放射複層+縦辷り出し窓:標準 06013)

図 2.24 入射角とη値の相関(遮熱低放射複層+引き違い窓:標準 16513)

<u>表 2.7</u>	斜入射計算約	吉果例(普通複片		IX 窓/	BL :	標準	165	13)			7
<mark>開閉形態</mark> 創品タ						F アルプラ	IX クラスK3				
<u>表明日</u> フレーム材置						アルミ格	制脂複合				
ガラス種類						FL3+A	12+FL3				
夏季or冬季 日射論度		IS	500	500	500	夏季(3 500	0-25°C) 500	500	500	500	[W/m ²]
内外温度差		ΔΤ	5	5	5	5	5	5	5	5	[°C]
方位角度		θ	0	0	0	0	70	70	70	70	
太陽高度	計合序	h :	0	20	45	70	0	20	45	70	
が回への人	羽丹皮	I	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	
ガラス中空間	罾等価熱伝導率	λeq	0.0817	0.0817	0.0817	0.0817	0.0817	0.0817	0.0817	0.0817	[W/(m·K)]
フレーム	アルミ	αf	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-]
日射吸収率	PVC 伝熱開口W寸法	a t W	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	[-] [m]
	伝熱開口H寸法	н	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	[m]
	伝熱面積	Aw	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	[m]
表面 動仁法安	室内側	α _i	7.69	7.69	7.69	7.69	7.69	7.69	7.69	7.69	[W/(m*K)]
設法連手	室外側	α. 2α.1	0.068	0.065	0.099	0.165	0.165	0.174	0.206	0.200	[vv/(m·k)] [-]
日射吸収率	室内側	2α 2	0.056	0.053	0.076	0.096	0.096	0.097	0.097	0.062	[-]
	室外側-室内側		0.013	0.012	0.023	0.069	0.069	0.077	0.109	0.138	[-]
カラス部	総日封添温家	T 12	0.743	0.744	0.679	0.424	0.424	0.394	0.277	0.000	[_]
	総熱流束	ain. g	407.58	407.38	383.73	266.41	266.41	252.63	195.89	96.39	L─J [W/mî]
	表面熱流束(日射有)	qs, in, g	36.33	35.28	44.48	54.46	54.46	55.48	57.54	46.79	[W/m]
	表面熱流束(日射無)	qs, in, g(IS=0)	15.30	15.30	15.30	15.30	15.30	15.30	15.30	15.30	[W/m ²]
	ル 7A 部 ロ 射 恐 収 侍 率 影 面 積	I g Ags	0.785	0.784	0.737	0.502	0.502	0.475	0.361	0.162	լ—յ [m ¹]
	影による減衰係数	S	1.000	1.000	0.992	0.924	0.953	0.953	0.945	0.881	[-]
	ガラス露出幅	GW	1.620	1.620	1.620	1.620	1.620	1.620	1.620	1.620	[m]
	ガラス露出高	GH	1.288	1.288	1.288	1.288	1.288	1.288	1.288	1.288	[m]
	ガラス路口回恒 ガラス部全体	Ag Σng•Ag#S	1.637	2.087	1.526	0.969	0.998	2.087 0.943	0.712	0.298	[m] [m]
フレーム部							0.000	0.010		0.200	
上部	日射有りモデル	Absorpted Solar Radiation	32.20	29.38	23.06	14.99	13.03	11.61	11.58	10.79	[W/m]
		Q[outside]	-22.77	-20.39	-14.71	-9.02	-6.56	-5.30	-6.09	-5.84	[W/m]
	日射無しモデル	Q[outside]	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93	[W/m]
		Q[inside]	3.93	3.93	3.93	3.93	3.93	3.93	3.93	3.93	[W/m]
	室内への熱流速(日射有)	qin, f	42.97	35.87	-14.54	9.17	-99.96	-111.77	-120.49	4.23	[W/m]
	室内への熟流速(日射無) 上部目付け	qin, f(IS=0) Ewa	19.22	19.22	19.22	19.22	19.22	19.22	19.22	19.22	[W/m]
	フレーム部日射熱取得率	η f	0.043	0.033	-0.068	-0.020	-0.238	-0.262	-0.279	-0.030	[-]
	フレーム部日射熱取得	η f Af	0.0035	0.0025	-0.0050	-0.0015	-0.0178	-0.0195	-0.0208	-0.0022	[m ²]
	枠出寸法	d	0.050	0.050	0.050	0.050	0.050	0.050	0.050	0.050	[m]
	bfとの調整寸法 影長さ	K d*tanh	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	-0.005	[m] [m]
	ガラス部影長さ	Sb1	0.000	0.000	0.030	0.097	0.000	0.000	0.010	0.097	[m]
下部	日射有りモデル	Absorpted Solar Radiation	38.21	40.37	39.88	29.66	14.87	19.51	22.19	19.89	[W/m]
		Q[outside]	-28.34	-30.59	-30.28	-21.86	-8.27	-12.57	-15.26	-13.77	[W/m]
	日射無しモデル	Q[inside] Q[outside]	9.95 3.97	9.76 3.97	9.56	3.97	3.97	3.97	0.88 3.97	3.97	[W/m]
		Q[inside]	3.97	3.97	3.97	3.97	3.97	3.97	3.97	3.97	[W/m]
	室内への熱流速(日射有)	qin, f	72.65	73.13	17.80	-85.21	-116.07	-112.90	-124.95	-89.07	[W/m]
	室内への熱流速(日射無)	qin, f(IS=0) Fuub	24.47	24.47	24.47	24.47	24.47	24.47	24.47	24.47	[W/m]
	フレーム部日射熱取得率	n f	0.096	0.097	-0.013	-0.219	-0.281	-0.275	-0.299	-0.227	[-]
	フレーム部日射熱取得	η f•Af	0.0059	0.0060	-0.0008	-0.0134	-0.0172	-0.0168	-0.0183	-0.0139	[m ²]
左縦部	日射有りモデル	Absorpted Solar Radiation	27.91	25.95	21.36	11.56	25.93	24.50	18.82	8.82	[W/m]
		Q[outside]	-18.97	-17.38	-13.37	-5.27	-18.40	-17.14	-12.19	-3.67	[W/m]
	日射無しモデル	Q[outside]	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	[W/m]
		Q[inside]	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	[W/m]
	室内への熱流速(日射有)	qin, f	48.08	43.21	-25.72	-131.23	-97.10	-107.77	-140.09	-120.58	[W/m]
	室内への熟流速(日射無) 縦部見付け	qin, f(IS=0) Ewc	24.28	24.28	24.28	24.28	24.28	24.28	24.28	24.28	[w/m]
	フレーム部日射熱取得率	η f	0.048	0.038	-0.100	-0.311	-0.243	-0.264	-0.329	-0.290	[-]
	フレーム部日射熱取得	η f•Af	0.002	0.002	-0.005	-0.014	-0.011	-0.012	-0.015	-0.013	[m]
右縦部	日射有りモデル	Absorpted Solar Radiation	27.91	25.95	21.36	11.56	14.02	13.26	10.23	4.76	[W/m]
			-18.97	8.57	8 00	-5.27	-7.78	-7.13	-4.57	-0.04	[W/m]
	日射無しモデル	Q[outside]	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	[W/m]
		Q[inside]	3.91	3.91	3.91	3.91	3.91	3.91	3.91	3.91	[W/m]
	室内への熟流速(日射有) 室内への熱流速(日射毎)	qin, f qin, f(IS=0)	48.08	43.21	-25./2	-131.23	-21.54	-27.75	-46.38	-32.62	[W/m] [W/m ²]
	縦部見付け	Fwc	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	[m]
	フレーム部日射熱取得率	η f	0.048	0.038	-0.100	-0.311	-0.092	-0.104	-0.141	-0.114	[-]
	フレーム部日射熱取得	η f•Af	0.0002	0.0001	-0.0005	-0.0022	-0.0007	-0.0008	-0.0012	-0.0010	[m]
	枠出寸法 bfとの調整さ注	d	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	[mm] [mm]
	いこの間定り広	144	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[mm]
	影長さ	u≁tano					0.077	0.077	0.077	0.077	
	影長さ ガラス部影長さ	Sb2	0.000	0.000	0.000	0.000	0.077	0.077	0.077	0.077	[mm]
m A 4	影長さ ガラス部影長さ フレーム部全体	sb2 Ση f•Af	0.000	0.000	0.000	0.000 -0.032	-0.047	-0.049	-0.056	-0.031	[mm] [mî]
窓全体	影長さ ガラス部影長さ フレーム部全体	sb2 Ση f•Af Ση f	0.000 0.012 0.052	0.000 0.010 0.045	0.000 -0.011 -0.048	0.000 -0.032 -0.138	-0.205	-0.216	-0.243	-0.134	[mm] [m]
窓全体	影長さ ガラス部影長さ フレーム部全体 窓全体 フレー(成公比	Sh2 Ση f•Af Ση f Ση f Ση f Ση f•Af Ση f Ση f•Af	0.000 0.012 0.052 1.649	0.000 0.010 0.045 1.647	0.000 -0.011 -0.048 1.515 -0.7%	0.000 -0.032 -0.138 0.937 -3.4%	-0.205 0.951	-0.216 0.894	-0.243 0.657	-0.134 -0.134 -0.14	[mm] [m [*]] [m [*]]
 窓全体	影長さ ガラス部影長さ フレーム部全体 窓全体 フレーム成分比 フレーム部面積比率	δtand Sb2 Σ η f•Af Σ η f Σ η g•AgesS+Σ η f•Af Σ η f•Af/窓全体 Σ Af/Aw	0.000 0.012 0.052 1.649 0.7% 9.9%	0.000 0.010 0.045 1.647 0.6% 9.9%	0.000 -0.011 -0.048 1.515 -0.7% 9.9%	0.000 -0.032 -0.138 0.937 -3.4% 9.9%	-0.205 -0.205 0.951 -4.9% 9.9%	-0.216 -0.894 -5.5% 9.9%	-0.243 -0.243 0.657 -8.5% 9.9%	-0.134 -0.134 0.267 -11.4% 9.9%	[m] [m] [m]

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

開形能	小1/131日 开州	口木的(首进假席	冒工剤	ロリ	山しポ	公/BL 開	・ (宗斗 ¹ 窓	≓ U6	013)		1
品名						アルプラ	 クラスK3				
ノーム村	ξi					アルミ樹	i脂複合				
フス種類 季or冬季						FL3+A 夏季(3)	12+FL3				
射強度		IS	500	500	500	<u>家</u> (0) 500	500	500	500	500	[W/m ²]
外温度差		ΔT	5	5	5	5	5	5	5	5	[°C]
位角度		θ	0	0	0	0	70	70	70	70	
<u>、隋尚氏</u> (南への1)	射色度	h :	0	20	45	70	0	20	45	/0	
ラス種	和丹皮	<u>µ</u>	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	
ラス中空	屠等偭熱伝導率	λeq	0.0817	0.0817	0.0817	0.0817	0.0817	0.0817	0.0817	0.0817	[W/(m·K)]
レーム	アルミ	αf	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-]
射吸収率		αf	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.04	[-]
激用し	伝熱開口W寸法	W H	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	[m] [m]
	伝熱面積	Aw	0.877	0.877	0.877	0.877	0.877	0.877	0.877	0.877	[m]
面	室内側	α,	7.69	7.69	7.69	7.69	7.69	7.69	7.69	7.69	[W∕(m⁴∙K
伝達率	室外側	α 。	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	[W∕(mੈ∙K
ラス	室外側	2α 1	0.068	0.065	0.099	0.165	0.165	0.174	0.206	0.200	[-] []
刘蚁似平	<u>室外側一室内側</u>	2u 2	0.013	0.012	0.078	0.090	0.090	0.097	0.1097	0.138	[-]
ラス部			0.010	0.012	0.020	0.000	0.000	0.077	0.100	0.100	
	総日射透過率	т 12	0.743	0.744	0.679	0.424	0.424	0.394	0.277	0.099	[-]
	総熱流束	qin, g	407.58	407.38	383.73	266.41	266.41	252.63	195.89	96.39	[W/m ²]
	衣 (日射) 表 面執 法 南(日射 册)	qs, in, g qs in g(IS=0)	36.33	35.28	44.48	54.46 15.30	54.46 15.30	55.48 15.30	57.54	46.79	LW/mi] [W/mi]
	がうス部日射熱取得率	η g	0.785	0.784	0.737	0.502	0.502	0.475	0.361	0.162	[-]
	影面積	Ags	0.000	0.005	0.013	0.035	0.094	0.097	0.104	0.123	[m]
	影による減衰係数	S	1.000	0.993	0.981	0.947	0.857	0.851	0.841	0.812	[-]
	カラス露出幅	GW	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	[m]
	<u> ハフヘ路出尚</u> ガラス 露出 面 積	Ag	0.655	0.655	0.655	0.655	0.655	0.655	0.655	0.655	[m] [m]
	ガラス部全体	Σηg•Ag*S	0.514	0.510	0.473	0.311	0.282	0.265	0.199	0.086	[m]
レーム部											
上部	日射有りモデル	Absorpted Solar Radiation	49.72	48.58	43.01	27.16	21.73	22.53	20.35	13.33	[W/m]
		Q[outside]	-37.58	-36.65	-31.55	-18.12	-13.25	-14.09	-12.44	-6.96	[W/m]
	日射毎レモデル	Q[inside]	4.60	4 60	4.60	8.19 4.60	8.4Z 4.60	8.21 4.60	4.60	5.78 4.60	[W/m]
		Q[inside]	4.61	4.61	4.61	4.61	4.61	4.61	4.61	4.61	[W/m]
	室内への熱流速(日射有)	qin, f	71.92	73.65	49.46	13.52	-37.42	-36.44	-43.33	-7.43	[W/m ²]
	室内への熱流速(日射無)	qin, f(IS=0)	23.43	23.43	23.43	23.43	23.43	23.43	23.43	23.43	[W/m²]
	上部見付け	Fwa	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	[m]
	フレーム部日射熱取得率	η f n f•Af	0.097	0.100	0.052	-0.020	-0.0047	-0.120	-0.134	-0.062	[-] [m ²]
	<u> わけま </u>	d	0.024	0.024	0.024	0.0000	0.024	0.024	0.0032	0.0024	[m]
	bfとの調整寸法	k	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[m]
	影長さ	d*tanh	0.000	0.009	0.024	0.066	0.000	0.009	0.024	0.066	[m]
下车	カラス部影長さ	Sb1 Absorption Solar Padiation	0.000	0.009	0.024	0.066	0.000	0.009	0.024	0.066	[m] [W/m]
1, 50	ロ別有りてアル	Q[outside]	-43.08	-41.42	-35.09	-19.66	-15.09	-15.88	-13.59	-6.70	[W/m]
		Q[inside]	12.47	12.14	11.83	9.19	8.65	8.69	8.07	6.44	[W/m]
	日射無しモデル	Q[outside]	4.73	4.73	4.73	4.73	4.73	4.73	4.73	4.73	[W/m]
		Q[inside]	4.74	4.74	4.74	4.74	4.74	4.74	4.74	4.74	[W/m]
	室内への熟流速(日射有)	qin, f	/8.83	76.98	44.42	-25./2	-34.03	-36.50	-52.04	-44.20	[W/m] [W/m²]
	主内(の派加速(日射無)	Fwb	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	[w/m]
	フレーム部日射熱取得率	ηf	0.107	0.103	0.038	-0.102	-0.119	-0.124	-0.155	-0.139	[-]
	フレーム部日射熱取得	η f•Af	0.0041	0.0040	0.0015	-0.0039	-0.0046	-0.0048	-0.0060	-0.0054	[m]
左縦部	日射有りモデル	Absorpted Solar Radiation	45.13	42.11	35.70	20.13	25.77	24.58	19.32	8.83	LW/m]
		Q[outside]	-32.68	-30.16	-24.25	8.69	9.50	9.30	8.32	-2.66	LWV/m]
	日射無しモデル	Q[outside]	4.91	4.91	4.91	4.91	4.91	4.91	4.91	4.91	[W/m]
		Q[inside]	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	[W/m]
	室内への熱流速(日射有)	qin, f	91.82	86.63	44.55	-39.60	-25.01	-32.45	-57.41	-54.60	[W/m]
	至内への熱流速(日射無) 紛ぶ目付け	qin, f(IS=0)	33.38	33.38	33.38	33.38	33.38	33.38	33.38	33.38	[W/m]
	1000000000000000000000000000000000000	n f	0.056	0.056	0.056	-0.146	-0.117	-0.132	-0.182	-0.176	[-]
	フレーム部日射熱取得	η f•Af	0.008	0.008	0.002	-0.011	-0.008	-0.010	-0.013	-0.013	[m ²]
右縦部	日射有りモデル	Absorpted Solar Radiation	45.13	42.11	35.70	20.13	18.29	17.46	13.79	6.36	[W/m]
		Q[outside]	-32.68	-30.16	-24.25	-11.39	-10.11	-9.42	-6.42	-0.40	[W/m]
	日射毎しエデル	Q[inside]	12.36	11.86	/ 01	8.69	8.00	7.87	/.23	5.90	LW/m]
		Q[inside]	4.92	4.92	4.92	4.92	4.92	4.92	4.92	4.92	[W/m]
	室内への熱流速(日射有)	qin, f	91.82	86.63	44.55	-39.60	22.11	17.34	1.24	1.35	[W/m ²]
	室内への熱流速(日射無)	qin, f(IS=0)	33.38	33.38	33.38	33.38	33.38	33.38	33.38	33.38	[W/m ²]
	縦部見付け	Fwc	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	[m]
	ノレーム部日射烈取得率	ηt nf:Af	0.117	0.107	0.022	-0.011	-0.023	-0.032	-0.064	-0.064	[-] [m ²]
	や出す法 やいしかが取得	d	0.008	0.028	0.028	0.028	0.002	0.002	0.005	0.005	[mm]
	bfとの調整寸法	k	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[mm]
	影長さ	d*tanθ	0.000	0.000	0.000	0.000	0.076	0.076	0.076	0.076	[mm]
	ガラス部影長さ	Sb2	0.000	0.000	0.000	0.000	0.076	0.076	0.076	0.076	[mm]
A #	フレーム部全体	Ση f•Af	0.025	0.023	0.007	-0.026	-0.019	-0.021	-0.029	-0.025	[m]
Ξ 14			0.112	0.105	0.030	-0.116	-0.087	-0.096	-0.130	-0.113	[m²]
		<mark>とり留い Agtor とりだれ</mark> てったAf / 夜合け	0.039	0.533	1.49	-0.0%	-7.49	0.243	-17.0%	-41.10	rwi
	<u>ルーム 成分比</u> フレーム 部面 秸 比 率	<u> ニョー・Ai/ 芯王1体</u> Σ Af/Aw	4.0%	4.4%	25.3%	-9.0%	-7.4%	-8.7%	25.3%	25.3%	
		· · · · · · · · · · · · · · · · · · ·	0.0/0	_U.U/U	0.0/0	-0.0/0	_U.U/U	_0.0/0	/	_0.0/0	

第2章 開口部の斜入射に対する日射熱取得率計算法

表 2.	9 斜入射	計算結果例									1				
製品名 フレーム材置	t							アルプラ アルミ相	5 クラスK3 対脂複合						
ガラス種類 夏季or冬季							FL	3+A12+FL 夏季(3	_3(普通複 0-25℃)	層)					
内外温度差			500	500	500	500	500	500	500	500	500	500	500	500	[W/m] [°C]
万位円度 太陽高度 変更へのし	新条序	0 h :	-70	-/0 20	-70	70	0	20	45	70	70	70 20 71.2	70	70	
ガラス種	11月月	λεα	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	[W/(m·K)]
フレーム日射吸収率	アルミ PVC	α f α f	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-] [-]
伝敷開口	伝熱開口W寸法 伝熱開口H寸法	W H	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	1.69 1.37	[m] [m]
表面	伝熱面積 室内側	Aw α i	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	2.315 7.69	[m] [W/(mੈ·K)]
<u>義伝達率</u> ガラス	室外側 室外側	α <u>。</u> 2α1	25.00 0.165	25.00 0.174	25.00 0.206	25.00 0.200	25.00 0.068	25.00 0.065	25.00 0.099	25.00 0.165	25.00 0.165	25.00 0.174	25.00 0.206	25.00 0.200	[W/(m · K)] [-]
日射吸収率	室内側 室外側-室内側	2α 2	0.096	0.097	0.097	0.062	0.056	0.053	0.076	0.096	0.096	0.097	0.097	0.062	[-] [-]
ガラス部	総日射透過率	т 12	0.424	0.394	0.277	0.099	0.743	0.744	0.679	0.424	0.424	0.394	0.277	0.099	[-]
	総恐流東 表面熱流東(日射有)	qin, g qs, in, g	266.41 54.46	252.63	57.54	46.79	407.58	407.38 35.28	44.48	266.41 54.46	266.41 54.46	252.63 55.48	57.54	96.39 46.79	[w/m] [W/m ²]
	表面設加泉(日射黒) かうス部日射熱取得率	ds, in, g(IS=0) η g	0.502	0.475	0.361	0.162	0.785	0.784	0.737	0.502	0.502	0.475	0.361	0.162	[]
	影による減衰係数	S GW	0.843	0.840	0.826	0.769	1.000	0.996	0.980	0.909	0.855	0.852	0.838	0.402	[]
	ガラス露出高 ガラス露出面積	GH Ag	1.199	1.199	1.199	1.199	1.199	1.199	1.199	1.199	1.199	1.199	1.199	1.199	[m] [m]
フレーム部	ガラス部全体	Σηg•Ag•S	0.772	0.727	0.544	0.227	1.431	1.425	1.317	0.833	0.783	0.737	0.552	0.230	[m]
内上部	日射有りモデル	Absorpted Solar Radiation Q[outside] Q[inside]	22.26 -13.76 7.85	15.91 -9.03 6.71	13.01 -7.82 4.98	11.32 -6.74 4.61	51.23 -38.56 10.82	42.72 -31.62 9.56	28.95 -20.54 8.20	17.68 -12.20 5.30	22.26 -13.76 7.85	15.91 -9.03 6.71	13.01 -7.82 4.98	11.32 -6.74 4.61	[W/m] [W/m] [W/m]
	日射無しモデル	Q[outside] Q[inside]	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	[W/m] [W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	-37.05	-47.71 16.02	-63.06 16.02	29.78 16.02	43.30 16.02	34.26 16.02	4.19	33.89 16.02	-37.05	-47.71	-63.06	29.78 16.02	[W/m] [W/m]
	上都見付け フレーム部日射熱取得率	Fw1 η f	0.082	0.082	0.082	0.028	0.082	0.082	U.082 -0.024	0.082	0.082	0.082	0.082	0.082	[m] [-] [w2]
内下部	影の長さ判定 日射有りモデル	Absorpted Solar Radiation	0.0000	0.0084 0.0086 35.13	0.0235	0.1537 35.84	0.0000 62.79	0.0024 0.0086 68.81	0.0235	0.1537 53.22	0.0000 26.21	0.0084 0.0086 35.13	0.0235 40.00	0.1537 35.84	[m] [W/m]
		Q[outside] Q[inside]	-18.62	-26.93	-32.32	-29.16	-52.73	-57.50	-57.81	-44.59	-18.62	-26.93	-32.32	-29.16	[W/m] [W/m]
	日射無しモテル	Q[outside] Q[inside]	4.36	4.36	4.36	4.36	4.36	4.36	4.36	4.36	4.36	4.36	4.36	4.36	[W/m] [W/m]
	室内への 熱流速(日射有) 室内への 熱流速(日射無) 下 却 目(+) +	qin, f qin, f(IS=0)	14.61	-33.33	14.61	14.61	14.61	42.00	14.61	14.61	14.61	14.61	14.61	-34.49	[W/m] [W/m]
	フレーム部日射熱取得率	Fwz η f	-0.097	-0.096	-0.114	-0.098	0.051	0.056	0.089	-0.075	-0.097	-0.096	-0.114	-0.098	[m] [-]
内縦部	日射有りモデル	Absorpted Solar Radiation Q[outside]	14.44	13.71	10.67	5.01	42.54	39.67 -29.87	33.90 -24.25	19.28 -11.84	52.17 -43.52	43.59 -35.08	38.01 -30.54	15.76	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	5.18 4.07	5.14 4.07	4.92 4.07	4.44	10.20 4.07	9.78 4.07	9.63 4.07	7.43	9.41 4.07	8.60 4.07	8.01 4.07	5.53 4.07	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] qin, f	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07 85.12	4.07	[W/m] [W/m ²]
	縦部見付け フレーム部日射勢取得率	Fw3	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	[m] [-]
	フレーム部日射熱取得 影の長さ判定	η f•Af	-0.0173	-0.0179	-0.0195	-0.0152	0.0049	0.0044	-0.0007	-0.0115	0.0154	0.0132	0.0115	0.0063	[m]
外上部	日射有りモデル	Absorpted Solar Radiation Q[outside]	22.43 -11.51	22.58 -11.37	19.24 -9.38	12.62 -4.43	51.72 -35.76	49.62 -33.44	42.16 -26.68	25.25 -14.22	22.43 -11.51	22.58 -11.37	19.24 -9.38	12.62 -4.43	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	10.67 6.34	10.48 6.34	9.68 6.34	8.22 6.34	15.27 6.34	14.75 6.34	13.85 6.34	10.81 6.34	10.67 6.34	10.48 6.34	9.68	8.22 6.34	[W/m] [W/m]
	室内への熱流速(日射有)	gins dej	-2.75	-1.78	-5.79	6.34 22.93	97.62	97.51	6.34 73.12	6.34 41.85	-2.75	-1.78	-5.79	6.34 22.93	[W/m] [W/m ²]
	室内への 熟売速(日射無) 縦部見付け フレーム 部日 射熱取得率	Fw4	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	[w/m] [_1
	フレーム部日射熱取得影の長さ判定	η f•Af	-0.006	-0.006	-0.006	-0.002	0.0076	0.008	0.004	0.000	-0.006	-0.006	-0.006	-0.002	[㎡] [៣]
外下部	日射有りモデル	Absorpted Solar Radiation Q[outside]	26.00 -15.98	28.00 -17.27	25.99 -15.97	17.41	62.17 -47.38	61.13 -45.84	54.24 -39.03	34.67 -23.28	26.00 -15.98	28.00 -17.27	25.99 -15.97	17.41 -8.61	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	9.93 5.60	10.04 5.60	9.50 5.60	7.75 5.60	14.50 5.60	14.16 5.60	13.71 5.60	10.84 5.60	9.93 5.60	10.04 5.60	9.50 5.60	7.75 5.60	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] gin, f	5.60 -10.85	5.60 -11.87	5.60 -22.53	5.60 -18.11	5.60 81.32	5.60 79.83	5.60 54.12	5.60 -0.60	5.60 -10.85	5.60 -11.87	5.60 -22.53	5.60 -18.11	[W/m] [W/m]
	至 平内への 熟流速(日射無) 縦部見付け	gin, f(IS=0) Fw5	28.56	28.56	28.56	28.56	28.56 0.089	28.56	28.56	28.56	28.56	28.56	28.56	28.56	[W/m] [m] [_1
54.397.577	レレーム部日射熱取得率 フレーム部日射熱取得 日射右りエデル。	n f•Af Absorpted Solar Rediction	-0.079 -0.006 21.36	-0.081 -0.006	-0.102	-0.093	0.106	0.103	0.051	-0.008	-0.0/9 -0.006	-0.081	-0.102	-0.093	ر"] [m] [W/m]
> r-nc db	- 41 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	Q[outside] Q[inside]	-13.57	-12.71	-9.04	-1.80	-30.66	-28.28	-22.93	-10.93	-18.45	-17.34	-12.61	-3.46	[W/m] [W/m]
	日射無しモデル	Q[outside] Q[inside]	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	4.60 4.60	[W/m] [W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	-43.78 23.92	-49.35 23.92	-66.82 23.92	-56.60 23.92	65.85 23.92	61.87 23.92	28.16 23.92	-41.12 23.92	-26.61 23.92	-32.98 23.92	-54.38 23.92	-51.91 23.92	[W/m] [W/m]
	縦部見付け フレーム部日射熱取得率	Fw6 η f	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	[m] [-]
77.44	フレーム部日射熱取得 影の長さ判定 日朝友いエニッ	η f•Af	-0.011	-0.012	-0.015	-0.013	0.0069	0.006	0.001	-0.011	-0.008	-0.009	-0.013	-0.013	[m] [w/1
台合部	ロ羽有りモブル	Q[outside]	-9.20	-8.58	-5.50	1.75	+3.13 -25.04 18.04	-22.57	-20.62	-10.37	-29.87 18.30	-28.32 17.84	-21.15	-5.59	[W/m]
	日射無しモデル	Q[outside] Q[inside]	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	7.78	[W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	8.40 41.39	-2.29 41.39	-38.64 41.39	-32.94 41.39	87.64 41.39	80.15 41.39	-8.42 41.39	-199.42 41.39	0.78 41.39	-19.35 41.39	-91.40 41.39	-117.44 41.39	[W/m] [W/m]
	召合部見付け 上框見付け	Fw7 Fwu7	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	[m] [m]
	下框見付け フレーム部日射熱取得率	Fws7 ŋf	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	[m] [-]
	フレーム部日射熱取得 影の長さ判定	η f•Af	-0.003 0.174	-0.004 0.174	-0.008 0.174	-0.007 0.174	0.005	0.004	-0.005 0.000	-0.024 0.000	-0.004 0.065	-0.006 0.065	-0.013 0.065	-0.016 0.065	[㎡] [m]
憲全体	フレーム部全体	Σ η f•Af Ση f	-0.057 -0.116	-0.061 -0.124	-0.075 -0.152	-0.050 -0.102	0.039	0.036	0.003	-0.053 -0.109	-0.022	-0.029 -0.059	-0.047 -0.095	-0.036	[m]
	<u>窓全体</u> フレーム成分比	Ση g-Ag+Ση f-Af Ση f-Af/窓全体	0.715 -8.0%	0.666 -9.2%	0.470 -15.9%	0.177 -28.4%	2.7%	1.461 2.5%	1.320 0.2%	0.779 -6.9%	0.761 -2.9%	0.708 -4.1%	0.505 -9.3%	0.194 -18.7%	[m]
開口部	ルーム部画積比率 移全体の日射熱取得率	η w	0.309	0.288	0.203	0.077	0.635	0.631	0.570	0.336	0.329	0.306	0.21.2%	0.084	[-]

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究
	기,_/	Σnf•Δf/密全体	2 20⊻	2 ∩≪	-0.2%	-3 UM	-5.6%	-5.2%	-6 /1	-0.4%	1
	安全体	≥ η g•Ag+S+Ση f•Af	1.001	0.995	0.906	0.571	0.572	0.547	0.421	0.200	լայ
体		Σηf	0.096	0.088	-0.012	-0.076	-0.139	-0.127	-0.117	-0.004	[
	フレーム部全体	Ση f•Af	0.022	0.020	-0.003	-0.017	-0.032	-0.029	-0.027	-0.001	[㎡]
	診長さ ガラス部影長さ	d≭tan⊎ Sb2	0.000	0.000	0.000	0.000	0.077	0.077	0.077	0.077	[mm]
Ł	ofとの調整寸法	k III. O	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[mm]
-	校出寸法	d	0.0005	0.028	0.000	0.0025	0.0007	0.0007	0.028	0.028	[mm]
	フレーム部日射熱取得率	η f	0.107	0.070	-0.095	-0.297	-0.078	-0.083	-0.095	-0.053	[-] [m ²]
1	縦部見付け	Fwc	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	[m]
51 5	至内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	42.41	24.28	-58.26	-159.20	-50.01	-52.55	-58.12	-37.49	[W/m] [W/m²]
		Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[W/m]
	日射無しモデル	Q[outside]	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	[W/m]
		Q[outside] Q[inside]	-24.13	-22.18	-18.70	-9.74	-11.29	-10.62	-7.73	-2.14	[W/m]
右縦部	日射有りモデル	Absorpted Solar Radiation	38.91	36.38	30.13	16.25	17.25	16.35	12.55	5.64	[W/m]
	フレーム部日射熱取得	η f•Af	0.005	0.003	-0.004	-0.014	0.002	0.001	-0.003	-0.005	[m]
1	ミンティーション フレーム部日射熱取得率	η f	0.035	0.035	-0.035	-0.297	0.035	0.035	-0.068	-0.102	[-]
4	室内への熱流速(日射無)	qin, f(IS=0)	-10.84	-10.84	-10.84	-10.84	-10.84	-10.84	-10.84	-10.84	[W/m ²]
	室内への熱流速(日射有)	qin, f	42.41	24.28	-58.26	-159.20	8.72	-3.70	-44.67	-61.63	[W/m]
	ロ羽無してアル	Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	LWV/M] [W/m]
	ㅁ바ㅠ! ㅈ르!!	Q[inside]	14.79	14.20	11.43	6.51	12.39	11.75	9.27	5.52	[W/m]
		Q[outside]	-24.13	-22.18	-18.70	-9.74	-27.51	-25.94	-19.47	-7.71	[W/m]
左縦部	日射有りモデル	Absorpted Solar Radiation	38.91	36.38	30.13	16.25	39.80	37.60	28.67	13.20	[W/m]
-	ノレーム部日射熱取得率	ηt nf•Af	0.0093	0.206	0.0089	0.008	-0.264	-0.172	-0.072	0.072	[-] [m²]
Ē	下部見付け	Fwb	0.037	0.037	0.037	0.037	0.037	0.037	0.037	0.037	[m]
	室内への熱流速(日射無)	qin, f(IS=0)	-8.64	-8.64	-8.64	-8.64	-8.64	-8.64	-8.64	-8.64	[W/m]
	室内への熱流速(日射有)	gin, f	67.61	94.24	64.29	-4.77	-140.64	-94.40	-44.63	27.36	[W/m]
1	日射無しモデル	Q[outside]	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	[W/m]
		Q[inside]	15.81	16.84	15.85	11.90	6.88	8.39	9.18	8.69	[W/m]
「 同)	ロオゴカシビノル	Q[outside]	-33.50	-38.33	-40.37	-32.94	-12.93	-19.51	-24.20	-22.66	[W/m]
下部	カラス部影長さ	Sb1 Absorpted Solar Padiation	0.000	0.000	0.005	0.092	0.000	0.000	0.005	0.092	[m] [W/m]
also a	影長さ	d*tanh	0.000	0.018	0.050	0.137	0.000	0.018	0.050	0.137	[m]
1	ofとの調整寸法	k	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[m]
-	ノレーム部日射熱取得 換出寸法	η t•At d	0.0072	0.0040	-0.0067	-0.0014	-0.0169	0.050	0.050	0.0000	[m]
-	フレーム部日射熱取得率	ηf	0.097	0.053	-0.089	-0.019	-0.226	-0.247	-0.246	0.000	[-]
Ľ	上部見付け	Fwa	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	[m]
011	至内への熟流速(日射有) 室内への熱流速(日射毎)	qin,t qin_f(IS=0)	40.34	18.64	-52.57	-1 /.53	-121.15	-131.63	-131.14	-7.90	[W/m] [W/m²]
-	安中々の教法をつせた、	Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[W/m]
1	日射無しモデル	Q[outside]	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	[W/m]
		Q[inside]	15.12	14.19	10.77	5.71	6.63	5.96	4.66	3.78	[W/m]
工部	ロ別有りモナル	Q[outside]	-27.84	-26.21	-19.58	-12.63	-11.51	-9.53	-9.24	-6.99	[W/m]
<u>ーム部</u>	ロサキリテジェ	Alexander d. Calas Dadiation	40.00	40.70	01.00	10.01	10.00	15.77	10.01	10.71	Fw/ / 1
	ガラス部全体	Ση g•Ag+S	0.979	0.975	0.909	0.589	0.604	0.576	0.448	0.200	[m]
	ガラス露出面積	Ag	2.087	2.087	2.087	2.087	2.087	2.087	2.087	2.087	[m]
	カフス蕗出幅 ガラス露出高	GW	1.620	1.620	1.620	1.620	1.620	1.620	1.620	1.620	լա] [m]
-	影による減衰係数	S	1.000	1.000	0.996	0.928	0.953	0.953	0.949	0.884	[_]
1	影面積	Ags	0.000	0.000	0.008	0.150	0.099	0.099	0.107	0.242	[㎡]
1	がうス部日射熱取得率	η g	0.469	0.467	0.437	0.304	0.304	0.290	0.226	0.109	[-]
4	衣 回 款 元 宋 (日 射 有) 表 面 熱 流 束 (日 射 無)	qs, in, g qs, in, g(IS=0)	8.56	8.56	07.36 8.56	8,56	8.56	59.41 8.56	54.15 8.56	38.40	լwv/mi] [W/m°]
ĥ	総熱流束	qin, g	243.09	242.13	227.13	160.54	160.54	153.37	121.77	62.85	[W/m ²]
	総日射透過率	т 12	0.353	0.351	0.320	0.200	0.200	0.188	0.135	0.049	[—]
<u></u> ス部	主// 闽 主/) 闽	l	0.000	0.007	0.012	0.007	0.007	0.035	0.140	0.175	
败収率	至内側 室外側室内側	2α 2	0.142	0.143	0.140	0.115	0.115	0.112	0.095	0.056	L-J [-]
N	室外側	2α 1	0.089	0.086	0.128	0.202	0.202	0.211	0.243	0.229	[-]
達率	室外側	α 。	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	[W/(m*)
1	伝熟面積 室内側	Aw a	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	[m] [\///m²•
1	伝熱開口H寸法	Н	1.37	1.37	1.37	1.37	1.37	1.37	1.37	1.37	[m]
開口	伝熱開口W寸法	W	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	[m]
ーム [] m3.in/38.in		a f	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-] [-]
ス中空層	等価熱伝導率	λeq	0.0302	0.0302	0.0302	0.0302	0.0302	0.0302	0.0302	0.0302	[W/(m·K
ス種		1	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	
<u>高度</u> への入身	*备度	h i	0	20	45	70	0	20	45	70	
角度		θ	0	0	0	0	70	70	70	70	
温度差		ΔΤ	5	5	5	5	5	5	5	5	[°C]
油店		IS	500	500	500	夏李(3) 500	0-25°C) 500	500	500	500	[W/m²]
or÷st≔pr					FL3+A12	+*RSFL3K	A6(断熱L	owE複層)			
ス種類 or冬季										-	
ーム材質 ス種類 or冬季						アルミ構	指指複合				
ルム 名 ーム材質 ス種類 or冬季						・ アルプラ アルミ樹	 クラスK3 排脂複合				

第2章 開口部の斜入射に対する日射熱取得率計算法

表 2.1	1 斜入射計算	結果例(断熱但	放射	複層-	⊢縦辷	<u>:り出</u>	し窓/	BL:1	漂準	0601	3)
朔闭形態 製品名						用 アルプラ	さ 忘 ゆう う ス K 3				
フレーム材量					EL 3+412	アルミ植 +*PSEL3K	計複合 A6(新執)	owF按届)			
リフへ信頼 夏季or冬季					FL3TA12	<u>т≁кагсак</u> 夏季(3	0−25°C)	owc夜店)			
日射強度		IS	500	500	500	500	500	500	500	500	[W/m²]
内外温度差		ΔT	5	5	5	5	5	5	5	5	[°C]
<u>力位円度</u> 太陽高度		b h	0	20	45	70	0	20	45	70	
窓面への入	射角度	i	0	20	45	70	70	71.3	76	83.3	
ガラス種	an dala dan akk. Jawa takk adar	1	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	Day // 103
<u>カラス甲空ル</u> フレーム	曹帯伽烈伝導率 アルミ	λeq αf	0.0302	0.0302	0.0302	0.0302	0.0302	0.0302	0.0302	0.0302	[W/(m·K)] [-]
日射吸収率	PVC	αf	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-]
伝熱開口	伝熱開口W寸法	W	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	[m]
	伝熱面積	H Aw	0.877	0.877	0.877	0.877	0.877	0.877	0.877	0.877	[m] [m ²]
表面	室内側	α,	7.69	7.69	7.69	7.69	7.69	7.69	7.69	7.69	[W/(m๋·K)]
熱伝達率	室外側	α 。	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	[W/(m・K)]
カフス 日射吸収塞	<u>至外側</u> 室内側	20 1 20 2	0.089	0.086	0.128	0.202	0.202	0.211	0.243	0.229	[-] [-]
	室外側一室内側		-0.053	-0.057	-0.012	0.087	0.087	0.099	0.148	0.173	[-]
ガラス部	公司研究证本	- 40	0.050	0.054	0.000	0.000	0.000	0.400	0.405	0.040	r 1
	和口別 迈 週 平 総 熱 流 束	ain, g	243.09	0.351 242.13	227.13	160.54	160.54	153.37	121.77	62.85	∟—」 [W/m²]
	表面熱流束(日射有)	qs, in, g	66.54	66.77	67.36	60.40	60.40	59.41	54.15	38.40	[W/m ²]
	表面熱流束(日射無)	qs, in, g(IS=0)	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	[W/m ²]
	ル7A部日射 熟取 侍率 影面積	I) g Ags	0.469	0.467	0.437	0.304	0.304	0.290	0.226	0.109	∟ [m1]
	影による減衰係数	S	1.000	0.993	0.981	0.947	0.857	0.851	0.841	0.812	[-]
	ガラス露出幅	GW	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	[m]
	<u> ハフス露出局</u> ガラス露出面積	GH Ag	0.655	0.655	0.655	0.655	0.655	0.655	0.655	0.655	լmյ [m՞]
	<u>ガラス部全体</u>	Σηg•Ag+S	0.307	0.304	0.281	0.188	0.171	0.161	0.125	0.058	[m]
フレーム部			00.50	50.40	40.00	00.74	00.01	04.00	01.00	10.57	France 1
上部	日射有り七テル	Absorpted Solar Radiation	60.52 -42.46	58.46 -41.16	48.93	28.71	23.61	24.09	21.09	13.57 -8.74	[W/m] [W/m]
		Q[inside]	17.95	17.03	13.50	7.58	8.02	7.59	6.16	4.52	[W/m]
	日射無しモデル	Q[outside]	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	[W/m]
		ain, f	70.37	3.38 64.57	24.96	-7.91	-61.57	-57.14	-51.13	-9.48	[w/m] [W/m ²]
	室内への熱流速(日射無)	qin, f(IS=0)	25.30	25.30	25.30	25.30	25.30	25.30	25.30	25.30	[W/m ²]
	上部見付け	Fwa	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	[m]
	フレーム部日射熱取得平	n f•Af	0.000	0.079	0.0000	-0.0026	-0.174	-0.0064	-0.0059	-0.0027	[-] [m1]
	枠出寸法	d	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	[m]
	bfとの調整寸法 NET	k	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[m]
	ジ友⊂ ガラス部影長さ	d≉tann Sb1	0.000	0.009	0.024	0.066	0.000	0.009	0.024	0.066	[m] [m]
下部	日射有りモデル	Absorpted Solar Radiation	66.43	64.44	53.99	31.44	25.63	26.46	23.01	14.05	[W/m]
		Q[outside]	-48.03	-46.41	-39.02	-22.29	-17.40	-18.18	-15.74	-8.45	[W/m]
	日射無しモデル	Q[outside]	3.51	3.51	3.51	3.51	3.51	3.51	3.51	3.51	[W/m]
		Q[inside]	3.51	3.51	3.51	3.51	3.51	3.51	3.51	3.51	[W/m]
	室内への熱流速(日射有)	qin, f	77.32	67.73	17.72	-48.96	-58.21	-56.72	-57.56	-37.51	[W/m ²]
	下部見付け	Fwb	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	[w//n]
	フレーム部日射熱取得率	ηf	0.100	0.081	-0.019	-0.152	-0.171	-0.168	-0.170	-0.129	[-]
七紛如		η f•Af Absorption Solar Padiation	0.0039	0.0031	-0.0007	-0.0059	-0.0066	-0.0065	-0.0065	-0.0050	[m] [W/m]
	L 31 H 9 L 7 70	Q[outside]	-37.53	-34.81	-27.93	-13.66	-18.71	-17.56	-12.83	-4.09	[W/m]
		Q[inside]	18.21	17.38	14.06	8.29	8.28	7.98	6.78	4.98	[W/m]
	日射無しモデル	Q[outside] Q[inside]	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	LW/m]
	室内への熱流速(日射有)	qin, f	88.34	72.60	10.59	-68.25	-68.46	-70.34	-73.05	-48.66	[W/m]
	室内への熱流速(日射無)	qin, f(IS=0)	35.91	35.91	35.91	35.91	35.91	35.91	35.91	35.91	[W/m ²]
	縦部見付け フレーム部日射熱取得率	Fwc n f	0.056	0.056	0.056	0.056	0.056 -0.209	0.056	0.056 -0.218	0.056	[m] [-]
	フレーム部日射熱取得	η f•Af	0.008	0.005	-0.004	-0.015	-0.015	-0.015	-0.016	-0.012	[m]
右縦部	日射有りモデル	Absorpted Solar Radiation	55.79	52.24	42.03	21.98	27.66	26.20	20.09	9.06	[W/m]
		Q[outside]	-37.53	-34.81 17.38	-27.93	-13.66	-18.86	-17.75	-13.07	-4.10	LW/m] [W/m]
	日射無しモデル	Q[outside]	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	[W/m]
	安山。の熱法、声(口母士)	Q[inside]	3.71	3.71	3.71	3.71	3.71	3.71	3.71	3.71	[W/m]
	<u>王内への恐流迷(日射有)</u> 室内への熱流速(日射無)	qın,т ain,f(IS=0)	88.34 35.91	72.60	35.91	-08.25 35.91	28.74 35.91	24.19	9.10 35.91	5.35 35.91	Lwv/m] [W/m²]
	縦部見付け	Fwc	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	[m]
	フレーム部日射熱取得率	η f	0.105	0.073	-0.051	-0.208	-0.014	-0.023	-0.054	-0.061	[-] [m ²]
	や出す法	d	0.008	0.005	0.004	0.015	0.001	0.002	0.004	0.004	[mm]
	bfとの調整寸法	k	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[mm]
	影長さ ガラフ部影長さ	d*tanθ Sh2	0.000	0.000	0.000	0.000	0.076	0.076	0.076	0.076	[mm]
	707へ即影技さ フレーム部全体	Ση f•Af	0.000	0.000	-0.008	-0.039	-0.029	-0.030	-0.032	-0.024	[m]
窓全体		Σŋf	0.101	0.076	-0.036	-0.174	-0.133	-0.135	-0.145	-0.110	
	窓全体	Σηg•Ag+S+Σηf•Af	0.330	0.321	0.273	0.150	0.141	0.132	0.093	0.033	[㎡]
	フレーム成分比 フレーム部両積比率	Ση f•Af/窓全体 ΣAf/Aw	6.8% 25.3%	5.2% 25.3%	-3.0%	-25.8% 25.3%	-20.8% 25.3%	-22.7%	-34.7%	-73.0%	
開口部	「全体の日射熱取得率	n w	0.376	0.366	0.311	0.171	0.161	0.150	0.106	0.038	[-]

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

表 2. 쀎᠉ᇔ	12 斜入射	計算結果例	(断	熱低	放射	寸複厚	賢 十	引き	違\ ^{運い})窓/	BL:	標準	E]	651	3)
品名 レーム材量	t							アルプラ アルミ植	クラスK3 指複合						
ラス種類 季or冬季							FL3+A12	H*RSFL3K 夏季(30	A6(断熱L)-25℃)	owE複層)					5
<u>料酒度</u> 外温度差			5	5	5	5	5	5	5	5	5	500	5	500	[w/m] [°C]
12月度 構高度 雨への11	計畫序	6 h	-70	20	45	70	0	20	45	70	70 0 70	20	45	70	
<u>国への入</u> ラス種 ラス由の目	机 方法 【生活動上 後安) A ag	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	45 3+12+3 0.0302	3+12+3	3+12+3	3+12+3	3+12+3	3+12+3	DW /(K)]
レーム	アルミ PVC	α f	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-] [-]
熱開口		u r W	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	[m] [m]
Ŧ	伝熱面積	Aw	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	[m] [m]] [M///==21/2]
四 伝達率	室外側	α,	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	[W/(m*K)]
7へ 射吸収率	至外側 室内側 室月側 室中側	2α 2	0.202	0.211	0.243	0.229	0.089	0.086	0.128	0.202	0.202	0.211	0.243	0.229	[-]
ラス部	至外前一至内前 公日計逐過來	- 19	0.067	0.199	0.125	0.173	-0.053	-0.057	-0.012	0.067	0.087	0.199	0.125	0.173	r_1
	総日初辺過半 総熱流東 書面執法市(日計方)	qin, g	160.54	153.37	121.77	62.85	243.09	242.13	227.13	160.54	160.54	153.37	121.77	62.85	[W/m ²]
	表面熱流束(日射無) 計画2,300日射熱取得密	qs. m, g qs. in, g(IS=0)	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	[W/m]
	影面積	Ags	0.287	0.290	0.317	0.422	0.409	0.407	0.036	0.166	0.265	0.230	0.295	0.402	[m]
	影による減衰休奴 ガラス露出幅 ポニュ 雪山宮	S GW	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	[m] [m]
	ガラス露出面積	GH Ag	1.199	1.199	1.199	1.824	1.824	1.199	1.824	1.199	1.199	1.199	1.199	1.199	[m] [m] [w]
	フラス部室体	12 1 8-ME'O	0.40/	17.00	12.01	11.00	0.800	U.849	0./82	10.00	04.95	17.00	12.01	11.00	EUU FW/w 1
るてい	ロ別有ッモナル	Q[outside]	-16.59	-11.22	-9.43	-7.92	-43.81	-36.29	-23.98	-13.99	-16.59	-11.22	-9.43	-7.92	[W/m]
	日射無しモデル	Q[outside]	3.14	3.14	3.15	3.38	3.14	3.14	3.14	4.22	3.14	3.14	3.15	3.38	[W/m]
	室内への熱流速(日射有)	gin, f	-56.20	-64.81	-70.87	3.14	3.14 43.32	27.70	-16.24	3.14	-56.20	-64.81	-70.87	3.14	[W/m] [W/m ²]
	王内への統流速(日射無) 上部見付け	quir, r(15–0) Fw1	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	[m]
	フレーム部日射熱取得率フレーム部日射熱取得	ηt ηf•Af	-0.147	-0.165	-0.0117	0.0004	0.0034	0.021	-0.067	0.000	-0.147	-0.165	-0.117	0.0004	[-] [㎡]
内下部	NO ROTE 日射有りモデル	Absorpted Solar Radiation	28.06	36.57	40.58	35.81	73.51	78.90	75.24	54.91	28.06	36.57	40.58	35.81	[W/m]
		Q[outside] Q[inside]	7.44	-28.93	-34.02	-30.63	16.80	16.60	13.83	-46.63	7.44	-28.93	-34.02	-30.63	[W/m] [W/m]
	日射無しモテル	Q[outside] Q[inside]	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	3.13	[W/m] [W/m]
	室内への 然流速(日射有) 室内への 熱流速(日射無) 	qin, f qin, f(IS=0)	-52.17	-48.55	-46.94	-30.05	39.26	36.51	4.00	-40.66	-52.17	-48.55	-46.94	-30.05	[W/m] [W/m]
	ト部見付け フレーム部日射熱取得率	Fw2 η f	-0.136	-0.129	-0.126	-0.092	0.089	0.089	-0.024	-0.113	-0.136	-0.129	-0.126	-0.092	[m] [-] [w2]
内縦部	日射有りモデル	Absorpted Solar Radiation	51.81	44.48	33.85	15.72	53.38	49.97	40.34	21.18	15.20	14.38	11.04	5.13	[W/m]
		Q[outside] Q[inside]	-43.46 8.84	-36.53	6.46	4.24	-37.19	-34.54	-27.95	7.02	4.13	4.04	3.70	3.17	[W/m] [W/m]
	日射無しモテル	Q[outside] Q[inside]	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	4.07	[W/m] [W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	-50.20	-60.53 36.59	-67.77	-53.27 36.59	44.13 36.59	31.72	36.59	-78.39 36.59	36.59	36.59	36.59	36.59	[W/m] [W/m]
	総部見付け フレーム部日射熱取得率	Fw3 η f	-0.174	-0.194	-0.209	-0.180	0.065	-0.010	-0.108	-0.230	-0.027	-0.029	-0.032	-0.027	[m] [-]
61 L ±0	ノレーム部日射熱取侍 影の長さ判定 日朝吉川エデッ		-0.0144	0.0000	0.0000	0.0000	0.0012	0.0008	0.0000	0.0000	0.1562	0.1562	0.1562	0.1562	[m] [w/]
外上部	ロ射有りモナル	Absorpted Solar Radiation Q[outside]	-13.83	-13.36	-10.98	-5.84	-40.65	-37.44	47.96	-16.84	-13.83	-13.36	-10.98	-5.84	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	5.11	9.80 5.11	8.47 5.11	5.11	5.11	5.11	5.11	5.11	5.11	9.80 5.11	5.11	5.11	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] qin, f	-22.28	-19.16	-13.20	20.91	96.53	5.11 89.13	54.06	24.66	-22.28	-19.16	-13.20	20.91	[W/m] [W/m ²]
	業内への熟満速(日射無) 縦部見付け	qin, f(15-0) Fw4	0.082	0.082	0.082	0.082	41.39 0.082	0.082	0.082	0.082	0.082	0.082	0.082	0.082	[w/m]
	フレーム部日射熱取得	η f•Af	-0.008	-0.008	-0.007	-0.041	0.0073	0.095	0.025	-0.002	-0.008	-0.008	-0.007	-0.041	["] [m]
外下部	日射有りモデル	Absorpted Solar Radiation	27.90	29.56	26.57	17.36	73.03	71.59	60.69	36.34	27.90	29.56	26.57	17.36	[W/m]
	고 아프니 고 국 비	Q[inside] Q[euteide]	9.52	9.50	8.43	6.49	20.49	19.92	16.61	10.46	9.52	9.50	8.43	6.49	[W/m]
	ロ羽飛して アル	Q[inside]	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	4.37	[W/m]
	室内への熱流速(日射無) 留朝日(日) 留朝日(日)	qin, f qin, f(IS=0)	29.84	29.84	29.84	29.84	29.84	29.84	29.84	29.84	29.84	29.84	29.84	29.84	[W/m]
	フレーム部日射熱取得率	η f	-0.117	-0.113	-0.114	-0.086	0.102	0.088	0.011	-0.096	-0.117	-0.113	-0.114	-0.086	[-] [m]
外縦部	日射有りモデル	Absorpted Solar Radiation	22.96	21.77	16.79	7.66	52.77	49.40	39.91	20.97	29.00	28.57	21.02	9.52	[W/m]
	日射毎しモデル	Q[inside] Q[outside]	7.40	7.12	6.04	4.43	17.47	16.67	13.45	7.83	8.76	8.49	6.90	4.74	[W/m]
	(日前)(1000)(1000) (日前本)(1000)	Q[inside]	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	[W/m]
	室内への熱流速(日射無) 縦部見付け	qin, f(IS=0) Ew6	25.93	25.93	25.93	25.93	25.93	25.93	25.93	25.93	25.93	25.93	25.93	25.93	[W/m] [m]
	フレーム部日射熱取得率	η f	-0.197	-0.199	-0.200	-0.153	0.077	0.051	-0.052	-0.184	-0.155	-0.157	-0.174	-0.143	[-] [㎡]
召合部	影の長さ判定	Absorpted Solar Badiation	0.0646	0.0646	0.0646	0.0646	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	[m] [W/m]
u o ap		Q[outside] Q[inside]	-14.79	-13.58	-8.63	-0.38	-35.06	-32.15	-28.18	-15.00	-34.16	-32.38	-24.54	-8.42	[W/m]
	日射無しモデル	Q[outside] Q[inside]	5.36	5.36 5.36	5.36 5.36	5.36	5.36	5.36 5.36	5.36 5.36	5.36 5.36	5.36 5.36	5.36 5.36	5.36 5.36	5.36 5.36	[W/m] [W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f gin, f(IS=0)	-113.63 48.32	-112.73 48.32	-105.04 48.32	-54.83	81.64 48.32	44.75	-100.45	-278.19 48.32	-67.69	-80.41	-119.81 48.32	-111.20	[W/m] [W/m1
	2合部見付け 上框見付け	Fw7 Fwu7	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040	[m]
	下框見付け フレーム部日射熱取得率	Fws7 n f	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	[m] [-]
	フレーム部日射熱取得影の長さ判定	η f•Af	-0.016	-0.016	-0.015	-0.010	0.003	0.000	-0.015	-0.033	-0.012	-0.013	-0.017	-0.016	[㎡] [m]
全体	フレーム都全体	Ση f-Af Σn f	-0.083	-0.085	-0.085	-0.053	0.032	0.020	-0.032	-0.084	-0.063	-0.065	-0.070	-0.045	[m]
	家全体	Ση g Ag+Ση f Af	0.384	0.359	0.256	0.099	0.888	0.869	0.750	0.420	0.411	0.385	0.276	0.109	[㎡]
	フレーム成分比 フレーム部面積比率	ΣAf/Aw	21.2%	21.2%	21.2%	-53.6%	21.2%	2.3%	-4.3%	21.2%	21.2%	21.2%	21.2%	21.25	r 1
開口冊	東王体の日射器取得率	[η w	0.166	0.155	0.111	0.043	0.383	0.375	0.324	0.181	0.177	0.166	0.119	0.047	L-J

Tex	表 2.13	3 斜人射計算	結果例(遮熱也	放射	復層ᅥ	-FIX	窓/BL	」:標	準 1	6513)		1
D	<u>開閉形態</u> 製品名						アルプラ	レ クラスK3				1
	フレーム材量						アルミ格	間複合				
日本 日の 500 700 <th>ガラス種類</th> <th></th> <th></th> <th></th> <th></th> <th>RSFL3Ak</th> <th>(6*+A12+F</th> <th>FL3(遮熱L</th> <th>.owE複層)</th> <th></th> <th></th> <th>ļ</th>	ガラス種類					RSFL3Ak	(6*+A12+F	FL3(遮熱L	.owE複層)			ļ
中学書集	夏季0°冬季 日射論度		IS	500	500	500	夏李(3 500	0-25°C) 500	500	500	500	[W/m ²]
注意構成 ○ ○ ○ ○ <th>内外温度差</th> <th></th> <th>ΔT</th> <th>5</th> <th>5</th> <th>5</th> <th>5</th> <th>5</th> <th>5</th> <th>5</th> <th>5</th> <th>[°C]</th>	内外温度差		ΔT	5	5	5	5	5	5	5	5	[°C]
	方位角度		θ	0	0	0	0	70	70	70	70	
	太陽高度	AL de str	h	0	20	45	70	0	20	45	70	
	脳面への人 ガラス語	射角度	1	0	20	45	/0	/0	/1.3	/6	83.3	
Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune Tune	ガラス中空間	客集価勢伝道 塞	λeq	0.0303	0.0303	0.0303	0.0303	0.0303	0.0303	0.0303	0.0303	[W/(m·K)]
自自意ので ので のの	フレーム	アルミ	αf	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	[-]
CHRNPI Install Install <t< th=""><th>日射吸収率</th><th>PVC</th><th>αf</th><th>0.93</th><th>0.93</th><th>0.93</th><th>0.93</th><th>0.93</th><th>0.93</th><th>0.93</th><th>0.93</th><th>[-]</th></t<>	日射吸収率	PVC	αf	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-]
Call Bar (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	伝熱開口		W	1.69	1.69	1.69	1.69	1.69	1.69	1.69	1.69	[m] [1
著書 第四時一 0,		伝熱面積	Aw	2.315	2.315	2.315	2.315	2.315	2.315	2.315	2.315	[m] [mî]
●法書書 ②外晶 ○ ○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	表面	室内側	α,	7.69	7.69	7.69	7.69	7.69	7.69	7.69	7.69	[W/(m•K)]
	熱伝達率	室外側	α 。	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	[W/(m๋·K)]
日本日本の 日本日本 日本日本 日本日本 日本日本 <t< td=""><td>ガラス</td><td>室外側</td><td>2α 1</td><td>0.254</td><td>0.252</td><td>0.267</td><td>0.263</td><td>0.263</td><td>0.263</td><td>0.255</td><td>0.194</td><td>[-] []]</td></t<>	ガラス	室外側	2α 1	0.254	0.252	0.267	0.263	0.263	0.263	0.255	0.194	[-] []]
ガラス部 ロー ロー <t< td=""><td>디 왜 භ오시오 수무</td><td><u>主内側</u> 室外側-室内側</td><td>20 2</td><td>0.025</td><td>0.026</td><td>0.035</td><td>0.044</td><td>0.044</td><td>0.045</td><td>0.045</td><td>0.034</td><td>[-]</td></t<>	디 왜 භ오시오 수무	<u>主内側</u> 室外側-室内側	20 2	0.025	0.026	0.035	0.044	0.044	0.045	0.045	0.034	[-]
総目が通点 112 0.333 0.351 0.320 0.300 0.300 0.135 <t< td=""><td>ガラス部</td><td></td><td>I</td><td>0.220</td><td>0.220</td><td>0.202</td><td>0.210</td><td>0.210</td><td>0.210</td><td>0.211</td><td>0.100</td><td></td></t<>	ガラス部		I	0.220	0.220	0.202	0.210	0.210	0.210	0.211	0.100	
世際法業 chn.g 204.21 203.21 191.47 135.47 192.77 53.47 197.77 表面描読業(日本) asi.m. (150-0) 8.56 8.56 8.55 8.56		総日射透過率	т 12	0.353	0.351	0.320	0.200	0.200	0.188	0.135	0.049	[-]
		総熱流束	qin, g	204.21	203.27	191.47	135.47	135.47	129.41	102.77	53.47	[W/m [*]]
かうれ着日書読録得本 1.8 1.8 0.291 0.285 1.286 0.294 0.128 0.090 0.091 0.098 0.109 0.099 <th< td=""><td></td><td>衣田杰加米(口射有) 表面熱流束(日射無)</td><td>qs, m, g qs, in, g(IS=0)</td><td>8.56</td><td>8.56</td><td>8.56</td><td>35.33</td><td>35.33</td><td>35.45 8.56</td><td>35.14 8.56</td><td>29.01</td><td>Lwv/m1] [W/m²]</td></th<>		衣田杰加米(口射有) 表面熱流束(日射無)	qs, m, g qs, in, g(IS=0)	8.56	8.56	8.56	35.33	35.33	35.45 8.56	35.14 8.56	29.01	Lwv/m1] [W/m²]
新田橋 As 1000 1000 0000 1000 0000 0000 0000 0		カラス部日射熱取得率	η g	0.391	0.389	0.366	0.254	0.254	0.242	0.188	0.090	[-]
またる変要数数 S S S S S S S S S S S S S S S S S S		影面積	Ags	0.000	0.000	0.008	0.150	0.099	0.099	0.107	0.242	[m ²]
		影による減衰係数	S	1.000	1.000	0.996	0.928	0.953	0.953	0.949	0.884	[-] []
プラス第出題積 Na 2027 2271 2271 2271 2271 2271 2271 271		<u>カラス蕗出唱</u> ガラス露出喜	GW	1.620	1.620	1.620	1.620	1.620	1.620	1.620	1.620	[m] [m]
力子の多全体区 ng *QefS 0.818 0.817 0.801 0.802 0.800 <td></td> <td>ガラス露出面積</td> <td>Ag</td> <td>2.087</td> <td>2.087</td> <td>2.087</td> <td>2.087</td> <td>2.087</td> <td>2.087</td> <td>2.087</td> <td>2.087</td> <td>[m]</td>		ガラス露出面積	Ag	2.087	2.087	2.087	2.087	2.087	2.087	2.087	2.087	[m]
2U-CM Image: constraint of the second		ガラス部全体	Ση g•Ag*S	0.816	0.813	0.760	0.492	0.504	0.480	0.373	0.166	[m]
□ m (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	<u>フレーム部</u>	ロ母キリテジェ	Absented Color Dediction	40.00	45.54	00.04	10.00	17.00	15.40	10.04	10.50	FW(/ 1
日常無しモデル 目が無しモデル (Ginnside) 789 789 789 789 467 630 468 412 365 夏外への除法煮日料 Gintaids 000 100 0005 0055 0045 045	느끠	ロ別有りモナル	Q[outside]	48.00	45.54	-26.64	-13.56	-12 77	-10.54	-9.20	-6.91	[W/m]
目射無しモデル			Q[inside]	7.89	7.57	6.58	4.67	5.03	4.68	4.12	3.65	[W/m]
grqへの熟述(日料和) qin, f f G240 G24 G42 G2 G24 G24 G2 G2 G2		日射無しモデル	Q[outside]	2.71	2.71	2.71	2.71	2.71	2.71	2.71	2.71	[W/m]
国内への熟え速(日前中)/ (0), 7		安市。の熱法法(日射右)	Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[W/m]
上前見付け 10045 0.056 0.050 <		至内への熟流速(日射有) 室内への熱流速(日射無)	qin, f qin f(IS=0)	-7.92	44.26	8.76	-7.92	-45.24	-53.62	-60.65	-7.92	[w/m] [W/m ²]
フレーム部目射熱取得 1 f 0.121 0.121 0.018 0.007 0.008 0.005 0.008 0.005 0.008 0.005 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.000		上部見付け	Fwa	0.045	0.045	0.045	0.045	0.045	0.045	0.045	0.045	[m]
フレーム部目射熱取得 防ご法 もどの調整す法 n f-Af 0.0009 0.0007 0.0002 0.0000 0.000 0		フレーム部日射熱取得率	η f	0.121	0.104	0.033	0.054	-0.075	-0.091	-0.105	0.039	[-]
(*日・)点 0 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.000 <th< td=""><td></td><td>フレーム部日射熱取得</td><td>η f•Af</td><td>0.0090</td><td>0.0078</td><td>0.0025</td><td>0.0040</td><td>-0.0056</td><td>-0.0068</td><td>-0.0079</td><td>0.0029</td><td>[m]</td></th<>		フレーム部日射熱取得	η f•Af	0.0090	0.0078	0.0025	0.0040	-0.0056	-0.0068	-0.0079	0.0029	[m]
影長さ other other <th< td=""><td></td><td>作山り云 bfとの調整寸法</td><td>a k</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>լույ [m]</td></th<>		作山り云 bfとの調整寸法	a k	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	լույ [m]
ガラス部を見えて のしていたいです。 Sb1 0.000 0.005 0.002 0.000 0.000 0.002 0.000 0.002 0.003 0.024 2.340 0.240 2.321 U/V 日射無しモデル Q[outside] 0.76 0.78 7.78 2.78 1.78 2.78 2.78 1.28 2.78 2.78 1.28 2.78 1.28 2.78 1.28 2.78 1.28 2.78 1.28 2.78 1.601		影長さ	d*tanh	0.000	0.018	0.050	0.137	0.000	0.018	0.050	0.137	[m]
下部 目射有りモデル Absorpted Solar Radiation Q(ustaide) 54.03 59.77 58.68 14.450 19.44 27.42 32.42 30.61 (W// Q(n) 目射無しモデル Q(ustaide) 2.78		ガラス部影長さ	Sb1	0.000	0.000	0.005	0.092	0.000	0.000	0.005	0.092	[m]
Gliotisola -43.4 -43.7 -47.4 -14.2 -14.2 -14.2 -14.3 -24.10<	下部	日射有りモデル	Absorpted Solar Radiation	54.03	59.77	58.68	44.50	19.44	27.42	32.42	30.61	[W/m]
日射無しモデル Q[inside] 空内への熟流速(日射有) qin,f 定内への熟流速(日射有) qin,f(15=0) -8.64 -0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.000				8.68	10.09	11.16	10.22	5.30	6.94	8.28	8.44	[W/m]
□ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○		日射無しモデル	Q[outside]	2.78	2.78	2.78	2.78	2.78	2.78	2.78	2.78	[W/m]
室内への熟売速(日射和) qin, f			Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[W/m]
Find Control (Control Control Contr		室内への熱流速(日射有)	qin, f	85.11	121.73	130.33	85.23	-47.63	-3.94	33.84	71.29	[W/m]
プレーム部日射熱取得率 n 0.08 0.261 0.261 0.261 0.205 0.005 0.006 0.006 0.006 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.000		室内への熟流速(日射無)	qin, f(IS=0) Fwb	-8.64	-8.64	-8.64	-8.64	-8.64	-8.64	-8.64	-8.64	[wv/m]
フレーム部日射熱取得 η f-Af 00105 00105 0.0105 0.0006 0.0005 0.0008 [m] 左線部 日射有りモデル Absorpted Solar Radiation 43.71 40.98 32.54 15.91 39.40 37.05 27.68 12.49 [W] Q[ontside] -36.16 -33.59 -25.74 11.01 -28.82 -26.92 -19.39 -7.23 [W] Q[inside] 2.67		フレーム部日射熱取得率	η f	0.188	0.261	0.278	0.188	-0.078	0.009	0.085	0.160	[-]
左報部 日射有りモデル Absorpted Solar Radiation 43.71 40.98 32.54 15.91 39.40 37.05 27.68 12.49 [U/4] Q[outside] 7.56 7.40 6.80 4.90 10.67 10.22 8.35 5.29 [W/4] Q[outside] 2.67 2.61 9.000 0.005 0.000 0.		フレーム部日射熱取得	η f∙Af	0.0115	0.0160	0.0170	0.0115	-0.0048	0.0006	0.0052	0.0098	[m]
Q[001st06] 7.30.10 7.30.10 7.20.30 7.20.20 7.20.30 7.20 7.20.30 7.20 7.20.30 7.20 7.20.30 7	左縦部	日射有りモデル	Absorpted Solar Radiation	43.71	40.98	32.54	15.91	39.40	37.05	27.68	12.49	[W/m]
日射無しモデル Q[outside] 2.67				7.56	7.40	6.80	4.90	10.67	10.22	8.35	5.29	[W/m]
回 Q[inside] 0.00		日射無しモデル	Q[outside]	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	[W/m]
Pan < 0 熟読速(日射雨) qin, f			Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[W/m]
EXPLOSE: A Control (CIS-0)		室内への熱流速(日射有)	qin, f	57.82	51.82	13.02	-61.89	103.02	89.46	37.89	-14.55	[W/m] [W/m²]
フレーム部日射熱取得率 フレーム部目射熱取得 ŋ f 0.137 0.125 0.048 -0.102 0.125 0.097 -0.007 [] オ縦部 日射有リモデル Absorpted Solar Radiation 43.71 40.98 32.54 15.91 17.02 16.01 11.92 5.18 [] 石縦部 日射有リモデル Absorpted Solar Radiation 43.71 40.98 32.54 15.91 17.02 16.01 11.92 5.18 []		縦部見付け	Fwc	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	[m]
フレーム部日射熱取得 n f - Af 0.006 0.002 -0.005 0.011 0.009 0.005 0.000 [m] 右縦部 日射有りモデル Absorpted Solar Radiation 43.71 40.98 32.54 15.91 17.02 16.01 11.92 51.88 [W// Q[outside] -36.16 -33.59 -25.74 -11.01 -12.15 -11.26 -7.68 -3.28 [W// Q[inside] 7.56 7.40 6.80 4.90 4.61 4.51 4.06 3.27 [W// Q[inside] 7.56 7.40 6.80 4.90 4.61 4.51 4.06 3.27 [W// Q[inside] 0.00		フレーム部日射熱取得率	ηf	0.137	0.125	0.048	-0.102	0.228	0.201	0.097	-0.007	[-]
日朝年9リセデル Absorbed Solar Radiation 43.71 40.98 32.54 15.91 17.02 16.01 11.92 5.18 W/ Q[outside] -36.16 -33.59 -25.74 -11.01 -12.15 -11.26 -7.68 -1.82 W/ Q[inside] -7.66 -36.9 -36.9 -36.7 -26.7 2.67 2.67 2.67 2.67 2.67 2.67 2.67	-1 tot."-	フレーム部日射熱取得	η f•Af	0.006	0.006	0.002	-0.005	0.011	0.009	0.005	0.000	[m]
Otoconstruer 30.10 -33.9 -23.74 -11.01 -11.20	石縦部	ロ射有りモデル	Absorpted Solar Radiation	43.71	40.98	32.54	15.91	17.02	16.01	11.92	5.18	LW/m]
日射無しモデル Q[outside] 2.67			Q[inside]	7.56	7.40	6.80	4.90	4.61	4.51	4.06	3.27	[W/m]
Q[mside] 0.000 0.000		日射無しモデル	Q[outside]	2.67	2.67	2.67	2.67	2.67	2.67	2.67	2.67	[W/m]
			Q[inside]	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[W/m]
★ ************************************		主内への熱流速(日射有) 室内への熱流速(日射有)	qin, t qin, f(IS=0)	57.82	51.82	13.02	-61.89	/.34	4.15	-7.68	-8.59	[W/m] [W/m ²]
フレーム部日射熱取得率 η f 0.137 0.125 0.048 -0.102 0.036 0.036 0.006 0.004 [] フレーム部日射熱取得 η f·Af 0.0014 0.0013 0.0005 -0.0011 0.0004 0.0030 0.0006 0.0004 0.0000 I[] マレーム部日射熱取得 η f·Af 0.028 0.027 0.077 0.077 0.077 0.077 0.077		縦部見付け	Fwc	0.035	0.035	0.035	0.035	0.035	0.035	0.035	0.035	[m]
フレーム部日射熱取得 n f・Af 0.0014 0.0013 0.0005 -0.011 0.0004 0.0003 0.0001 0.0000 [m] 枠出寸法 d 0.028 0.000		フレーム部日射熱取得率	η f	0.137	0.125	0.048	-0.102	0.036	0.030	0.006	0.004	[-]
Ift □□ 1 は □ 0.028 0.000		フレーム部日射熱取得	η f•Af	0.0014	0.0013	0.0005	-0.0011	0.0004	0.0003	0.0001	0.0000	[㎡]
B長さ detan0 0.007 0.075 0.078 0.054 0.033 0.002 0.012 (.003 0.003 0.0054 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078 0.078		作出す法 bfとの調整す注	d	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	լmm] [mm]
ガラス部影長さ Sb2 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003 0.002 0.012 [m] プレーム部全体 Ση f 0.124 0.135 0.097 0.042 0.003 0.015 0.009 0.054 窓全体 Ση g・Ag*S+Ση f・Af 0.845 0.843 0.783 0.501 0.505 0.484 0.375 0.178 [m] パレーム成分比Ση f・Af/窓全体 3.3% 3.7% 2.8% 1.9% 0.1% 0.7% 0.5% 7.0%		影長さ	d∗tanθ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[mm]
フレーム部全体Ση f・Af 0.028 0.031 0.022 0.010 0.003 0.002 0.012 [m] 窓全体 Ση f 0.124 0.135 0.097 0.042 0.003 0.015 0.009 0.054 窓全体 Ση g・Ag*S+Ση f・Af 0.845 0.843 0.783 0.501 0.505 0.484 0.375 0.178 [m] アレーム成分比Ση f・Af / 窓全体 3.3% 3.7% 2.8% 1.9% 0.1% 0.7% 0.5% 7.0%		ガラス部影長さ	Sb2	0.000	0.000	0.000	0.000	0.077	0.077	0.077	0.077	[mm]
第2 字体 ≥ η f 第2 字体 ≥ η f 0.124 0.135 0.097 0.042 0.003 0.015 0.009 0.054 第2 余体 Σ η g・Ag*S+Σ η f・Af 0.845 0.843 0.783 0.501 0.505 0.484 0.375 0.178 [m] 7ν-La成分比Σ η f・Af / 窓全体 3.3% 3.7% 2.8% 1.9% 0.1% 0.7% 0.5% 7.0%		フレーム部全体	Ση f•Af	0.028	0.031	0.022	0.010	0.001	0.003	0.002	0.012	[m ²]
<u> お工業科</u> と η g*Ag#5+2・1 1*Af U.845 U.843 U.783 U.501 U.505 U.848 U.375 U.178 [m] フレーム成分比Ση f・Af/窓全体 3.3% 3.7% 2.8% 1.9% U.1% U.7% U.5% 7.0% マリーム成分比Ση f・Af/窓全体 9.0% 0.0% 0.0% 0.0% 0.0% 0.0%	惑主体	min A 44		0.124	0.135	0.097	0.042	0.003	0.015	0.009	0.054	[m ²]
レレーロバンガル[2][1]「AIノ (広土)1本 3.378 3.778 2.878 1.578 U.178 U.778 U.778 0.55% 7.055			<u> と η g'Ag*S+ と η f'Af</u> Σ n f. Af / 安合/+	0.845	0.843	0./83	0.501	0.505	0.484	0.375	0.178	լայ
ノレーム部面積比率(2 Af/Aw 9.9% 9.9% 9.9% 9.9% 9.9% 9.9% 9.9% 9.9		フレーム部面積比率	Σ Af/Aw	9.9%	9.9%	9.9%	9.9%	9.9%	9.9%	9.9%	9.9%	
開口部全体の日射熱取得率 n w 0.365 0.364 0.338 0.217 0.218 0.209 0.162 0.077 「	開口部	『全体の日射熱取得率	n w	0.365	0.364	0.338	0.217	0.218	0.209	0.162	0.077	[-]

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

表 2.1	4 斜入射計算	結果例(遮熱低	放射	複層⊣	⊢縦辷	り出	し窓/	BL:	漂準	0601	3)
<mark>期閉形態</mark> 製品名						開き アルプラ	き窓 ウラスK3				
レーム材	T.					アルミ権	制脂複合				
ガラス種類					RSFL3AK	(6*+A12+F	L3(遮熱L	owE複層)			
夏季or冬季 口針硷座		16	500	500	500	夏李(3	0-25°C)	500	500	500	[W/m²]
<u>口豹强度</u> 内外温度差		ΔΤ	500	5	5	500	5	500	5	500	[°C]
方位角度		θ	0	0	0	0	70	70	70	70	1
太陽高度		h	0	20	45	70	0	20	45	70	
<u>版面への人</u> Hラフ語	射角度	j	0	20	45	70	70	71.3	76	83.3	
ガラス中空	署等価熱伝導率	λεα	0.0303	0.0303	0.0303	0.0303	0.0303	0.0303	0.0303	0.0303	[W/(m·K)]
<u>フレーム</u>	アルミ	αf	0.03	0.03	0.03	0.93	0.03	0.03	0.03	0.93	[-]
日射吸収率	PVC 仁教明口W+++	αf	0.55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	[-]
ム影開し	伝熱開口11寸法	VV H	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	լmյ [m]
	伝熱面積	Aw	0.877	0.877	0.877	0.877	0.877	0.877	0.877	0.877	[m]
長面	室内側	α,	7.69	7.69	7.69	7.69	7.69	7.69	7.69	7.69	[W/(m๋∙K)
設伝達率 Hニマ	室外側	α.	25.00	25.00	25.00	25.00	25.00	25.00	25.00	25.00	[W/(m̂∙K)
リフス 日射吸収率	室内側	20 1 20 2	0.254	0.252	0.035	0.263	0.263	0.263	0.255	0.034	[-] [-]
	室外側一室内側		0.229	0.226	0.232	0.219	0.219	0.218	0.211	0.159	[-]
リラス部				0.05/							
	総日射透過率	т 12 gip. g	0.353	0.351	0.320	0.200	0.200	0.188	0.135	0.049	[—] [W/m²]
	表面熱流束(日射有)	qs, in, g	27.66	27.91	31.70	35.33	35.33	35.45	35.14	29.01	[W/m]
	表面熱流束(日射無)	qs, in, g(IS=0)	8.56	8.56	8.56	8.56	8.56	8.56	8.56	8.56	- [W/m]
	がラス部日射熱取得率	ηg	0.391	0.389	0.366	0.254	0.254	0.242	0.188	0.090	[-]
	形 単 槓 影 に よ る 減 妄 係 数	Ags	1,000	0.005	0.013	0.035	0.094	0.097	0.104	0.123	[[m]] [[—]]
	ガラス露出幅	GW	0.529	0.529	0.529	0.529	0.529	0.529	0.529	0.529	[m]
	ガラス露出高	GH	1.238	1.238	1.238	1.238	1.238	1.238	1.238	1.238	[m]
	ガラス露出面積	Ag	0.655	0.655	0.655	0.655	0.655	0.655	0.655	0.655	[m] [m]
フレーム部	カフス部全体	2 I g'Ag#S	0.256	0.253	0.235	0.157	0.142	0.135	0.104	0.048	ເຫງ
<u>上部</u>	日射有りモデル	Absorpted Solar Radiation	65.27	63.26	51.77	28.91	23.27	23.80	20.56	13.31	[W/m]
		Q[outside]	-54.46	-52.59	-42.21	-21.98	-16.82	-17.37	-14.64	-8.49	[W/m]
	「日午年」テニュ	Q[inside]	10.70	10.43	9.31	6.48	6.41	6.31	5.59	4.50	[W/m]
	ロ射無しモナル		3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	[W/m]
	室内への熱流速(日射有)	qin, f	78.35	77.09	56.51	26.44	-9.87	-7.15	-9.05	9.28	[W/m ²]
	室内への熱流速(日射無)	qin, f(IS=0)	25.30	25.30	25.30	25.30	25.30	25.30	25.30	25.30	[W/m ²]
	上部見付け	Fwa n f	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	[m] [_]
	フレーム部日射熱取得	η f•Af	0.0041	0.0040	0.0024	0.0001	-0.0027	-0.0025	-0.0026	-0.0012	[㎡]
	枠出寸法	d	0.024	0.024	0.024	0.024	0.024	0.024	0.024	0.024	[m]
	bfとの調整寸法	k.	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	[m]
	影長さ ガラス部影長さ	d*tanh Sh1	0.000	0.009	0.024	0.066	0.000	0.009	0.024	0.066	[m] [m]
下部	日射有りモデル	Absorpted Solar Radiation	71.18	68.93	56.35	31.05	25.29	25.95	22.05	13.32	[W/m]
		Q[outside]	-60.04	-57.78	-46.11	-23.58	-18.67	-19.13	-15.66	-7.97	[W/m]
	ロ射無レエデル	Q[inside]	11.16	10.96	9.92	7.18	6.64	6.68	6.14	4.96	[W/m]
	ロ射無しモナル		3.51	3.51	3.51	3.51	3.51	3.51	3.51	3.51	[W/m]
	室内への熱流速(日射有)	qin, f	85.28	81.41	54.19	1.72	-6.51	-6.21	-13.44	-12.69	[W/m ²]
	室内への熱流速(日射無)	qin, f(IS=0)	27.23	27.23	27.23	27.23	27.23	27.23	27.23	27.23	[W/m ²]
	下部見付け	Fwb	0.066	0.066	0.066	0.066	0.066	0.066	0.066	0.066	[m] Fl
	フレーム部日射熱取得率	n f•Af	0.0045	0.0042	0.0021	-0.0020	-0.0026	-0.0026	-0.0031	-0.0031	[_] [m1]
左縦部	日射有りモデル	Absorpted Solar Radiation	60.52	56.78	44.40	21.64	27.28	25.67	19.11	8.36	[W/m]
		Q[outside]	-49.43	-46.08	-34.89	-14.91	-20.16	-18.73	-12.98	-3.62	[W/m]
	日射無しモデル	Q[inside]	3.70	3 70	9.45	6./1	7.43	7.23	6.35	4.85	LW/m]
		Q[inside]	3.71	3.71	3.71	3.71	3.71	3.71	3.71	3.71	[W/m]
	室内への熱流速(日射有)	qin, f	98.94	91.05	56.07	-6.45	6.57	2.57	-12.22	-17.14	[W/m ²]
	室内への熱流速(日射無)	qin, f(IS=0)	35.91	35.91	35.91	35.91	35.91	35.91	35.91	35.91	[W/m ²]
	減可見1515 フレーム部日射熱取得率	rwc n f	0.056	0.056	0.056	-0.085	-0.056	-0.056	-0.096	0.056	[]
	フレーム部日射熱取得	η f•Af	0.009	0.008	0.003	-0.006	-0.004	-0.005	-0.007	-0.008	[m]
右縦部	日射有りモデル	Absorpted Solar Radiation	60.52	56.78	44.40	21.64	27.10	25.49	19.02	8.52	[W/m]
		Q[outside]	-49.43	-46.08	-34.89	-14.91	-19.96	-18.53	-12.88	-3.74	LW/m]
	日射無しモデル	Q[outside]	3.70	3.70	3.70	3.70	3.70	3.70	3.70	3.70	[W/m]
		Q[inside]	3.71	3.71	3.71	3.71	3.71	3.71	3.71	3.71	[W/m]
	室内への熱流速(日射有)	qin, f	98.94	91.05	56.07	-6.45	51.61	47.80	33.37	22.10	[W/m ²]
	<u> 全内への</u> 熟流速(日射無) 縦部員付け	qin, t(IS=0) Ewc	35.91	35.91	35.91	35.91	35.91	35.91	35.91	35.91	[w/m] [m]
	フレーム部日射熱取得率	η f	0.126	0.110	0.040	-0.085	0.031	0.024	-0.005	-0.028	[-]
	フレーム部日射熱取得	η f•Af	0.009	0.008	0.003	-0.006	0.002	0.002	0.000	-0.002	[m ²]
	枠出寸法	d	0.028	0.028	0.028	0.028	0.028	0.028	0.028	0.028	[mm]
	DTとの調整寸法 影長さ	κ d*tanθ	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	լmm] [mm]
	ガラス部影長さ	Sb2	0.000	0.000	0.000	0.000	0.076	0.076	0.076	0.076	[mm]
	フレーム部全体	Ση f•Af	0.027	0.024	0.010	-0.014	-0.007	-0.008	-0.013	-0.014	[m]
8全体		Σηf	0.121	0.109	0.047	-0.064	-0.033	-0.037	-0.059	-0.063	
	窓全体	<mark>Ση g•Ag*S+Ση f•Af</mark>	0.283	0.277	0.245	0.143	0.135	0.127	0.091	0.034	[m]
	フレーム成分比 フレーム部面積比率	∠ II †*At/ 芯全体 Σ Af/Aw	9.5%	8.7%	4.2%	-9.9% 25.3%	-5.4% 25.3%	-6.5%	-14.5%	-41.5% 25.3%	
闘□≐	ポームの日射動の得速 中国の 中国の 中国の 中国の 中国の 中国の 中国の 中国の	n w	0.322	0.316	0.280	0.163	0 154	0 144	0 103	0.038	ſ_1

.

第2章 開口部の斜入射に対する日射熱取得率計算法

表 2.	15 斜入射	計算結果例	(遮	熱但	も放身	村複片	員十	引き	違い	\窓/	BL :	標	售	1651	3)
製品名フレーム材置	t						DOFLAN	アルプラ アルミ樹	ション シラスK3 新脂複合	-46.02					
<u>ガラス種類</u> 夏季or冬季 日射強度		IS	500	500	500	500	RSFL3AK	.6*+A12+F 夏季(3) 500	·L3(遮熱L 0-25°C) 500	owE夜唐) 500	500	500	500	500	[W/m]]
一小加速差 内外温度差 方位角度		Δ T θ	5 -70	5	5 -70	5	5	5	5	5	5 70	5 70	5 70	5 70	[°C]
太陽高度 憲面への入	射角度	h i	0 70	20 71.3	45 76	70 83.3	0	20 20	45 45	70 70	0 70	20 71.3	45 76	70 83.3	
ガラス種 ガラス中空間 フレーム	等価熱伝導率	λeq	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	3+12+3 0.0303	[W/(m·K)]
日射吸収率	PVC 伝熱開口W寸法	α f W	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	[-] [m]
	伝熱開口H寸法 伝熱面積	H Aw	1.37 2.315	1.37	1.37	1.37 2.315	1.37 2.315	1.37	1.37 2.315	1.37 2.315	1.37 2.315	1.37	1.37 2.315	1.37 2.315	[m] [m]
表面 熱伝達率	室内側 室外側	α,	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	7.69 25.00	[W/(m°⋅K)] [W/(m°⋅K)]
ガラス 日射吸収率	室外側 室内側	2α 1 2α 2	0.263	0.263	0.255	0.194	0.254	0.252	0.267	0.263	0.263	0.263 0.045	0.255	0.194	[-] [-]
ガラス部	至外側一至内側	* 12	0.219	0.218	0.211	0.159	0.229	0.226	0.232	0.219	0.219	0.218	0.211	0.159	[-]
	総合計測2000年 総熱流東 表面熱流東(日射有)	qin, g qs. in. g	135.47	129.41	102.77	53.47 29.01	204.21	203.27	191.47	135.47	135.47	129.41	102.77	53.47 29.01	[W/m ¹]
	表面熱流束(日射無) がうス部日射熱取得率	qs, in, g(IS=0) η g	8.56 0.254	8.56 0.242	8.56 0.188	8.56	8.56 0.391	8.56 0.389	8.56 0.366	8.56 0.254	8.56 0.254	8.56 0.242	8.56 0.188	8.56 0.090	[W/m] [—]
	影面積 影による減衰係数	Ags S	0.287 0.843	0.291 0.840	0.317 0.826	0.422 0.769	0.000	0.007	0.036	0.166	0.265	0.271 0.852	0.295 0.838	0.402 0.779	[m] []
	ガラス露出幅 ガラス露出高	GW GH	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	1.521	[m] [m]
フレーム祭	カラス露出面積 ガラス部全体	Ag Ση g•Ag•S	0.390	1.824 0.370	1.824 0.284	1.824 0.126	1.824 0.714	1.824 0.708	1.824 0.654	1.824 0.421	1.824 0.396	1.824 0.375	1.824 0.288	1.824 0.128	[m] [㎡]
内上部	日射有りモデル	Absorpted Solar Radiation Q[outside]	24.01 -17.86	17.10 -12.23	13.20 -9.49	11.23	66.35 -55.84	57.11 -47.76	37.59 -31.09	18.71 -14.73	24.01 -17.86	17.10 -12.23	13.20 -9.49	11.23 -7.89	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	5.86 3.14	4.78 3.14	3.60 3.14	3.35 3.14	9.59 3.14	8.43 3.14	6.36 3.14	3.88 3.14	5.86 3.14	4.78 3.14	3.60 3.14	3.35 3.14	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] qin, f	3.14 -14.66	3.14 -24.46	3.14 -31.68	3.14 24.45	3.14 49.53	3.14 37.66	3.14 9.32	3.14 27.40	3.14 -14.66	3.14	3.14 -31.68	3.14 24.45	[W/m] [W/m]
	至内への熱流速(日射無) 上部見付け フレーム部日射熱野(の声)	qin, f(IS=0) Fw1	17.45	0.082	17.45 0.082	17.45 0.082	17.45 0.082	0.082	17.45 0.082	17.45 0.082	0.082	17.45	17.45	17.45 0.082	[W/m] [m] [_1
	レビーム部日射熱取得率 フレーム部日射熱取得 影の長さ判定	η f•Af	-0.064 -0.0042 0.0000	-0.084 -0.0055 0.0086	-0.098 -0.0065 0.0235	0.014 0.0009 0.1537	0.0042	0.0040	-0.016 -0.0011 0.0235	0.020	-0.064 -0.0042 0.0000	-0.084 -0.0055 0.0086	-0.098	0.014 0.0009 0.1537	ເງ [m] [m]
内下部	日射有りモデル	Absorpted Solar Radiation Q[outside]	27.72	36.07	39.60	35.02	78.28	83.45	77.67	54.53	27.72	36.07	39.60	35.02	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	5.83 3.13	6.09 3.13	5.74 3.13	4.75 3.13	9.49 3.13	9.66 3.13	9.07 3.13	6.76 3.13	5.83 3.13	6.09 3.13	5.74 3.13	4.75 3.13	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] qin, f	3.13 -13.91	3.13 -11.26	3.13 -14.49	3.13 -11.85	3.13 44.51	3.13 45.84	3.13 30.66	3.13 -3.49	3.13 -13.91	3.13 -11.26	3.13 -14.49	3.13 -11.85	[W/m] [W/m]
	室内への熱流速(日射無) 下部見付け	gin, f(IS=0) Fw2	15.92 0.089	15.92 0.089	0.089	15.92 0.089	15.92 0.089	15.92 0.089	15.92 0.089	15.92 0.089	15.92 0.089	15.92 0.089	15.92 0.089	15.92 0.089	[W/m] [m]
内縦部	日射有りモデル	η f•Af Absorpted Solar Radiation	-0.060 -0.0043 51.50	-0.054 -0.0039 43.98	-0.001	-0.056 -0.0040	0.0041	0.0003	0.029	-0.039 -0.0028 20.84	-0.060 -0.0043	-0.034 -0.0039 14.49	-0.001 -0.0044	-0.056 -0.0040 4.87	["] [m ²] [W/m]
1116.00	131472770	Q[outside] Q[inside]	-44.85	-37.55	-27.35	-11.02 4.00	-49.20	-45.91 8.59	-34.98	-15.40	-11.82	-10.93	-7.44	-1.82	[W/m] [W/m]
	日射無しモデル	Q[outside] Q[inside]	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	4.07 4.07	[W/m] [W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	1.36 36.59	-9.71 36.59	-22.83 36.59	-27.88 36.59	52.22 36.59	46.63 36.59	21.28 36.59	-25.52 36.59	33.78 36.59	33.00 36.59	29.98 36.59	28.55 36.59	[W/m] [W/m]
	縦部見付け フレーム部日射熱取得率	Fw3 η f	-0.070	-0.093	-0.119	-0.129	0.065	0.065	-0.031	-0.124	-0.006	-0.007	-0.013	-0.016	[m] [-] [m]
外上部	シレーム部口新派取得 影の長さ判定 日射有りモデル	Absorpted Solar Radiation	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.1562	0.1562	0.1562	0.1562	[m] [W/m]
		Q[outside] Q[inside]	-15.09 8.64	-14.39 8.51	-11.03 7.88	-5.63	-52.68 13.95	-48.91 13.46	-37.81 12.11	-18.16 9.07	-15.09 8.64	-14.39 8.51	-11.03 7.88	-5.63	[W/m] [W/m]
	日射無しモデル	Q[outside] Q[inside]	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	5.11 5.11	[W/m] [W/m]
	室内への熱流速(日射有) 室内への熱流速(日射無)	qin, f qin, f(IS=0)	19.25 41.39	21.05 41.39	20.50 41.39	36.21 41.39	102.73 41.39	99.02 41.39	79.40 41.39	52.22 41.39	19.25 41.39	21.05 41.39	20.50 41.39	36.21 41.39	[W/m] [W/m]
	縦部見付け フレーム部日射熱取得率 フレーム部日射熱取得率	Fw4 η f	-0.044	-0.041	-0.042	-0.010	0.082	0.082	0.082	0.082	-0.044	-0.041	-0.042	-0.010	[m] [-] [m ²]
外下部	影の長さ判定 日射有りモデル	Absorpted Solar Radiation	0.0000 27.56	0.0086	0.0235	0.0646	0.0000	0.0086	0.0235 63.09	0.0646	0.0000 27.56	0.0086	0.0235	0.0646	[m] [W/m]
		Q[outside] Q[inside]	-19.62 7.91	-20.66 8.03	-17.87 7.53	-9.82 6.25	-64.49 13.22	-62.62 13.04	-50.44 11.88	-26.99 8.79	-19.62 7.91	-20.66 8.03	-17.87 7.53	-9.82 6.25	[W/m] [W/m]
	日射無しモデル	Q[outside] Q[inside]	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37	4.37 4.37	4.37 4.37	4.37	4.37 4.37	4.37 4.37	4.37 4.37	4.37 4.37	[W/m] [W/m]
	主内への熟流速(日射有) 室内への熱流速(日射無) 縦部員付け	qın, t qin, f(IS=0) Fw5	9.50 29.84	29.84	29.84 0.089	29.84 0.080	29.84	83.84 29.84	02.22 29.84	29.84	9.50 29.84	29.84	29.84 0.089	5.00 29.84	LW/M] [W/m] [m]
	フレーム部日射熱取得率影の長さ判定	η f η f•Af	-0.041	-0.039	-0.048	-0.050	0.009	0.108	0.065	-0.021	-0.041	-0.039	-0.048	-0.050	[-] [㎡]
外縦部	日射有りモデル	Absorpted Solar Radiation Q[outside]	23.16 -17.15	21.78 -15.92	16.22 -10.97	7.11	57.54 -47.58	53.97 -44.36	42.30 -33.68	20.63 -14.49	28.62 -21.67	26.93 -20.16	20.06 -14.14	8.83 -4.37	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	6.24 3.38	6.08 3.38	5.41 3.38	4.27	10.21 3.38	9.86	8.80 3.38	6.23 3.38	7.09	6.89 3.38	6.01 3.38	4.51 3.38	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] qin, f	3.38	3.38	3.38	3.38	3.38	3.38	3.38 38.13	3.38	3.38 0.36	3.38	3.38	3.38	[W/m] [W/m]
	王内への欧流速(日射無) 縦部見付け フレーム部日射熱町得索	gm, r(15–0) Fw6 n f	20.93 0.065 -0.079	20.93 0.065 -0.083	20.93 0.065 -0.102	20.93	25.93 0.065 0.093	25.93 0.065 0.081	25.93 0.065 0.024	23.93 0.065 -0.079	25.93	20.93 0.065 -0.058	20.93 0.065 -0.083	20.93	[w//III] [m] [-]
	フレーム部日射熱取得影の長さ判定	η f•Af	-0.006	-0.007	-0.008	-0.008 0.0646	0.0077	0.007	0.002	-0.006	-0.004	-0.005	-0.007	-0.008	[m]
召合部	日射有りモデル	Absorpted Solar Radiation Q[outside]	23.67 -14.79	22.29 -13.58	16.50 -8.63	6.79 -0.38	74.42 -58.93	69.74 -54.76	55.84 -42.15	27.35 -17.51	51.82 -37.42	48.77 -34.86	36.20 -24.45	15.37 -7.32	[W/m] [W/m]
	日射無しモデル	Q[inside] Q[outside]	9.08 5.36	8.89 5.36	8.01 5.36	6.47 5.36	15.52 5.36	15.02 5.36	13.71 5.36	9.85 5.36	13.81 5.36	13.36 5.36	11.35 5.36	7.91 5.36	[W/m] [W/m]
	室内への熱流速(日射有)	Q[inside] qin, f	5.36 27.73	5.36 22.39	5.36 2.12	5.36 -1.92	5.36 111.38	5.36 96.26	5.36 25.82	5.36 -106.95	5.36 48.98	5.36 36.64	5.36 -10.97	5.36 -45.65	[W/m] [W/m]
	王内への SR (日 所 無) 召合部見付け 上 框 見 付 け	qm, r(15–0) Fw7 Fw17	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	46.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	40.32 0.040 0.056	[w//II] [m] [m]
	ー 加えりい 下框見付け フレーム部日射熱取得率	Fws7 η f	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	0.056	[m] [-]
	フレーム部日射熱取得 影の長さ判定	η f•Af	-0.002 0.174	-0.003 0.174	-0.005 0.174	-0.005 0.174	0.006	0.005	-0.002	-0.016 0.000	0.000	-0.001 0.065	-0.006 0.065	-0.009 0.065	[㎡] [m]
憲全体	フレーム都全体	Ση <mark>f-Af</mark> Ση f	-0.029 -0.058	-0.032	-0.040 -0.081	-0.031	0.041 0.084	0.035	0.008	-0.034 -0.069	-0.019 -0.039	-0.021	-0.031	-0.026	[m]
	窓全体 フレーム成分比	<mark>Σηg-Ag+Σηf-Af</mark> Σηf-Af/窓全体	0.361 -7.9%	0.338 -9.5%	0.244 -16.4%	0.095 -33.0%	0.755 5.5%	0.743 4.8%	0.662 1.2%	0.387 -8.8%	0.377 -5.0%	0.354 -6.1%	0.257 -12.1%	0.102 -25.2%	[㎡]
開口部	_{フレーム部面積比率} 移全体の日射熱取得率	ΣAf∕Aw η w	21.2% 0.156	21.2%	21.2% 0.105	21.2%	21.2% 0.326	21.2% 0.321	21.2% 0.286	21.2%	21.2% 0.163	21.2% 0.153	21.2%	21.2%	[-]

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

次に拡散成分について計算を行った。

算出式(2.23)を用いて計算した結果を表 2.16~2.18 に示す。

表 2.16 散乱日射に対する日射熱取得率一覧(ガラス:普通複層)

計算窓種	サイズ (W*H)	ガラス仕様	フレーム 考慮	フレーム 面積比率	η w(0)	η diff	SC*0.81
ガラスのみ	_	FL3	毎	0.0%	0.881	0.809	0.810
73 7 7 07 07		FL3+A+FL3	***	0.0%	0.786	0.678	0.724
	03607		有(簡易)	26.1%	0.581	0.501	0.535
⊏ा∨ॐ	(0.41*0.77)		有(精算)	20.1/0	0.588	0.450	0.541
「「へ志	16513		有(簡易)	0.0%	0.708	0.611	0.652
	(1.69*1.37)		有(精算)	9.970	0.711	0.593	0.654
	03607		有(簡易)	20.0%	0.472	0.408	0.435
問キ次	(0.41*0.77)		有(精算)	39.9%	0.518	0.383	0.477
用で応	06013	FLJTATELJ	有(簡易)	25.2%	0.587	0.506	0.540
	(0.64*1.37)		有(精算)	25.5%	0.615	0.489	0.566
	07407		有(簡易)	20.1%	0.479	0.413	0.441
己造い変	(0.78*0.77)		有(精算)	39.1%	0.514	0.371	0.473
「三」」「三」「二」	16513		有(簡易)	21.2%	0.619	0.534	0.569
	(1.69*1.37)		有(精算)	21.270	0.638	0.511	0.587

表 2.17 散乱日射に対する日射熱取得率一覧(ガラス:断熱 LowE 複層)

計算窓種	サイズ (W*H)	ガラス仕様	フレーム 考慮	フレーム 面積比率	η w(0)	η diff	SC*0.81
ガラスのみ	_	FL3	411	0.0%	0.881	0.809	0.810
73 7 7 0707		FL3+A+LE3	711	0.0/0	0.469	0.404	0.432
	03607		有(簡易)	26.1%	0.347	0.299	0.319
⊏ा∨ॐर	(0.41*0.77)		有(精算)	20.1%	0.371	0.279	0.341
「」へ志	16513		有(簡易)	0.0%	0.423	0.364	0.389
	(1.69*1.37)		有(精算)	9.970	0.433	0.358	0.399
	03607		有(簡易)	20.0%	0.282	0.243	0.260
問キ穴	(0.41*0.77)		有(精算)	39.9%	0.323	0.212	0.297
用で応	06013	FLSTATLES	有(簡易)	25.2%	0.350	0.302	0.323
	(0.64*1.37)		有(精算)	23.3/0	0.376	0.282	0.346
	07407		有(簡易)	20.1%	0.286	0.246	0.263
己造い変	(0.78*0.77)		有(精算)	39.1%	0.312	0.191	0.287
う運い芯	16513		有(簡易)	21.2%	0.370	0.319	0.340
	(1.69*1.37)		有(精算)	21.270	0.384	0.289	0.353

表 2.18 散乱日射に対する日射熱取得率一覧(ガラス:遮熱 LowE 複層)

計算窓種	サイズ (W*H)	ガラス仕様	フレーム 考慮	フレーム 面積比率	η w(0)	η diff	SC*0.81
ガラスのみ	_	FL3	毎	0.0%	0.881	0.809	0.810
13 77 0707		LE3+A+FL3	715	0.0/0	0.391	0.338	0.360
	03607		有(簡易)	26.1%	0.289	0.250	0.266
⊏ा∨ऌ	(0.41*0.77)		有(精算)	20.1/0	0.321	0.257	0.295
「」へ志	16513		有(簡易)	0.0%	0.353	0.304	0.325
	(1.69*1.37)		有(精算)	9.9%	0.366	0.308	0.337
	03607		有(簡易)	20.0%	0.235	0.203	0.217
問キの	(0.41*0.77)		有(精算)	39.9%	0.283	0.204	0.261
用で応	06013	LESTATELS	有(簡易)	0F 0¥	0.292	0.252	0.269
	(0.64*1.37)		有(精算)	20.3%	0.323	0.252	0.297
	07407		有(簡易)	20.1%	0.238	0.206	0.219
司造い変	(0.78*0.77)		有(精算)	39.1%	0.272	0.190	0.250
うぼい念	16513		有(簡易)	01.0%	0.308	0.266	0.284
	(1.69*1.37)		有(精算)	∠۱.2%	0.327	0.258	0.301

表 2.16~2.18 よりフレーム考慮の欄について、「無」はフレームを考慮せずガラスのみで 計算した結果を示す。「有(簡易)」はフレーム面積のみを考慮し、受熱及びフレームから 落とす影成分を 0 と仮定し計算した結果を示す。「有(精算)」は窓フレーム+フレームの 影成分を考慮し計算した結果を示す。また、_{7w}(0)は、垂直入射時の窓全体の日射熱取得 率を示し、SC*0.81 は現在熱負荷計算^{4).5)}で用いられている方法で、垂直入射時の窓全体の 日射熱取得率_{7w}(0)を SC 値に置換し、単板ガラスの散乱日射特性値である 0.81を掛け合 わせた値を示す。

窓サイズが代表的なサイズと出荷頻度が高い小さいサイズを例示しているという前提は あるが、普通複層(表 2.16)では窓フレーム+フレームの影成分+ガラスの多重反射を考 慮した精算値と、従来熱負荷計算で用いられている値(ガラスのみの垂直入射時の SC 値 *0.81:0.724)を比較すると51~82%に減少することが確認できた。同様に、断熱低放射複 層(表 2.17)では44~82%、遮熱低放射複層(表 2.18)では 52~85%に減少することが確 認できた。

また、フレームを考慮した垂直入射時の SC 値*0.81 と比較をしても普通複層(表 2.16) では 78~90%に、断熱低放射複層(表 2.17)では 67~90%に、遮熱低放射複層(表 2.18) では 76~92%に減少することが確認できた。

フレームから落とす影及び受熱分の影響は簡易計算値と比較すればわかる。普通複層(表 2.16)では90~97%、断熱低放射複層(表 2.17)では87~98%、遮熱低放射複層(表 2.18) では97~103%だった。遮熱低放射複層ガラスを用いた場合、入射角度が小さい分のフレー ム日射熱取得率の影響が大きく影の影響を考慮しない場合と比べほとんど変化はなかった。

フレーム面積比率の小さい FIX 窓(サイズ:16513)では影の影響はほとんどないが、フレ ーム面積比率 20%~25%程度となると概ね 5~10%程度小さくなることがわかった。直達日 射同様フレームから落とす影の影響は無視できない値であることがわかった。

2.5まとめ

第2章では、斜入射時における窓フレームを考慮した開口部の日射熱取得率の詳細計算法 について日射を直達成分と散乱成分を分けて整理した。直達成分は、窓面に対して垂直入 射だけでなく斜入射で日射があたった場合のガラスの入射角度特性、フレーム自身の色違 いによる受熱分の影響及びフレームからガラス面に落とす影の影響を考慮して計算を行っ た。散乱成分は、半球上の微小面から窓面へ照射される日射量に微小面位置のプロファイ ル角θから決まる直達入射に対する特性を乗じて、半球について積分する方法で行った。 得られた知見を以下にまとめる。

①計算を行った全ての入射角度及びフレームとガラスの組合せ条件において、ガラス部 単体の日射熱取得率(*n_g*)よりもフレームを含めた窓全体の日射熱取得率(*n_w*)の方が小 さい値を示した。フレームを考慮することにより窓全体の日射熱取得率が減少することを 示した。フレームを考慮しなければならないことを示した。

②入射角度は同じで高度と方位が異なった条件について解析した結果、窓全体の日射熱取 得率は左右非対称の引き違い窓も含め、高度や方位の影響は小さく入射角度と日射熱取得 率の関係が適切に近似できていることが確認できた。つまり、ガラス部単体の日射熱取得 率の算定式と同様に入射角度で適切に評価できることを示した。

③フレームの受熱分及びレームによる影の影響は、入射角度が垂直に近い cos θ が 0.9~1.0 (θ が 25°~0°)の場合、フレームが受熱した熱量がフレームによる影で減少する熱量よ り大きくなり、 η_w の方が 1~3%程度大きくなっているが、逆に cos θ が 0~0.7 (θ が 90° ~45°)の場合、フレームから落ちる影の影響が大きくなっていることを示した。

④フレームの色(日射吸収率)による窓全体の日射熱取得率の差はほぼないことを示した。
 ⑤フレームから落とす影の影響がでる入射角度 cos θ が 0~0.5(θ が 60°以上)の場合、伝熱
 開口面積が 0.8 m²以上あり、フレーム面積比率が 20%台のサイズでは、精算値(η_w)と簡易算
 出値(η_{w(f0)})との比は標準的なサイズで 25%以上であった。フレームから落とす影の影響を無
 視できないことを示した。

⑥フレーム面積比率が同程度であれば影の影響度合いも同じとは言えない。ガラス面積が 大きい方(伝熱開口面積が大きい方)が、影の影響は小さくなることを示した。

⑦フレーム部の日射熱取得率(η_f)は、入射角度が大きくなると負の値を示した。これは、 計算方法(計算過程)によるものである。ガラスとフレームの 2 次元熱流分を全てフレー ムの熱流とみなしたため、最終的に算出する窓全体の日射熱取得率ではこの影響も含んで 計算していることから結果は正しいと言える。

⑧散乱日射による窓の日射熱取得率は、従来住宅熱負荷計算で用いているガラスのみの 日射熱取得率の 50~85%になることを示した。フレームの日射熱取得率が 0 の場合と比較 して、フレーム面積比率 20%~25%程度となると概ね 5~10%程度小さくなることを示した。 直達日射同様フレームから落とす影の影響は無視できない値であることを示した。

参考文献

- 1) エネルギーの使用の合理化に関する法律; 2008.5.30 改正
- 2) 住宅の省エネルギー基準の解説;(財)建築環境・省エネルギー機構,2009
- 3) 遮熱計算法に関する研究報告書,(社)リビングアメニティ協会, 平成13年度(2002.3), 平成14年度(2003.3),平成15年度(2004.3),平成16年度(2005.3),平成19年 度(2008.3)
- 4) SMASH for Windows Ver.2 ユーザーマニュアル:(財)建築環境・省エネルギー機構,2004
- 5) AE-Sim/Heat 操作マニュアル:(株)山内設計室,2009
- 6) JIS R 3106:1998, ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法
- 7) ISO 15099:2003, Thermal performance of windows, doors and shading devices -Detailed calculations
- 8) 赤坂裕:建物の熱負荷と熱使用に関する研究,鹿児島大学工学部紀要,17号,1975

第3章 開口部熱性能のフィールド測定法

3.1はじめに

第2章では、斜入射及びフレームを考慮した直達成分の開口部の日射熱取得率計算法及び 散乱成分を考慮した開口部の日射熱取得率計算法について述べた。

開口部の断熱性能及び遮熱性能の測定法は、既往の研究^{1),2),3),4)}により確立され、開口部の 断熱性能測定法⁵⁾、ガラスの光学特性測定法⁶⁾及び測定結果を用いた断熱性能計算法⁷⁾や遮 熱性能計算法⁶は JIS 規格化されている。住宅熱負荷計算^{8),9)}もこの値を用いて行われてい る。

また、遮熱性能測定法では、これまでフロートガラスと比較して係数を決定する日射遮蔽 係数と呼ばれる評価法が国内では主だったが後述する日射熱取得率測定装置が開発された。

この測定法では、日射の入射角度は0度(窓面に対して垂直入射)で製品評価を行っている。これは、JISでも ISO でも同様である。しかし、実際には窓面方位、太陽高度・方位により入射角度、日射強度は時々刻々変化することから、斜入射を考慮した評価法が必要である。

また、垂直入射では、窓フレームからガラス面へ影を落とすことはほぼないが、斜入射を 考慮すると窓フレームからフレーム自身やガラス面へ影を落とすこととなる。

計算法が正しいかどうかを評価する上でも測定法の開発が必要である。

ここでは、窓が実際に設置される状態で時々刻々変化する日射に対する日射熱取得率測定法について述べる。

3.2 予備測定

屋外測定行う前に、実際に設置する窓の日射熱取得率性能を把握するため、以下に説明 する日射熱取得率測定装置¹⁰⁾で予備測定を行った。また同製品を第2章の計算法で計算し 測定結果と比較を行った。使用した日射熱取得率測定装置の主な特徴は以下の通りである。

3.2.1 屋内測定装置(日射熱取得率測定装置)の概要

- a) 遮蔽係数ではなく日射熱取得率を直接求める装置であるため、標準ガラス(通常は 3mm 厚フロートガラス)の波長特性の影響を受けない。そのため、近年普及してきた遮熱型 Low-E ガラスなどの波長選択性を有する窓を正しく評価することが可能である。
- b) 従来の装置では、一般に、日射による取得熱量を流体の出入り口温度と流量から計測していたが、本装置では、冷却パネル、計測箱及び試験体取り付け枠での熱量計測に熱流計を用いている。そのため、流量計や計測箱の校正実験を省くことができる。

- c) 室内側、外気側の試験体正面にガラスのバッフル板を設け、光源及び冷却板からの長波 長放射が試験体に与える影響をできるだけ小さくしている。
- d) 太陽光シミュレータとして、標準試験体の大きさの照射面積で最大 500W/m²の照射強度 を有し、平行度も高く、エアマス 1.5 の標準太陽光のスペクトルとよく合致したものを使 用している。
- e) 試験体取り付け開口の大きさが高さ 1,375、幅 1,695 であり、市販の開口部製品の測定 が可能である。

図 3.1 に本測定装置の全体構成を示す。太陽光シミュレータで照射された光は、光導入窓、 外気側バッフルを通過し、試験体に当たり、さらに試験体を透過した光は計測箱のバッフ ルを透過し冷却パネルに当たる。 (1) 太陽光シミュレータ装置

試験に用いる光源としては、日射に近似した波長分布の光源が必須である。このため太陽 光発電の評価などに用いられ、現状で最も太陽光スペクトルに近似し、ランプ寿命中の変 化も少なく安定した光源であるキセノンのショートアークタイプを採用している。

(2) 照射方向

照射方向は水平(試験体に垂直入射)となっており、キセノンランプの特性、実験室の制約から照射角度を変えることは出来ない。

図 3.2 にエアマス(AM) 1.5 基準太陽光 と試験体面での波長特性を示す。

また、図 3.3 及び 3.4 に太陽光シミュレ

ータ装置の断面及び実物画像を示す。

図3.2 試験体面での分光分布 (AM1.5との比較)

図3.4 太陽光シミュレータ ランプハウス部

3.2.2 測定サンプルの仕様と測定環境条件

測定サンプルの仕様を表 3.1 に示す。また図 3.5 に試験体図を示す。窓フレームは住宅用 アルミ樹脂複合の FIX 窓 16513 サイズを用いた。ガラスは普通複層ガラス (FL3+A12+FL3) を用いた。

表3.1 測定サンプル仕様及び測定条件

室内側表面熱伝道	主率	[W/(㎡K)]	7.69
室外側表面熱伝道	主率	[W/(m̊K)]	25
	室内側温度	[°C]	25
百昍冬卅	室外側温度	[°C]	30
支 拘木 IT	日射量	[W/m]	500,0
	入射角	[°]	0
	室内側温度	[°C]	0
久昍冬姓	室外側温度	[°C]	20
やあれて	日射量	[W/m]	0
	入射角	[°]	0
フレーム種類			アルミ樹脂複合
<u>窓種</u>			FIX窓
<u>フレーム色(日射</u>	及収率:a)	[-]	ステン(0.502)
<u>伝熱開口寸法(₩</u>	∗H)	[m]	W:1.690 × H:1.370
<u> 伝熱開口面積</u>		[m ²]	2.32
フレーム面積比率		[%]	9.90
<u>ガラス種類</u>			普通複層
<u>ガラス仕様</u>			FL3+A12+FL3
<u>ガラス部冬期熱買</u>	〔流率	[W/(m ^² K)]	2.84
ガラス部夏期熱貫	〔流率	[W/(m ^² K)]	3.06
ガラス部夏期日射	 熱取得率	[-]	0.785
山空園	夏期日射有条件	[W/(mK)]	0.0817
下 王 信	夏期日射無条件	[W/(mK)]	0.0796
す画が広守午	冬期日射無条件	[W/(mK)]	0.0682

図3.5 試験体図(アルミ樹脂複合 FIX 窓 16513 サイズ)

3.2.3 測定結果と計算結果の比較

サンプルの熱貫流率及び日射熱取得率の測定結果と計算結果の比較を表 3.2 に示す。また 計算結果表を表 3.3 に示す。熱貫流率及び日射熱取得率共に、測定値と計算値の誤差は 3% 以内を示した。精度としては十分と考えられる。

表3.2 測定結果と計算結果の比較

条件	熱性能	測定結果	計算結果	単位	測定/計算
夏期条件	<i>η</i> 値	0.731	0.711	[–]	1.027
冬期条件	<i>U</i> 値	2.99	3.01	[W/(m [*] K)]	0.992

表 3	3.3	アルミ	樹脂複合	FIX 窓の計算結果表	
-----	-----	-----	------	-------------	--

日射	熱取得率	ISO-15099			熱貫流率		ISO-10077		
開閉形態		FIX窓		開閉形態			FIX窓		
材質		アルミ樹脂複合	t l	村賞			アルミ樹脂複合		
夏季or冬季		夏季(30-25℃)	単位	夏季or冬季			冬季(0-20°C)	単位	
日射強度	Ιs	500	[W/m ²]	日射強度		Ιs	無し	[W/mឺ]	
伝熱開口	W	1.690	[m]	伝熱開口	伝熱開口W寸法	w	1.690	[m]	
	Н	1.370	[m]		伝熱開口H寸法	н	1.370	[m]	
	A _t	2.315	[㎡]		伝熱面積	S	2.315	[m ²]	
表面熱伝達率	(室内側) α;	7.69	$[W/(m^2 \cdot K)]$	表面	室内側	α,	7.69	$[W/(m^2 \cdot K)]$	
	(室外側) α。	25.00	$[W/(m^2 \cdot K)]$	熱伝達率	室外側	α.	25.00	$[W/(m^2 \cdot K)]$	
ガラス中空層λ eq		0.0817	[W/(m·K)]	ガラス部					
ガラス仕様		FL3+A12+FL3			ガラス仕様		FL3+A12+FL3		
総日射透過率		0.745	[-]		ガラスの総厚さ	Σdg	0.006	[m]	
総熱流束	q _{in.g}	407.96	[W/m ²]		中空層の厚さ	Σd _a	0.012	[m]	
表面熱流束	q _{in,g,si}	35.56	[W/m]		ガラス+中空層	Σd _g +Σd	0.018	[m]	
	q _{ing} (I _S =0)	15.30	[W/m ²]		中空層熱伝導率	λ	0.0682	[W/(m·K)]	
	η "	0.785	[-]		ガラス部熱貫流率	Ug	2.841	[W/(m ² ·K)]	
ガラス露出幅	GW	1.620	[m]		校正パネル部熱貫流率	U,	1.461	$[W/(m^2 \cdot K)]$	
ガラス露出高	GH	1.288	[m]		ガラス露出幅	GW	1.620	[m]	
ガラス露出面和	A _{ef}	2.087	[m ²]		ガラス露出高	GH	1.288	[m]	
	η _{ef} •A _{ef}	1.639	[㎡]		ガラス露出面積	A _e	2.087	[m²]	
フレーム部					ガラス部通過熱流量	ΣQg	5.928	[W/K]	
フレーム日射吸収率	(ペールグレー)	0.502	[-]	フレーム部					
上部	q _{in.f}	32.75	[W/m ²]	-	内外温度差		20	[W/K]	
	q _{in.f} (I _S =0)	19.22	[W/m ²]	上部	上部計算結果	ΣQ _{f1}	14.863	[W/m]	
	見付 Fwa	0.045	[m]		上部計算結果(パネルモデル)	q _{f1}	8.716	[W/m]	
	η,	0.027	[-]		上部見付寸法	I _{f1}	0.045	[m]	
	η _f •A _f	0.00202	[m ²]		上部面熱貫流率	U _{f1}	3,190	$[W/(m^2 \cdot K)]$	
下部	q _{in.f}	55.52	[W/m ²]		上部通過熱流量	Q _{f1}	0.238	[W/K]	
	$q_{inf}(I_s=0)$	24.47	[W/m ²]	下部	下部計算結果	ΣQ _{f2}	15.063	[W/m]	
	見付 Fwb	0.037	[m]		下部計算結果(パネルモデル)	q _{f2}	9.308	[W/m]	
	η _f	0.062	[-]		下部見付寸法	I _{f2}	0.037	[m]	
	n ₊•A,	0.00380	[m ²]		下部面熱貫流率	U _{f2}	4.680	[W/(m ² ·K)]	
縦部	9 _{in f}	39.39	[W/m ²]		下部通過熱流量	Q _{f2}	0.287	[W/K]	
	$q_{inf}(I_s=0)$	24.28	[W/m ²]	縦部	縦部計算結果	ΣQ _{f3}	14,790	[W/m]	
	見付 Fwc	0.035	[m]		縦部計算結果(パネルモデル)	q _{f3}	8.625	[W/m]	
	η,	0.030	[-]		縦部見付寸法	l _{f3}	0.035	[m]	
-	η _f •A _f	0.00141	[m ²]		縦部面熱貫流率	U _{f3}	3.971	[W/(m ² ·K)]	
フレーム部全体	Ση, Α,	0.009	[m ²]		縦部通過熱流量	Q _{f3}	0.185	[W/K]	
ガラス部全体	Ση "·A,	1.639	[m ²]		フレーム部通過熱流量	ΣQ	0.894	[W/K]	
窓全体	Ση, Α,+Ση, Α,	1.647	[m ²]	カ・ラススペーサ	一部線熱貫流率				
フレーム成分比	Σg _f A _f /窓全体	0.5%	[-]	上部	上部線熱貫流率	Ψ1	0.031	[W/(m·K)]	
フレーム部面積比率	Σ A _f /A _t	9.9%	[-]		上部通過熱流量	La1	0.051	[W/K]	
日射侵入率	n	0.711	[-]	下部	下部線熱貫流率	Ψ2	0.012	[W/(m·K)]	
					下部通過熱流量	L ₀₂	0.019	[W/K]	
				縦部	縦部線熱貫流率	Ψ3	0.032	[W/(m·K)]	
					縦部通過熱流量	L ₀₃	0.042	[W/K]	
					カラススペーサー部通過熱流量	ΣLo	0.153	[W/K]	
				74-4	成分比(フレーム部+ガラススペーサ)	"	15.01%	217710	
					<u></u>	Q	6,975	[W/K]	
					製品総合熱言法定		3.01	[W/(m ² ·K)]	

3.3 屋外測定法の開発

3.3.1 測定装置及び試験体の概要

屋外の自然光で日射熱取得率を測定できる装置の開発を行った。

測定装置は独立行政法人建築研究所環境実験棟 2 階屋上(茨城県つくば市立原)に比較 測定できるよう南面に同一建物を3棟設置した(図3.6(a)写真左からA棟、B棟、C棟)。 測定装置の概要図を図3.6及び図3.7に、試験体納まり図を図3.8に示す。

(a)正面部(外観)

(c)アルミ製熱交換器

(e)恒温水槽

(b)正面部躯体開口(内観)

(d)小型放射計と小型日射計

(f)出入口

図 3.6 測定装置概要図(写真)

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

測定装置は一般家庭で用いられる物置を利用した。正面の躯体開口部は2x4材で製作し、 室外側を9mm 合板で塞ぎ、木材間の隙間(見込み90mm)をグラスウール16K で充填断熱 を施した(図3.6(b))。さらに押出ポリスチレンフォームで断熱を施し部屋空間を作った(図 3.6 (b),(f))。

室内には、日射による取得熱量測定と室温維持のためにアルミ製熱交換器(450mm 角 9 台)を設置し、外部の恒温水槽より水を循環させている(図 3.6 (e))。アルミ製熱交換器(図 3.6(C))の表面は日射吸収率を限りなく1に近づけるため光沢を抑えた黒色に塗装した。

また、各種測定機器は以下の仕様のものを用いた。

(1)外部環境測定装置(ウェザートランスミッターWXT520・VISALA 社製)

風速、風向、降水量、気圧、気温、相対湿度の6種類の基本的な気象観測項目を計測する 可動部分のない完全統合型の機器。デジタル信号のため、アナログ信号で計測するデータ ロガーとは別に PC にロギングを行う仕様。

風向風速		気圧	
風速		測定範囲	600 ~ 1100 hPa
測定範囲	0 ~ 60 m∕s	精度	±0.5 hPa(0 +30 ℃において)
応答時間	0.25秒		±1 hPa (−52 +60 ℃において)
精度	0 ~ 35 m∕s	分解能 0	.1 hPa, 10 hPa, 0.0001 bar, 0.1 mmHg,
±0.3 m	/s または 読み値の±3%のいずれか大きい方		0.01 inHg
	35~60 m/s 読み値の±5%		
分解能	0.1 m/s	一般仕様	
出力単位	m/s.km/h. mph. knots	動作温度範囲	-52 ~ +60 ℃
風向		保管温度範囲	-60 ~ +70 ℃
測定範囲	0∼360°	供給電源	5~32 VDC
応答時間	0.25秒	消費電力(典型値)	12 VDCにおいて3 mA
指度	$\pm 3^{\circ}$	ヒーター用電源	DC. AC
分解能	 1°	シリアル・インターフェー	SDI-12, RS-232, RS-485, USB
	· · · · · · · · · · · · · · · · · · ·		
隆水			
降雨量	最後にリセットしてからの積算降水量		
分解能	0.01 mm (0.001 inches)		
指度	5%		
降雨時間	隆水が検地されていた時間(10秒毎)		
分解能	10秒	1	
降雨強度	10秒ステップで1分間移動平均		
範囲	0 ~ 200 mm/h		
分解能	0.1 mm/h		
出力単位	mm/h. in/h		40 VALSALT
ひょう	単位面積あたりの積算ヒット数	-	-
分解能	0.1 Hyub数/am2 (0.01 Hyub数/im2)	_	
路7いら時間	0.1ビット数/0.11(0.01ビット数/111)	7	5
母のよう時間	0なりが彼知されてていた時間(10岁母)	4	-
ファឝ fil 悠7⊾⊾ろ途 使	10秒ステップで1分問移動立内	_	
呼びより出反 ハの一		7	
万胜能	.Tビット剱/cm ⁻ h(0.0Tビット剱/in ⁻ h)、hits/h	-	
<u>温度</u> 测定体网			
測定範囲	-52~+60 °C		
精度(+20℃)、	こおいて) ±3*		
測定範囲	0~100 %RH		
精度	±3 %RH (0 90 %RH)		
11 hm 61.	±5 %RH (90 100 %RH)		
<u>分解能</u>	0.1 %RH		

(2) 長短波放射計(MR-50・英弘精機社製)

可視域~近・中間赤外域における日射(短波放射)と遠赤外域における地球放射(長波放射)について、それぞれの上向き放射と下向き放射を独立して測定するための測器である。

この4成分の放射量を測定することから、4成分放射計とも呼ばれている。 長短波放射 計による測定を行うと、アルベド、短波放射収支量、長波放射収支量、放射収支量、推定 天空温度および推定地表温度を求めることができる。

本測定では、この測定器を窓面に対して水平に設置し、窓面の直達・散乱成分の合計照射日射量及び長波放射量を測定した。

仕様	日射計	赤外放射計
感 度	7μ V/	W•m ⁻²
	10~	100Ω
インピーダンス	(日射計部、赤	示外放射計部)
応答速度	18 秒	(95%)
温度特性	6 % (-1	0∼40°C)
非直線性	2.5	0%
波長範囲	305 ~ 2,800nm	5∼50µ m
センサー温度	—	Pt-100Ω
出力ケーブル	標準 1	0 m 長
使用温度範囲	-40 ~	+70 °C
重量	4	kg

(3) 恒温槽(ヒートポンプ熱源機 三菱電機社製)

ヒートポンプ方式の温冷水を循環させる熱交換ユニットを用いた。

	-7 7	-	
	項目	3	エコヌクールビコ(40畳タイプ)
水回路方:	式		温水回路開放式
形々	_{形々} 熱交換ユニット		VEH-406HCA-K
11212	室外ユニット	•	VEH-406HPU3(-H、-HL)
電源			単相200V 50-60Hz
보 카 카 카 카	熱交換ユニ	ット	高さ430×幅370×奥行230mm
71121174	室外ユニット	•	高さ550×幅800×奥行285mm
	加熱能力		6.0kW
	消費電力		1.5kW
	最大消費電	カ	2.5kW
应口性化	運転電流		7.9A
咳方注肥	最大運転電	流	13.1A
	エネルギー	ヨ エコヌクールピコ(40畳タイフ 温水回路開放式 ット ジト VEH-406HCA-K シ VEH-406HPU3(-H、-HL) 単相200V 50-60Hz ット ット 高さ430×幅370×奥行230m こ 高さ550×幅800×奥行285m 6.0kW 1.5kW カ 2.5kW ブカ 2.5kW 濱費効率 4 熱交換ユニット 29dB 室外ユニット 49dB ブカ 1.4kW ブカ 1.4kW ブカ 1.4kW マチュニット 49dB 家換ユニット 2.5 熱交換ユニット 2.9dB 室外ュニット 47dB ット 12kg 、 38kg R410A VEH-406HPU3(-H)は770g. VEH-406HPU3-HLは300g 300	
	回路方式 温水回路開放式 :A 熱交換ユニット VEH-406HPU3(-H、- 室外ユニット :源 熱交換ユニット VEH-406HPU3(-H、- 三 :形寸法 熱交換ユニット 高さ430×幅370×奥行2 :形寸法 一次 二、 :形寸法 熱交換ユニット 高さ550×幅800×奥行2 :水丁素 熱交換ユニット 高さ550×幅800×奥行2 :水丁素 加熱能力 6.0kW 消費電力 1.5kW 最大消費電力 2.5kW 運転電流 7.9A 最大運転電流 7.9A 最大運転電流 13.1A エネルギー消費効率 4 騒音 熱交換ユニット :房性能 冷却能力 3.5kW 冷却消費電力 1.4kW 運転電流 7.4A エネルギー消費効率 2.5 騒音 熱交換ユニット 2.9dB :房性能 熱交換ユニット 2.9dB :房性能 熱交換ユニット 2.9dB :房性能 熱交換ユニット 2.9dB :房性 熱交換ユニット 2.9dB :房性 熱交換ユニット 2.9dB :房 熱交換ユニット 3.02 :家交 :日 <td< td=""><td>29dB</td></td<>	29dB	
	海虫 曰	室外ユニット	49dB
	冷却能力		3.5kW
	冷却消費電	カ	1.4kW
公司研究	運転電流		7.4A
巾方住能	エネルギー	消費効率	2.5
	取立	熱交換ユニット	29dB
	向虫 曰	室外ユニット	47dB
断旱	熱交換ユニ	ット	12kg
貝里	室外ユニット	~	38kg
冷媒種			R410A
ふは言			VEH-406HPU3(-H)は770g、
巾秌里			VEH-406HPU3-HL(
保有水量			3.02
許容シスラ	テム水量		302

(4)水の流量計(ND-10・愛知時計電機社製) 循環水(不凍液)の流量はND型流量センサーを用いた。 このセンサーは接線流れ羽根車式の計測原理で流量の範囲 が広く、各種液体の計測に適している。

型式	ND10
流量範囲	1.5~20 L/min
精度	±2%RS (標準取付姿勢時)
計測液体	各種液体への対応
最高使用圧力	1MPa (液体温度20℃の時)
圧力損失	20 kPa以下 (20 L/min時)
液体粘度範囲	0.5~1.5 mPa·s(水相当)
液体温度範囲	0~+60°C
周囲温度·湿度	-10~+70℃ 35~85%RH(結露しないこと)
비귀여면	オープンコレクターパルス4線リード線長約600mm
	デューティー比 3/7 <a 3<="" b<7="" td="">
パルス定数	7.69 mL/P
最大周波数	約44Hz
最小パルス幅	約0.007s
印加電圧範囲	3 ~ 24 VDC
消費電力	0.2 VA以下
構造	防まつ構造(IP64相当)屋内仕様
接続	R 1/2
質量	約120g

3.3.2 測定方法

窓の日射熱取得率及び熱貫流率を求めるために必要な室内への取得熱量は循環水の室出 入口温度差と流量により次式で求める。

$$Q_{in} = V \cdot C_p \cdot \rho \cdot (T_2 - T_1) \qquad \cdot \cdot \cdot (3.1)$$

ここで

Q_{in}:取得熱量 [W] V:循環水の流量 [m³/h] C_p:水の比熱 [kJ/(kg·K)] ρ:水の密度 [kg/m³] T₁:熱交換器入口の水の温度 [K] T₂:熱交換器出口の水の温度 [K]

窓の日射熱取得率及び熱貫流率は、次式で求める。

$$\eta_{w} = \frac{Q_{in} - Q_{w} - Q_{R}}{A_{w} \cdot I_{w}} \qquad (3.2)$$

$$U_{w} = \frac{Q_{in} - Q_{R}}{A_{w} \cdot (T_{o} - T_{i})} \qquad (3.3)$$

η_w:窓全体の日射熱取得率 [-]

- U_w:窓全体の熱貫流率 [W/(m²·K)]
- A_{w} : 伝熱開口面積 [m²]
- *I*_w:窓面全日射量 [W/m²]
- Q'w:試験体の貫流熱量 [W]
- Q'R:計測箱周壁から計測箱に流入・流出する熱量 [W]
- T_i :室内側気温 [K]
- T_o:室外側気温 [K]

本測定では、計測箱周壁から計測箱に流入・流出する熱量(Q_R)について影響は小さいと 仮定して測定していない。日中は、周壁に日射が受熱する分と貫流分が相殺されると仮定 し Q_R =0とした。夜間の熱貫流については、周壁からの貫流分を計算値で考慮した。

日射量は5階屋上で水平面全天日射量(I_G)及び法線面直達日射量(I_b)を測定した。

これらの測定値から天空分窓面直達日射量(*I_{dirs}*)と天空分窓面散乱日射量(*I_{dif-s}*)を算 出した。また、試験体が設置されている 2 階屋上では長短波放射計を垂直にたてて窓面全 日射量(*I_w*)を測定した。式(3.4)が示すように天空分窓面直達日射量(*I_{dir-s}*)、天空分窓面散 乱日射量(*I_{dif-s}*)と地面及び周辺反射日射量(*I_r*)の合計となる。

天空分の散乱日射量は式(3.8)に示すように水平面全天日射量から法線面直達日射量の水 平面分を差し引いた。また、天空分窓面散乱日射量は式(3.7)に示すように天空分の散乱日射 量から求め、式(3.9)が示すように天空の直達日射量及び散乱日射量を窓面全日射量から差し 引いた残りを地面及び周辺からの反射日射とした。

また、式(3.6)が示すように窓面への入射角度は太陽高度及び方位から計算した。

 $I_w = I_{dir-s} + I_{dif-s} + I_r \qquad (3.4)$

$I_{dir-s} = I_b \cos i$	• • • (3.5)
$\cos i = \cos \beta \sinh + \sin \beta \cosh \cos(A - A_{v})$	•••(3.6)
$I_{dif-s} = \frac{1 + \cos\beta}{2} I_d$	•••(3.7)
$I_d = I_G - I_b \sinh \theta$	•••(3.8)

$$I_r = I_w - I_{dir-s} - I_{dif-s} \qquad \cdot \cdot \cdot (3.9)$$

ここで

- Iw
 : 窓面全日射量 [W/m²]

 IG
 : 水平面全天日射量 [W/m²]

 Ib
 : 法線面直達日射量 [W/m²]

 Id
 : 水平面散乱日射量 [W/m²]

 Idirs
 : 天空分窓面直達日射量 [W/m²]

 Idirs
 : 天空分窓面散乱日射量 [W/m²]

 Ifr
 : 窓面への地面及び周辺反射日射量 [W/m²]

 i
 : 入射角 [°]

 h
 : 太陽高度 [°]

 A
 : 太陽方位角 [°]

 A
 : 窓設置面方位角 [°]
- β : 窓設置面傾斜角 [°]

本測定では窓設置面方位角は真南面(0°)、窓設置面傾斜角は鉛直面(90°)でおこなったため、天空分窓面直達日射量(*I_{drfs}*)及び天空分窓面散乱日射量(*I_{difs}*)は式(3.5)~(3.7)より以下の式となる。

$$I_{dir-s} = I_b \cosh \cos A \qquad \cdot \cdot \cdot (3.10)$$
$$I_{dif-s} = \frac{1}{2} I_d \qquad \cdot \cdot \cdot (3.11)$$

窓の日射熱取得率は、直達成分と散乱成分の合計となるが、地面及び周辺からの反射日 射分の取り扱いが曖昧となっている。本測定において周辺建物等の材料は拡散がおきやす い材料表面と仮定し、地面及び周辺からの反射日射は全て散乱日射として扱った。

室内及び屋外窓周りの測定には小型放射計を用いた。これによりガラスの表面温度を非 接触で測定することを可能とした。また放射計に熱電対が内蔵されており、窓際近傍の空 気温度を測定した。屋外環境は2階屋上と5階屋上気象観測タワーの2ヶ所で測定した。 その概要図を図 3.9に示す。

また、この計測箱は熱流計等の開口部以外の熱流を測定していない。日射熱取得率を求める際に補正する壁の取得熱分や貫流分の影響は小さいと想定したためである。確認のため 算出した実験棟の貫流分の熱性能を表 3.4 に示す。開口部からの貫流分とより小さい貫流熱 損失があることを事前に確認した。

表3.4 物置の熱性能(計算値)

却佔	如日回	面	面積	αο	αi	熱貫流率	温度差	貫流熱損失
即卫		方位	[㎡]	[W/(r	ท ํ ∙K)]	[W/(m [*] ·K)]	係数	[W/K]
屋根	部屋(計測箱内)	-	2.24	9.1	11.1	0.237	1.00	0.53
床	部屋(計測箱内)	-	2.24	6.7	6.7	0.317	0.70	0.50
外壁W	部屋(計測箱内)	西面	2.44	25	9.1	0.477	1.00	1.17
外壁E	部屋(計測箱内)	東面	2.44	25	9.1	0.477	1.00	1.17
外壁S	部屋(計測箱内)	南面	2.46	25	9.1	0.252	1.00	0.62
<mark>窓 S</mark>	部屋(計測箱内)	南面	2.32	25	7.69	3.010	1.00	6.98
外壁N	間仕切壁~扉	北面	4.78	25	9.1	0.195	1.00	0.93
		Ī	<mark>十測箱</mark> 壁	部(外星	き・屋根・	・床)から計測箱	資外部へ	4.91

この他、計測箱の周辺状況確認をするため、デジタルカメラに魚眼レンズを装着し撮影した画像データと永田氏の開発した SPCONV プログラムを用いて窓面からみた天空率の計測を行った。図 3.11 に代表例として B 棟を示す。測定した結果、B 棟が最も天空率が高く約44%だった。A 棟と C 棟は約 41%だった。3 棟共条件は同じであることが確認できた。

図 3.11 SPCONV プログラムによる窓面からみた天空率測定(B棟)

3.4 測定結果

測定は 2010 年 3 月 20 日~2011 年 9 月 21 日まで行った。

但し、2010年4月中旬~6月末は、法線面直達日射量及び水の流量が測定機器の不良、2010年9月~2011年3月末は恒温水層の不良、2011年4月末までは2F窓面日射量のデータ記録 不良により測定できなかった。

(1)快晴日測定結果例(2010年3月30日)

図 3.12 に屋外環境(日射)測定結果を示す。

図 3.12 より、快晴日のため全天日射量は正午を中心に左右対称となる。16 時前あたりで 一時雲が日射を遮る時間があり突然減衰している。南窓面に照射された日射量のうち直達 と散乱の比率は、9~15 時で安定して 65%: 35% だった。また、天空の散乱日射についても 左右非対称になるはずであるが、計測箱西側に建物があり、その影響で午前中は建物から の反射の影響で大きくなり、午後は建物からの反射成分が減少したことにより小さい値を 示したと考えられる。

春分を過ぎたばかりのため、太陽高度は最大(正午)で 58.6° だった。これは入射角度の 最小の角度となる。つまり、入射角度はほぼ終日 60° 以上しかないことがわかる。

図 3.13 に赤外放射量の測定結果を示す。気温が低いため下向き赤外放射量は少ない。下 向き赤外放射量は太陽放射により、下層大気が暖められる日中に大きくなる。終日安定し ているため、夜間も雲の発生がなかったことが確認できた。終日雲がないため上向きの赤 外放射量は大きい値を示している。夜間は 70~80[W/m²]、日中は平均 90[W/m²]程度だった。

図 3.14 に各棟の熱量と室内外気温の測定結果を示す。熱量の負の値は室内に供給された 熱量、正の値は室内から除去された熱量である。つまり、前者は外気に逃げる熱量、後者 は日射により入ってくる熱量である。3 棟とも同一の試験体仕様にも関わらず熱量に差が生 じている。特に A 棟は日中の取得熱量が小さく、夜間の放熱量も小さい傾向となった。B 棟及び C 棟は近い熱量を示した。この原因は循環水の出入口温度差測定が問題であると考 えられる。内外気温は深夜から明け方にかけて降下、日の出とともに上昇に転じ日射量に 応じて変化している。屋外温度の昼間の変動は、日射の風向・風速のゆらぎによるものと 考えられる。2 階屋上は西よりの風で風速は 1[m/s]程度の微風であった。

図 3.15 に室内外温度と各面の放射温度を示す。熱交換器放射温度をみると、日射のある 時間は恒温槽設定温度(20℃)にほぼ近い値を示し、深夜から明け方にかけては他と同様 に降下している。これは、日射熱の除去はほぼ十分であるが加熱能力が不足していること を示している。日射のあるとき室内温度がかなり上昇している。これは室内が自然対流の ため熱交換が悪いことが影響している。

室外側放射温度とガラス表面温度の変動が大きいが、これは屋外側温度の変動の影響によるものである。

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

図 3.12 屋外環境(日射)測定結果(2010/3/30)

2010/3/30

2010/3/30

図 3.14 各棟の熱量と室内外気温の測定結果(2010/3/30)

図 3.15 室内外温度と各面の放射温度(2010/3/30)

図 3.16 に日射熱取得率・熱貫流率及び風速の測定結果を示す。図 3.14、3.15 の結果から A 棟がうまく測定できていなかったため、B 棟及び C 棟の測定結果を掲載した。

図中の点線は第2章で計算をした試験体の直達成分の日射熱取得率及び、散乱成分の日射 熱取得率を示す。また直散合計の日射熱取得率は、日射量測定で得られた窓面日射量の直 達と散乱+反射の比率を以下の式で算出した値を示す。

$$\eta_{w} = \eta_{w}(\theta) I_{dir-s} / I_{w} + \eta_{w,dif} \cdot (I_{dif-s} + I_{r}) / I_{w} \qquad (3.12)$$

ここで

I_w : 窓面全日射量 [W/m²]
 I_{dir-s} : 天空分窓面直達日射量 [W/m²]
 I_{dif-s} : 天空分窓面散乱日射量 [W/m²]
 I_r : 窓面への地面及び周辺反射日射量 [W/m²]
 η_w : 窓全体の日射熱取得率 [-]
 η_w(θ) : 入射角θ時の直達日射に対する窓の日射熱取得率 [-]

η_{w.dif}: 散乱日射に対する窓全体の日射熱取得率 [-]

測定結果より、式(3.12)で算出した直散合計の日射熱取得率と測定結果 B 棟の結果が 9 時 から日射が建物の影響で減衰する 16 時前まで一致していることが確認できた。午前中早い 時間帯(8 時以前)に測定の方が小さい値を示したのは、受熱量が小さいことと装置の熱容 量による遅れの減少によるものと考えられる。直散合計の日射熱取得率の円弧の大きさは 窓面に照射される直達と散乱の比率で決定される。この季節では直達成分が大きいため直 達に近い円弧の形状となっている。これが散乱成分の大きい夏季であれば図 3.16 と逆に凹 型となることが予測できる。

C棟の日射熱取得率はB棟に比べ全体的に数%大きめの値だった。熱量としては概ね40W 程度の差だった。この差を確認するため、B棟及びC棟の冷却板の放射温度の比較を行っ た。冷却板放射温度分布、冷媒温度及び流量比較を表3.5に示す。9時、12時、15時の場 合で比較を行った。9時は東側から日射が入るため、外観左側の温度が高くなる。12時は 南から日射が入るため、左右中央が均等になる。15時では西側から日射が入るため外観右 側の温度が高くなる。高さ方向では、斜め上から日射が入るため、図3.10より上側よりも 中央もしくは下側の温度が高くなる傾向になる。B棟ではこの現象通りの温度分布を示して いることが確認できた。冷媒がうまく均等に流れていると考えられる。C棟では左側の中央 部及び下部の温度が終日高い傾向を示していた。その部分を除けば概ねB棟同様の傾向が 確認できた。このような若干の流量の不均等による差や、熱電対による冷媒出入口温度差 の測定誤差がこのような差になったと考えられる。

9	:00	左	中	右	平均	20.0	9:	00	左	中	右	平均	20.4
Б	Н	19.7	19.6	19.6	T1	19.8	ć	ŀт	20.1	19.9	19.8	T1	20.2
」」」	日	20.0	19.8	19.7	T2	20.6	し」	묘	21.4	20.0	19.9	T2	20.8
1Ж	下	21.1	20.7	19.9	⊿t	0.7800	ኘж	下	21.8	20.6	20.1	⊿t	0.6700
					流量	8.1923			-	-		流量	8.1923
12	2:00	左	中	右	平均	20.8	12	:00	左	中	右	平均	21.2
	上	20.0	19.9	19.7	T1	19.9	0	上	20.3	20.1	19.9	T1	20.2
日本	中	20.4	20.4	20.5	T2	21.6	し」	中	22.0	20.5	20.7	T2	21.7
17	下	22.1	22.1	22.0	⊿t	1.6500	17	Т	22.7	22.1	22.2	⊿t	1.5400
					流量	8.1846						流量	8.1769
15	5:00	左	П	右	平均	20.0	15	:00:	左	中	右	平均	20.4
	F	19.8	19.7	19.4	T1	19.9	0	Ч	20.3	20.1	19.9	T1	20.2
日本	中	19.6	19.8	20.1	T2	20.8	し抽	中	20.7	20.0	20.4	T2	21.0
1Ж	下	20.1	20.3	21.2	⊿t	0.9000	174	下	20.7	20.2	21.1	⊿T	0.8100
					流量	8.1923						流量	8.1846

表3.5 冷却板放射温度分布、冷媒温度及び流量比較(日中)

散乱日射が一定の値を示すか確認のため、測定値による受熱量から計算で求めた直達成分 による受熱量を差し引き、残りを散乱成分による受熱量として日射熱取得率を求めた。そ の結果、B棟では10~14時にかけてほぼ一定の日射熱取得率となることが確認できた。し かし、それ以外の時間では散乱による日射熱取得率は、午前中は計算値よりも小さく、午 後は逆に大きくなった。C棟は元々計算よりも大きな値を示したため、計算で求めた直達成 分による受熱量を差し引くと残った散乱成分はさらに大きな値を示した。

測定した3月30日の直達と散乱の比率は65%:35%とほぼ直達の半分程度しか散乱日射 量がなかったため、窓全体の日射熱取得率に影響を及ぼしにくい形となっている。

この結果は、開口部以外の屋根・壁からの熱流量を 0[W]と仮定した場合の結果である。 壁体部の熱流を測定していないため、開口部以外からの熱損失(Q'_R)を計算で求めた結果、 開口部からの取得熱量の 4~5%程度あることがわかった。この値は測定誤差となる。

夜間の熱貫流率は、B棟、C棟共に 2.2~2.4[W/($\mathbf{m}^2 \cdot \mathbf{K}$)]程度であった。計算及び屋内予備 測定では、3.0[W/($\mathbf{m}^2 \cdot \mathbf{K}$)]程度に対して 20%程度低い値を示している。この原因は、測定や 計算で評価する際に用いられる外部風速は 4m/s を標準的と考え室外側表面熱伝達率は 20~ 25 となっている。しかし、この日の外部風速は 0.2~1.0m/s と小さかった。図 3.13 より、室 外気温と室外側ガラス表面温度差は 3~4℃程度であり、放射の熱伝達率を求めると 3.8[W/($\mathbf{m}^2 \cdot \mathbf{K}$)]程度となる。室外側対流の熱伝達率は自然対流と想定して 4[W/($\mathbf{m}^2 \cdot \mathbf{K}$)]とする と、合計で 7.8[W/($\mathbf{m}^2 \cdot \mathbf{K}$)]となる。室外側の表面熱伝達抵抗を置き換えると窓全体の熱貫流 率は 2.38[W/($\mathbf{m}^2 \cdot \mathbf{K}$)]となり、計算と測定で精度よく一致した。

日射熱取得率同様、B 棟及び C 棟の冷却板の放射温度の比較を行った。冷却板放射温度分 布、外気温、冷媒温度及び流量比較を表 3.6 に示す。夜間の場合、日射等の外部からのエネ ルギーを受けないため、室外側へ貫流分の放熱をする。コールドドラフト現象(自然対流) により、冷却板の温度は下側が低く、上側が高い傾向になる。B 棟ではこの現象通りの温度 分布を示していることが確認できた。また、外気温について環境測定器(ウェザートラン スミッターWXT520)と放射計内の熱電対の温度が一致していることも確認できた。

_	00	<u> </u>			77.16	17.0		00	-		<u> </u>	77.16	47.0
- 2:	:00	五	Ψ	石	平均	17.3	2:	00	五	Ψ	石	平均	17.6
Б	上	17.4	17.5	17.6	T1	17.9		上	17.8	17.9	17.9	T1	17.9
山植	中	17.5	17.5	17.4	T2	17.6	し 植	中	17.4	17.8	17.6	T2	17.6
ነሉ	下	16.8	16.9	16.9	⊿t	-0.240	1~	下	17.0	17.5	17.1	⊿t	-0.260
夕	気湯	昷(放射)	計9点)	-0.6	流量	8.2	外	·気》	副(放射)	計9点)	-0.5	流量	8.2077
4:	:00	左	中	右	平均	16.6	4:	00	左	中	右	平均	16.8
в	上	16.7	16.8	17.0	T1	17.2	C	上	17.0	17.1	17.1	T1	17.1
插	中	16.8	16.8	16.7	T2	16.9	垣	中	16.6	17.0	17.0	T2	16.9
1不	下	16.0	16.2	16.3	⊿t	-0.250	17	下	16.2	16.7	16.3	⊿t	-0.250
夕	卜 気泪	昷(放射)	計9点)	-1.5	流量	8.2077	外	·気泪	副(放射)	計9点)	-1.5	流量	8.2077
	外気	に温(WX1	520)	-1.5				外気	に温(WXT	520)	-1.5		

表3.6 冷却板放射温度分布、外気温、冷媒温度及び流量比較(夜間)

(2) 曇天日測定結果例(2010年4月9日)

図 3.17 に屋外環境(日射)測定結果を示す。雲が多い日のため日射量は安定していない。 午前中は継続的な雲の影響はなかったが、正午近辺を境に雲量が多くなり、直達日射より も散乱日射の比率が高くなっている。さらに 14 時以降は完全に太陽が雲に覆われ直達日射 量がない状態の天気となっている。

図 3.18 に赤外放射量の測定結果を示す。これにより日射のない夜間の天気状態を確認す ることができる。夜間は 1 時頃瞬間的に下向き赤外放射量が低い値を示している。雲がな くなる時間があったと考えられる。それ以外は朝 8 時頃まで下向き赤外放射量が高い値を 示しているため厚い雲に覆われていたと考えられる。雲に覆われているため、逆に上向き 赤外放射は抑えられ低い値となり、快晴日に比べ気温が高い。雲の影響で上向き赤外放射 量は、夜間は約 20[W/m²]、日中午後は平均 60[W/m²]程度だった。

図 3.19 に各棟の熱量と室内外気温の測定結果を示す。快晴日測定結果(図 3.12) 同様、A 棟のみ日中の取得熱量も夜間の放熱量も小さく測定されていることがわかる。また、9 時~ 14 時にかけて雲の影響による取得熱量の増減が十分追従できている傾向が確認できた。こ れにより本測定は遅れがなく正しく取得熱量を測定できていることが確認できた。

図 3.20 に室内外温度と各面の放射温度を示す。熱交換器放射温度をみると、終日恒温槽 設定温度にほぼ近い値を示した。これは、快晴日測定結果(図 3.15)と比べ外気温が5℃程 度と高かったため、貫流熱損失に対する加熱能力が補えたことを示している。

また、快晴日測定結果(図 3.15)と比べ日中の屋外温度と屋外放射温度の差が小さかった。 これは雲の影響により大気外へ放射量が抑えられていることによると考えられる。

図 3.21 に日射熱取得率・熱貫流率及び風速の測定結果を示す。快晴日例同様、B 棟及び C 棟の測定結果を掲載した。

測定結果より、式(3.12)で算出した直散合計の日射熱取得率と測定結果 B 棟の結果が 9 時 から雲により日射が減衰する 14 時前までほぼ一致していることが確認できた。快晴日と異 なり直散合計の日射熱取得率は雲の影響で直達の多い時間と散乱の多い時間があるため、 きれいな円弧は描くことはなかったが、直達が多い時間帯、散乱が多い時間帯どちらでも 日射熱取得率は計算値が測定値に追従できていると考えられる。

散乱日射が一定の値を示すか確認のため、測定値による受熱量から計算で求めた直達成分 による受熱量を差し引き、残りを散乱成分による受熱量として日射熱取得率を求めた。快 晴日程きれいではないが、雲が多い天候であっても、B棟では10~14時にかけて計算値に 近いほぼ一定の日射熱取得率となることが確認できた。

2010/4/9

図 3.19 各棟の熱量と室内外気温の測定結果(2010/4/9)

図 3.20 室内外温度と各面の放射温度(2010/4/9)

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

図 3.21 日射熱取得率・熱貫流率及び風速の測定結果(2010/4/9)

B 棟及び C 棟の冷却板の放射温度の比較を行った。冷却板放射温度分布、冷媒温度及び 流量比較を表 3.7 に示す。9時、12時、15時の場合で比較を行った。

9:	00	左	П	右	平均	20.0		9:	00	左	Ŧ	右	平均	20.3
6	F	19.8	19.7	19.7	T1	19.9			Ч	20.1	20.1	19.9	T1	20.2
日本	묘	20.1	20.1	19.8	T2	20.5		し」	中	20.7	20.3	20.1	Τ2	20.7
1*	下	20.6	20.4	19.9	⊿t	0.5400		174	下	20.8	20.6	20.3	⊿t	0.4700
					流量	8.1077							流量	8.1615
12	:00:	左	中	右	平均	19.8		12	:00	左	中	右	平均	20.3
	上	19.7	19.6	19.5	T1	20.0			F	20.2	20.0	19.8	T1	20.2
日本	中	19.6	19.7	19.7	T2	20.6		し」	Ŧ	20.7	20.1	20.2	T2	20.8
1*	下	20.1	20.1	20.0	⊿t	0.6400		174	ч	20.7	20.4	20.6	⊿t	0.6000
					流量	流量 8.1077						流量	8.1615	
15	:00	左	Ŧ	右	平均	19.5		15	:00	左	中	右	平均	20.0
Б	F	19.5	19.4	19.4	T1	19.9		~	F	20.0	20.0	20.0	T1	20.1
」」は	中	19.6	19.6	19.5	T2	20.1		し	中	20.1	20.0	20.0	Т2	20.3
ነች	下	19.6	19.5	19.6	⊿T	0.2400		1木	下	20.1	19.9	20.0	⊿T	0.1800
			流量	8.1077							流量	8.1615		

表3.7 冷却板放射温度分布、冷媒温度及び流量比較(日中)

B棟、C棟共に同様の傾向を示した。

9 時では、中段・下段の左側にいくにつれ冷却板放射温度は高くなった。12 時では下から順に温度が高くなり、左右中央がほぼ同一温度となった。この日の15 時は、日射があたっていないため、9 点全てがほぼ一定温度となっていることが確認できた。

また、本測定で考慮されていない開口部以外からの熱損失(Q'_R)を計算で求めた結果、9時から12時までの比較的日射量がある時間帯の熱流量は0[W]となった。12時から14時の雲の多い時間帯の熱流量は開口部からの取得熱量の2~3%程度であることがわかった。

夜間の熱貫流率は、B棟は1.5~1.8[W/(m²·K)]、C棟は1.6~2.2[W/(m²·K)]だった。2階屋 上は南よりの風で風速は 0.2~0.7 [m/s]程度の微風であった。室外側が自然対流と扱った場 合の熱貫流率よりも小さい値となった。

日射熱取得率同様、B 棟及び C 棟の冷却板の放射温度の比較を行った。冷却板放射温度 分布、外気温、冷媒温度及び流量比較を表 3.8 に示す。室内外の温度差は 14[℃]程度あるが、 冷却板の上下の温度差は 0.6[℃]以下と小さかった。この他室内気温も左右中央共に下: 16.7[℃]、中:17.3[℃]、上:17.7[℃]となっており対流がおきにくい条件だと考えられる。

2:00		左	Ŧ	右	平均	19.3
Б	ᅬ	19.5	19.5	19.6	T1	19.9
日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	Ŧ	19.4	19.5	19.4	T2	19.
ኘች	۲	19.0	19.1	19.1	⊿ד	-0.180
夕	、反	昷(放射詞	计9点)	5.9	流量	8.1154
外気温(WXT520)				6.2	-	

表3.8 冷却板放射温度分布、外気温、冷媒温度及び流量比較(夜間)

_						
2:	00	左中		右	平均	19.8
	Ч	19.9	20.1	20.1	T1	20.1
し 古 日	中	19.6	20.0	19.9	T2	19.9
邗	下	19.4	19.7	19.5	⊿t	-0.180
ቃ	卜 気》	昷(放射詞	+9点)	6.0	流量	8.1846
	外気	ī温(WXT	520)	6.2		

4:00		00	左	中	右	平均	19.3
I	в	ᅬ	19.5	19.5	19.5	T1	19.8
	口」	Ŧ	19.5	19.5	19.5	T2	19.
	侎	۲	18.9	19.0	19.2	⊿t	-0.13
ſ	ቃ	く気が	昷(放射詞	計9点)	5.4	流量	8.107
ĺ		外気	ī温(WXT	520)	5.8		

4:	00	左	Ŧ	右	平均	19.8
c	ᅬ	19.9	20.0	20.0	T1	20.1
齿	묘	19.6	19.9	19.9	T2	19.9
1*	٢	19.4	19.7	19.4	⊿t	-0.190
ダ	卜気》	昷(放射詞	+9点)	5.5	流量	8.1769
	外気	〔温(WXT	520)	5.8		

(3)夏季晴天日測定結果例(2010年7月19日)

図 3.22 に屋外環境(日射)測定結果を示す。雲が多く発生する季節のため日射量は安定 していない。夏至から1カ月程度のため、日照時間は13時間以上と長く法線面直達日射量 は多いが、南窓面に対する入射角度は75°以上と高い。さらに雲が多く発生しているため、 直達日射よりも散乱日射の比率が高くなっている。

図 3.23 に赤外放射量の測定結果を示す。夏季は気温が高いため下向き赤外放射量は増加 する。下向き赤外放射量は太陽放射により、下層大気が暖められる日中に大きくなる。日 没と同時に減少していることから終日雲の影響が小さいことが確認できた。上向きの赤外 放射量は冬季に比べ小さい値を示している。夜間は 50[W/m²]程度、日中は平均 80[W/m²]程 度だった。

図 3.24 に各棟の熱量と室内外気温の測定結果を示す。日中の取得熱量が平均 18[W]程度となっている。3月30日の測定結果(図 3.12)と比較すると、貫流分も含めた値ではあるがピークとなる正午で約2.5%しか取得できていないことになる。日中の開口部の貫流分として室内に侵入する熱量だけで内外温度差10[℃]と仮定すると、少なくとも70[W]程度は熱量として測定できていなければならない。明らかに取得熱量が不足していた。これは2010年も2011年も全て夏季は同様の結果となった。

恒温水槽の温度設定を「冷房モード」として、17[℃]以下に冷媒温度が下がると22[℃]に なるまで冷媒が循環するだけのモードとなっていた。そのため、夜間の室内温度及び取得 熱量が波型になっている。

図 3.25 に室内外温度と各面の放射温度を示す。熱交換器放射温度をみると、日中は恒温 槽設定温度にほぼ近い値を示した。

図 3.26 に日射熱取得率・熱貫流率及び風速の測定結果を示す。図 3.24 で示した取得熱量 が不足しているため、日射熱取得率は終日「0」となった。

式(3.12)で算出した直散合計の日射熱取得率が正しければ、散乱日射の占める割合の高い この季節は3月30日とは逆の凹型の傾向を示すはずである。

夜間の熱貫流率については、冷媒温度が一定に供給されていないことが原因だが、17[℃] 以下になり再び冷房運転開始するまでの単純な冷媒循環状態のときに安定して 2.2~2.3[W/(m² K)]程度となった。外部風速はほぼ 0.2[m/s]と穏やかな風速であり、自然対流 と仮定すると計算と一致している。

図 3.22 屋外環境(日射)測定結果(2010/7/19)

2010/7/19

図 3.24 各棟の熱量と室内外気温の測定結果(2010/7/19)

図 3.26 日射熱取得率・熱貫流率及び風速の測定結果(2010/7/19)

(4)アルベドの確認

計測箱の周辺からの地表面反射率(アルベト)について確認を行った。 地表面反射日射量(*I_x*,)は次式により求めることができる。

$$I_{T,r} = I_G \frac{1 - \cos \beta}{2} \rho \qquad \cdots (3.13)$$

ここで
$$I_{T,r} : 地表面反射日射量 [W/m2]$$
$$I_G : 水平面全天日射量 [W/m2]$$
$$\beta : 水平面に対する斜面の傾斜角 [°]$$
$$\rho : アルベド [-]$$

窓は南鉛直面に設置されているため $\cos \beta = 0$ となる。よってアルベド(ρ)は次式で求める ことができる。

$$\rho = \frac{2I_{T,r}}{I_G} \qquad \qquad \cdot \cdot \cdot (3.14)$$

本測定では、式(3.9)に示すように天空分の直達日射量及び散乱日射量を除いた全てを地表面反射日射量と仮定している。そのため、周辺建物(壁)からの反射分も含んでいる。

2010年3月~2011年9月までの間に測定できた月別の日射量とアルベドを図 3.27~3.35 に 示す。4月、10月、11月は窓面日射量の測定データがなかったため除いた。

図 3.27~3.35 より、計測箱周辺環境のアルベドは春分、秋分を境にしていることが分かった。3月~8月にかけては終日 15%一定と扱ってもよい結果となった。9月については、ここには掲載していないがその他の日においても終日 25%一定程度となっていた。12月から 2月に至っては時間が経過するにつれて、アルベドが増加する傾向だった。

太陽高度が低い冬至前後は地表面以外からの反射成分があったものと考えられる。

アルベドが一定ということは、全て散乱日射で扱ってよいこととなる。よって、周辺建 物からの反射分も散乱で扱ってよいことが確認できた。

拡張アメダス気象データでは、コンクリート材のアルベドは 10%となっている。本測定 では、15%程度であったが、周辺建物からの影響や測定誤差等を考慮するとこの測定結果は 妥当であると考えられる

図3.27 各日射量及びアルベド測定結果(1月)

図3.28 各日射量及びアルベド測定結果(2月)

図3.29 各日射量及びアルベド測定結果(3月)

図3.30 各日射量及びアルベド測定結果(5月)

図3.31 各日射量及びアルベド測定結果(6月)

図 3.32	各日射量及びアルベド測定結果	(7月))
--------	----------------	------	---

図3.33 各日射量及びアルベド測定結果(8月)

図3.34 各日射量及びアルベド測定結果(9月)

図3.35 各日射量及びアルベド測定結果(12月)

3.5 まとめ

第3章では、窓が実際に設置される状態で時々刻々変化する日射に対する日射熱取得率の簡易測定法について整理した。また、本測定法で測定可能な熱貫流率の簡易測定法についても整理した。計測箱は一般家庭で用いられる物置の壁面に開口を設け試験体を設置した。開口部以外の壁面から貫流熱損失が発生しづらいように断熱材で恒温室を作った。取得熱量は黒色に塗装したラジエータに日射熱を吸収させ、ラジエータ内部で循環している冷媒の出入口温度差及び流量で測定した。日射の熱源は、太陽そのものを扱ったフィールドテスト方法とした。試験体は屋内測定装置(日射熱取得率測定装置)で予備測定を行い、熱貫流率及び垂直入射時の窓全体の日射熱取得率において計算結果と測定結果に差異がないことを確認した。

得られた知見を以下にまとめる。

① 本測定で得られた窓の日射取得率は、快晴日例(3月30日)でも曇天日例(4月9日)でもフレームや斜入射によるフレームから落とす影の影響、ガラスの多重反射を考慮した計算結果と一致した。これにより、窓面に照射される直達日射量及び散乱日射量が把握できれば照射される比率と計算により求めた直達成分及び散乱成分の日射熱取得率を用いることで合算された日射取得率を簡易に求めることが可能であることを示した。

②日射の影響を受けずに貫流分の評価が行える夜間に測定を行った窓の熱貫流率は、JIS 規格の計算法や試験法による値よりも小さい値を示した。これは、JIS 規格は外部風速を 4[m/s]で評価しているためである。測定した時刻の外部風速が自然対流程度の微風である場 合は室外側の表面熱伝達率を室内側表面熱伝達率と同じと仮定することで、計算結果と測 定結果が一致した。

③本測定装置に用いられた9枚の冷却板の放射温度は、日射が当る午前、正午、午後とも に受熱している部分が受熱しない部分よりも温度が高いことが確認できた。また日中雲が 発生した場合は、全ての面が同一温度となっていることが確認できた。夜間はコールドド ラフト現象により下部が上部よりも冷やされているが水平方向は均等な温度となっていた。 これにより冷媒が均等に流れ正しく測定できていることが確認できた。

④地表面反射率(アルベド)は、日射計を下向き水平に設置して測定せず、窓面同様、鉛 直に設置した状態で測定した結果を用いた。その結果、3月~8月の太陽高度の高い季節は 終日 15%程度一定となっていることがわかった。これにより、周辺壁面からの反射成分も 散乱日射で扱ってよいことを示した。太陽高度の低い季節は、時間が経過するにつれアル ベドが高くなることがわかった。太陽高度が低い場合、窓面に対して水平近くなるため、 鏡面反射を起こし易い材料の影響を受け易くなることを示した。

参考文献

- 1) 赤坂裕、伊丹清、二宮秀與:玄関ドアの熱貫流率の計算法,日本建築学会環境系論文 集,No.502,1997.12
- 2) 伊丹清、赤坂裕、二宮秀與:窓の熱貫流率の計算法その1,開き窓の計算値と試験値の比 較,日本建築学会環境系論文集,No.523,1999.9
- 3) 二宮秀與、赤坂裕、伊丹清:窓の熱貫流率の計算法その2,引違い窓の計算値と試験値の 比較,日本建築学会環境系論文集,No.576,2004.2.
- 4) 遮熱計算法に関する研究報告書、(社)リビングアメニティ協会、 平成13年度(2002.3)、
 平成14年度(2003.3)、平成15年度(2004.3)、平成16年度(2005.3)、平成19年度(2008.3)
- 5) JISA 4710:2004, 建具の断熱性試験方法
- 6) JIS R 3106:1998, ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法
- 7) JIS R 3107:1998, 板ガラス類の熱抵抗及び建築における熱貫流率の算定方法
- 8) SMASH for Windows Ver.2 ユーザーマニュアル:(財)建築環境・省エネルギー機構,2004
- 9) AE-Sim/Heat 操作マニュアル:(株)山内設計室,2009
- 10) 倉山千春:開口部の日射熱取得率測定法に関する研究 開口部の断熱・遮熱性能 その 1,日本建築学会環境系論文集,第604号,pp.15-22,2006.6
- 11) 田中俊六 他:最新建築環境工学,井上書院,1989
- 12) 赤坂裕他: 拡張 AMeDAS 気象データ 1981-2000,日本建築学会,2005

第4章 カーテンウォールの熱性能計算法

4.1はじめに

我が国の「エネルギーの使用の合理化に関する法律(省エネ法)」¹⁾における「建築主の判断基準:省エネルギー基準」²⁾では、建築外皮の熱性能は PAL(Perimeter Annual Load, 年間熱負荷係数)で評価されている。PAL 計算では外壁、屋根、窓等の建築外皮を構成する 各部位の断熱性能値として熱貫流率(U値)、遮熱性能値として日射熱取得率(η値)を用いて、建築物の暖房期間、冷房期間そして年間の空調負荷を算出している。

開口部は、壁と比較すると熱性能が劣るため PAL 値は開口部の仕様に強く影響される。 建築物の省エネルギー基準の計算の手引³には各種窓の熱貫流率(U値)と日射熱取得率(η 値)が整理されており、一覧表に登録された窓種の中から該当する窓の性能値を引用する こととなっている。しかしながら、現行の一覧表に掲載された窓の U値及び η 値は、ガラ ス部分のみあるいは、ブラインドを含む性能値を整理したものであり、窓枠フレーム(以 後フレーム)の影響を考慮していない点が問題となっている。この問題に対し、我々は、 フレームを考慮したビル用窓の簡易計算法を提案し、フレームの影響が無視できないオー ダーであることを明らかにした⁴。

本章では、PAL等の非住宅建築を対象とした簡易な年間暖冷房負荷計算にフレームを考慮 したガラスカーテンウォール(以後カーテンウォール)の評価方法を追加することを目的 として、基本となる計算法を提案し、フレーム各部の性能を整理する。なお、本研究では 物件毎に形状の異なるオーダーメイド品は除く。

カーテンウォールの汎用的計算法の国際規格は、断熱性能については現在 DIS の審議中である。遮熱性能については情報がない。

このため ISO 10077-1⁵⁾、ISO 10077-2⁶⁾、ISO/DIS 12631⁷⁾、ISO 15099⁸⁾そして日本での既往 の研究^{9,10)}に基づき、計算方法を定め、解析モデルを作成・計算することとする。

4.2 ビル用開口部の分類

4.2.1日本におけるビル用開口部の分類と構成比率

ビル用窓は、大きく分けて3つの形態に分類される。

一つは単体窓である。躯体開口に単独で取り付けられた窓であり、ホテルの客室や住宅用 窓では大部分がこれにあたる。二つ目は連窓・段窓である。単体窓が連窓方立や段窓無目 によって上下左右に連結された窓である。三つ目はカーテンウォールである。

図4.1 単体窓、連窓・段窓の外観イメージ

図4.2 カーテンウォールの外観イメージ

カーテンウォールのフレーム部材は方立、無目がある。ガラスや腰部のパネル材を支持し、 それらにかかる風圧を躯体に伝える構造的な役割を担うと共に、部材自体が意匠上の特徴 となっている。物件毎に強度や耐震性等要求される性能、意匠性が異なるため、各サッシ メーカーでは標準商品を用意しているが、オーダーメイド対応も多い。

図 4.1 に単体窓、連窓・段窓、図 4.2 にカーテンウォールの外観姿イメージ図を示す。

日本国内におけるビル用窓の使用構成比率(サンプル数:2234)を紹介する¹¹⁾。

図 4.3 にアルミ製ビル用開口部の製品区分別構成比(建具面積比)、図 4.4 にカーテンウォールの製品区分別構成比(件数比、建具面積比)、図 4.5 にサッシとカーテンウォールの色別構成比(建具面積比)を示す。

図4.3 アルミ製ビル用開口部の製品区分別構成比(建具面積比)

図4.4 カーテンウォールの製品区分別構成比(件数比と建具面積比)

図4.5 アルミ製品色別分別比(建具面積比)

図 4.3 より、単体サッシ、連窓・段窓といったサッシが 60%以上を占めているが、カーテンウォールも 34%程度装着されている。これにより、ビル用開口部を評価する上で、カーテンウォールを無視できないことがわかる。

図 4.4 より、カーテンウォールはマリオンタイプとユニットタイプで約 90%を占めている ことがわかる。件数比ではマリオンの構成比率が高いが、建築面積比ではユニットの構成 比率が高いことがわかる。これは、建物が中小規模の場合は、製品コストの安いマリオン を用いるが、建物が大規模になる場合は、作業工程を短縮でき、トータルでコストダウン が可能になるユニットを用いることが多いためである。但し、大規模な建物の場合、フレ ームはオーダーメイド対応になることが多い。

図 4.5 より、フレームの色は、ステンカラー、シルバーの比率が高いことがわかる。サッ シでは、この 2 色で 90%を占めている。これは、外皮の面積構成比率が開口部に比べ壁の 方が高く、建物の規模が大きいことによる周囲環境との調和から明るい色の外壁を使用す ることが多いため、サッシフレームも壁に対して強調せず合わせやすい色を選択している ことが原因と考えられる。しかし、カーテンウォールは、建物の外観ファサードの重要な 要素であり、意匠性が重要視されているため、アクセントとしてグレーやブラックのよう な濃い色を用いられている場合があると考えられる。

4.2.2 カーテンウォールの分類

カーテンウォールの構成材は、開口部、腰部のガラスやパネルをどのように支持するか、 それらにかかる風圧をどのように躯体に伝えるかという構造的な役割を担っていると共に 意匠上の特徴ともなる。

カーテンウォールは、線状の部材を用いるマリオン方式と、面状の部材を用いるパネル方 式の大きく二つに分けることができる。

構成方式によるカーテンウォールの分類を図 4.6¹²⁾ に示す。またマリオン方式のフレーム 材構造別の意匠例を図 4.7 に示す。

図4.6 構成方式によるカーテンウォールの分類

フレーム材は、99.7%がアルミ製¹¹⁾で、使用用途は、事務所(40.2%)が最も多く、次い で学校の校舎(11.7%)、研究施設(8.8%)、娯楽施設(8.1%)、店舗(5.5%)宿泊施設(5.4%)、 医療・福祉施設(4.8%)で 80%以上を占めている¹¹⁾。 フレームを考慮した熱性能という観点から分類すると、パネル方式は、単体窓、連窓・段 窓を壁開口の中に納める形態が多く、本研究の対象となる標準的なカーテンウォールはマ リオン方式のマリオン、ユニット、横強調の3種類が考えられる。マリオンや横強調は、 現地で構成材を組立てるノックダウン方式で、マリオンはガラスを4辺支持し、横強調は 上下2辺支持している。縦フレームを室外側に露出しない横強調は、放熱を抑えられるた め熱的には有利だが、複層ガラスエッジ部をフレームに隠蔽できないため、国内の市販品 は単板ガラス仕様のみとなっている。ユニットは、大規模物件等の現場作業の簡素化を目 的として、工場で組立て、現地で順番に取付ける方式である。また、カーテンウォールの フレームは、意匠上ガラス面とフラットを意識する傾向が強く、ガラス面と段差を極力な くす形状が主流となっている。フレームの断熱化については明確な数値が公表されていな いが、現在でも全体の数%程度と予想される。これは製品コストの問題が主であるが、明 確な熱性能の評価方法がないことも原因の一つと考えられる。

熱性能計算という観点から分類すると、パネル方式では、単体窓、連窓・段窓を躯体開口 の中に納める形態が多いと考えられる。

よって本研究の対象となるカーテンウォールはマリオンタイプ、バックマリオンタイプ、 ユニットタイプの3種類が考えられる。

マリオン横強調
ユニット
図 4.7 マリオン方式のフレーム材構造別の意匠例

4.3 カーテンウォールの伝熱開口寸法

熱貫流率及び日射熱取得率は、ガラスやフレーム等、構成する部材を面積加重平均して性 能を規定するため、対象となる伝熱開ロ寸法が必要となる。通常の単体窓及び窓が連続す る連窓・段窓は、壁の中に開口が設けられているため、伝熱開ロ寸法を決定する方法は容 易であり、定義しやすい。カーテンウォールの場合、現状の PAL では、全面をガラスと仮 定して計算を行っているため、開口部、腰部、外壁部と区分けし定義することは容易であ る。しかし、フレームを考慮すると開口部と腰部の間にフレームが存在し連続しているた め、区分けする伝熱開口寸法が現状では明確に定義されていない。

そこで、ISO/DIS 12631⁷⁾を参照し、基準階高さを伝熱開口寸法高さと仮定する。図 4.8 に カーテンウォールの基準階姿図と縦断面図を示す。通常カーテンウォール建築では、基準 階が連続することが多いため、基準階 1 層分を伝熱開口面積と定義し、開口部と腰部を一 体として熱性能を評価する。

図4.8 カーテンウォールの基準階姿図と縦断面図

カーテンウォールの伝熱開口 H 寸法は、階高(=4000mm)と等しい範囲とした。外観割 付で4スパン分の寸法と等しくなる。伝熱開口 W 寸法は、外観方立割付9スパン分の寸法 の積算値(=9000mm)に方立の見付寸法(=80mm)を加えたカーテンウォールの外観見付 寸法の総和とした。よって、ガラス部、フレーム部、そして腰部パネル部の外観の垂直投 影面積が各部の見付け寸法面積となりそれらの総和がカーテンウォール伝熱開口面積とな る。 4.4 カーテンウォールの断面のモデル化

図 4.9 にカーテンウォールの姿図、縦・横断面図を示す。

図4.9の縦断面図では、開口部と腰部を分ける寸法押さえ位置は、無目芯としているが、 実際は明確な基準はなく、額縁内法という考えや額縁のついた上部無目のフレーム上端か ら下部無目のフレーム下端までという考え等、個人や組織の判断によっている。

フレーム部の解析モデル化の範囲は、ISO 10077-2⁶に準拠する。

図 4.10 にマリオン(複層ガラス用)の解析モデル例を示す。方立の両端部は、外壁と接 するため断熱境界が方立の半分覆う納まりもあるが、ここでは中間の方立と同じ扱いとし た。よって、開口部と腰部を一体の開口と定義すると、図 4.10 のように 6 断面のモデル化 となる。フレーム以外のガラス及び腰パネルの見付け幅 *bg*、*bsp*は、断熱性能のよい腰部の 解析も行うため、全て 300mm とした。

図4.10 マリオン(複層ガラス用)の各部の解析モデル

4.5 カーテンウォールの熱貫流率計算法

カーテンウォール全体の熱貫流率は算出式(4.1)で整理できる。

$$U_{cw} = \frac{\sum A_g U_g + \sum A_{sp} U_{sp} + \sum A_f U_f + \sum l_g \phi_g + \sum P}{A_{cw}} \quad \cdot \quad \cdot \quad (4.1)$$

ここで

 $U_{cw}: カーテンウォール全体の総合熱貫流率 [W/(m²·K)]$ $U_g: 開口部 (ビジョン部) のガラス部の熱貫流率 [W/(m²·K)]$ $U_p: 腰部 (スパンドレル部) のパネル部の熱貫流率 [W/(m²·K)]$ $U_f: 開口部、腰部のフレーム部の熱貫流率 [W/(m²·K)]$ $A_{cw}: カーテンウォール全体の伝熱開口面積 [m²]$ $A_g: 開口部 (ビジョン部) のガラス部の見付面積 [m²]$ $A_sp: 腰部 (スパンドレル部) のパネル部の見付面積 [m²]$ $A_f: 開口部、腰部のブレーム部の見付面積 [m²]$ $I_g: 開口部、腰部のガラス周囲部の長さ [m]$ $\phi_g: 開口部、腰部のガラス周囲部の線熱貫流率 [W/(m·K)]$ P: 3 次元熱流部の点熱貫流率 [W/K]

式には1点(部材連結部や部品)の単位個数当たりの通過熱流量: P が定義されているが、 ここでは無いものとする。

フレーム部の断熱性能算出方法は ISO 10077-2⁶に基づき、フレーム部の熱貫流率(*U_f*)と別 に複層ガラススペーサ周辺部の 2 次元熱流の影響を表す線熱貫流率(*ψ_g*)を算出する。

解析モデルイメージを図 4.11 に示す。

フレーム部の熱貫流率(U_f)は、フレームに断熱パネルを挿入した断熱パネルモデル(図 4.11(b))を用いて算出式(4.2)で求める。

$$U_{f} = \frac{L_{f}^{2D} - U_{p}b_{p} - U_{psp}b_{psp}}{b_{f}} \cdot \cdot \cdot (4.2)$$

ここで

 U_f :開口部、腰部のフレーム部の熱貫流率 [W/(m²·K)] U_f^{2D} : 断熱パネルモデルの熱コンダクタンス [W/(m·K)] U_p :開口部(ビジョン部)の断熱パネルの熱貫流率 [W/(m²·K)] U_{psp} :腰部(スパンドレル部)の断熱パネルの熱貫流率 [W/(m²·K)] b_f :開口部、腰部のフレーム部の見付幅 [m] b_p :開口部(ビジョン部)の断熱パネルの見付幅 [m] b_{psp} :腰部(ビジョン部)の断熱パネルの見付幅 [m]

複層ガラススペーサ部を含むフレームとガラスの間の線熱貫流率(φ_g)は、フレームに複層 ガラスを挿入した複層ガラスモデル(図 5(a))と算出式(4.2)で得られる U_f値を用いて算出 式(4.3)で求める。但し、単板ガラスの場合は熱橋効果がないため無視する。

 $\psi_g = L_{\phi}^{2D} - U_f b_f - U_g b_g - U_{sp} b_{sp} \qquad \cdot \cdot \cdot (4.3)$

ここで

図4.11 熱貫流率の解析モデルイメージ

4.6 カーテンウォールの日射熱取得率計算法

カーテンウォール全体の日射熱取得率は算出式(4.4)で整理できる。

$$\eta_{cw} = \frac{\sum A_g \eta_g + \sum A_{sp} \eta_{sp} + \sum A_f \eta_f}{A_{cw}} \qquad \cdot \cdot \cdot (4.4)$$

ここで

 η_{cw} :カーテンウォール全体の総合日射熱取得率 [-] η_{g} :開口部 (ビジョン部)のガラス部の日射熱取得率 [-] η_{sp} :腰部 (スパンドレル部)のパネル部の日射熱取得率 [-] η_{f} :開口部、腰部のフレーム部の日射熱取得率 [-] A_{cw} :カーテンウォール全体の伝熱開口面積 [m²] A_{g} :開口部 (ビジョン部)のガラス部の見付面積 [m²] A_{sp} :腰部 (スパンドレル部)のパネル部の見付面積 [m²] A_{f} :開口部、腰部のフレーム部の見付面積 [m²]

解析モデルイメージを図 4.12 に示す。

フレーム部、ガラス部、腰部パネル部の日射熱取得率算出方法は、ISO 15099⁸⁾の算出式(4.5) で整理できる。2次元解析モデルに日射受熱の発熱条件を設定したモデル(図 5(a))を用い て、日射を受けた場合の室内への熱流束から日射を受けない場合(貫流分)の熱流束を差 引いた値を日射強度で除して算出する。

$$\eta_{g}, \eta_{sp}, \eta_{f} = \frac{q_{in} - q_{in}(I_{s} = 0)}{I_{s}}$$
 (4.5)

ここで

η_g:開口部(ビジョン部)のガラス部の日射熱取得率 [-]
 η_{sp}:腰部(スパンドレル部)のパネル部の日射熱取得率 [-]
 η_f:開口部、腰部のフレーム部の日射熱取得率 [-]
 q_{in}:各部の入射日射がある場合の室内への熱流束 [W/m²]
 q_{in}(I_s=0):各部の入射日射がない場合の室内への熱流束[W/m²]
 I_s:入射日射強度 [W/m²]

このとき、算出式(4.5)に入る q_{in}及び q_{in}(Is=0)は、図 4.5(b)に示すようにフレームを含む 2 次元熱流計算モデルからガラス単体及び腰部パネル単体の 1 次元熱流を差引いて求め

る。そのため、2次元熱流分の影響は、フレームに残ることとなる。 よって、算出式(4.5)のフレーム部の熱流束: q_{in,f}及び q_{in,f}(Is=0)の算出式は以下となる。

$$q_{in,f}(I_s = 0) = \frac{Q_{in}(I_s = 0) - q_{in,g}(I_s = 0) \cdot b_g - q_{in,sp}(I_s = 0) \cdot b_{sp}}{b_f} \cdot \cdot \cdot (4.7)$$

ここで

 q_{inf} :開口部、腰部のフレーム部の入射日射がある場合の室内への熱流束 [W/m] Q_{in} :入射日射があるモデル全体の室内への熱流束 [W/m]

q_{in,g}:開口部(ビジョン部)のガラス部の入射日射がある場合の室内への熱流束 [W/m²]

q_{in,sp}: 腰部 (スパンドレル部) のパネル部の入射日射がある場合の室内への熱流束 [W/m²]

q_{in,f}(*I_s=0*):開口部、腰部のフレーム部の入射日射がない場合の室内への熱流束 [W/m²]

 Q_{in} (I_s=0) :入射日射がないモデル全体の室内への熱流束 [W/m]

 q_{in,g} (I_s=0):開口部 (ビジョン部)のガラス部の入射日射がない場合の室内への

 敷流束 [W/m²]

 q_{in,sp} (I_s=0):腰部 (スパンドレル部)のパネル部の入射日射がない場合の室内への

 敷流束 [W/m²]

 b_g :開口部 (ビジョン部)のガラス部の見付け長さ [m]

bsp: : 腰部 (スパンドレル部) のパネル部の見付け長さ [m]

b_f:開口部、腰部のフレーム部の見付け長さ [m]

式(4.6)の解析について境界要素法による2次元定常伝熱解析プログラム「TB2D/BEM」¹⁰ を用いた場合、このプログラムではガラスの透過分は考慮せず、日射吸収による再放熱分 のみ判定している。入力する日射吸収率は多重反射(収束計算)後の値を用いている、腰 部のように不透明パネルを用いる場合、パネルも含めた収束計算後の吸収率を入力する必 要がある。また、腰部のようにガラス透過後にパネル面で日射を受照する場合、外側のガ ラスで日射量が減衰する。この部分はパネル面の日射受照割合を透過率分とすることで、 対応できるようになっている。

また、ISO 15099⁸⁾では、フレームの熱貫流率(U_f)からフレームの日射熱取得率(η_f)を簡易 に求められる計算式を提案している。

4.7 カーテンウォールの熱性能計算結果

4.7.1計算モデル条件

図4.3の姿図をモデルケースとして熱性能計算を行った。フレーム及びガラス種類を表4.1 に示す。窓種は全て嵌め殺し窓とした。

表 4.1 中の a)~f)で見込み寸法が複数あるのは、一般用、吹抜け用等の強度が異なる部材 が存在するためである。

カーテンウォールの伝熱開口H寸法は、階高(=4000mm)と等しい範囲とした。これは 外観割付で4スパン分の寸法と等しくなる。伝熱開口W寸法は、外観方立割付9スパン分 の寸法の積算値(=9000mm)に方立の見付寸法(=60.75.80mm)を加えたカーテンウォール の外観見付寸法の総和とした。

よって、フレーム部、ガラス部及び腰パネル部の外観の垂直投影面積が各部の見付け寸法 面積となり、それらの総和が計算対象となるカーテンウォールの伝熱開口面積となる。

フレームはメーカー標準品とし、アルミ及びアルミ熱遮断構造(以後熱遮断)で市販され ているマリオン、ユニット、横強調とした。

各フレーム種の見付け及び見込み寸法は、主要メーカー3社を調査し、標準的な寸法であ ることを確認した。

ガラスはフレーム種類に合わせ、単板:FL10及び複層:FL5+A12+FL5を用いた。腰部の 耐火ボードは、20mm 厚(耐火 30分)、額縁見込みを 200mm(横強調は 250mm)とし、内 壁の石膏ボード 12.5mm までをモデル化した。また改定建築基準法¹³⁾に基づき、腰部方立の まわりに防火用ロックウール 20mm を被覆したモデル(図 4.4)とした。

フレーム種類	材質	見付	[mm]	見込 [mm]	ガラ	ガラス種 [mm]	
a)マリオン	マルミ	方立	60	162, 212, 297	開口部	EL 10	
(単板ガラス用)	7722	無目	60	80	腰部	FLIU	
b)マリオン	マルミ	方立	80	162, 212, 297	開口部		
(複層ガラス用)	112	無目	80	80	腰部	FLJTAIZTFLJ	
c)マリオン	数语笔	方立	80	162, 212, 297	開口部		
(複層ガラス用)	きょう	無目	80	80	腰部	FLJTAIZTFLJ	
d) ユニット		方立	75	250	開口部	FL10	
(単板ガラス用)	112	無目	80	100	腰部	FL10	
e) ユニット		方立	75	250	開口部	FL5+A12+FL5	
(複層ガラス用)	112	無目	80	100	腰部	FL10	
f)横強調	マルミ	方立	60	180, 210, 260	開口部	EL 10	
(単板ガラス用)	112	無目	80	80	腰部	FLIU	
※)のコニットけな	届 ガニ フ 田 f	ジボー	両立(十	畄垢ガラフた田	いろ仕ば	É	

表4.1 計算対象フレーム種及びガラス種

※e)のユニットは複層カラス用だが、腰部は単板カラスを用いる仕様。

4.7.2 設定条件、物性値

表 4.2 に計算に用いた各種設定条件を、表 4.3 に使用した材料の物性一覧を示す。本計算 では、内外の表面熱伝達率は ISO10077-2⁶に準じた。フレーム色は出荷数の多いステンカラ ーを想定し、日射吸収率 a: 0.50¹⁰とした。また耐火ボード(ケイ酸カルシウム板)の表面 仕上げ色は明暗を想定し、a: 0.2,0.5,0.8¹⁰とした。計算解析ソフトは、境界要素法による 2 次元定常伝熱解析プログラム「TB2D/BEM」¹⁰を用いた。

表4.2 計算対象フレーム種及びガラス種

計算伝熱	開口寸法	₩*H	m	9.08 × 4.0
室内側表記	面熱伝達率	αi	₩/(m [*] ·K)	一般部:7.69、隅角部:5
室外側表面	面熱伝達率	αο	₩/(m [*] ·K)	25
	室内側温度	Ti	°C	25
遮熱性能	室外側温度	То	°C	30
巡旅住肥	日射量	Is	₩/mੈ	500, 0
	日射入射角度	θ	0	0
ᄣ ᄎᅒ ᆎ 신	室内側温度	Ti	°C	20
的款注胞	室外側温度	То	°C	0
表面熱伝道	達率の温度依存性			考慮せず一定とする
中空層等(西熱伝導率の温度依 石	存性		条件毎に設定
複層	冬季日射無し条件	λ	W∕(m⋅K)	0. 0682
ガラス	夏季日射無し条件	λ	W∕(m∙K)	0. 0796
中空層	夏季日射有り条件	λ	W∕(m∙K)	0. 0829

表4.3 計算対象フレーム種及びガラス種

	1 1 本3	熱伝導率	日射吸収率
	12 ላት	λ (W/m·K)	a (-)
アルミ	(ステンカラー)	160.00	0.50
	複層		外:0.1084
ガラス	(FL5+A12+FL5)	1.00	内:0.0803
	単板 (FL10)		0. 1880
ポリ	サルファイド	0.40	-
ガラ	ススペーサー	26.74	-
車	次質ビニル	0.14	0.50
	シリコン	0.35	0.50
,	ヾッカー 材	0.04	-
ケイ暦 (而	梭カルシウム板 耐火ボード)	0.14	0.2/0.5/0.8
7	5膏ボード	0.22	-
	ックウール	0.038	_
ポ	リアミド66	0.26	_

4.7.3 計算結果

(1)フレーム部熱性能計算結果

フレーム種類別部材別のフレームに関する熱貫流率 (U_f)、線熱貫流率 (ϕ_g)、日射熱取 得率 (η_f)、の一覧を表 4.4 に示す。

複層ガラスエッジ部とフレームの影響による各部材の線熱貫流率は、各々のフレームが支 持する両側のガラス2枚分を1つのフレーム特性値として算出している。方立端部は片側1 枚分であるが、全体に対する影響が0.1~0.2%程度と小さいため、方立中間部の値を用いる。 表 4.4 中の b)及び c)より、線熱貫流率は、腰部において方立、無目問わずほぼ 0 に等しかっ た。各部の熱貫流率(U)は、横強調を除いて、開口部まわりに納まるフレーム(図 4.10) の場合、アルミタイプが概ね平均 10 [W/(m²·K)]、熱遮断タイプが概ね平均 5 [W/(m²·K)]と なった。腰部内に納まるフレームはそれぞれ開口部まわりに納まるフレームの 1/3 程度とな った。各部の日射熱取得率(ヵ。)は、耐火ボードの日射吸収率が上がるにつれ減少し、負 の値を示す部位もあった。これは、前述 3.4 に示した本計算法に起因した結果と考えられる。 フレームの日射熱取得率(η_f)は、算出式(5)で求めるが、q_{in}及びq_{in}(I_s=0)は、図 4.12(b) 及び算出式(4.6)、(4.7) に示すようにフレームを含む2次元熱流計算モデルからガラス単体 及び腰パネル単体の1次元熱流を差し引いて求める。つまり、2次元熱流分の影響はフレー ムに残る。さらに、図 4.13 の腰部方立部温度コンターが示すように、腰部内において、ガ ラスを透過し耐火ボード表面で吸収された熱は、室内と室外の熱抵抗の比で熱の分配がさ れるが、パネル表面温度がアルミ形材温度よりも高くなることと、熱橋となるアルミ形材 の室内側にロックウール 20mm が施工されているため、室内への熱伝導が抑えられ、フレ ームを通して室外側へ放熱されている。これらの結果が負の値を示したと考えられる。こ のため、日射吸収率が大きくなると、負の値も大きくなっている。

表4.4 フレーム種類別部材別のフレームに関する熱性能一覧表

	ノ(アルミノレーム、単板)	<u> 「ラス用)</u>			
カノプ	却心	見付	熱貫流率	線熱貫流率	日射熱取得率[-]
217	司印坯	[mm]	[W/(m [*] ⋅K)]	[W/(m⋅K)]	a= 0.2 a= 0.5 a= 0.8
	1 開口部方立(162mm)	60	14.4	_	0, 18
	1 開口部方立 (212mm)	60	16.3	_	0.20
方立	1 閉口部方立 (207mm) 吹抜	60	18.0	_	0.23
<u></u>	7 所口的方式 (237mm) 头顶 9 晤如士士 (169mm)	60	2.0	_	
		60	3.0	_	
		00	3.4	-	0.03 -0.06 -0.14
	3 開口部中間無目	60	10.4	-	0.15
毎日	4 開口部上無目	60	11.4	-	0.34 0.30 0.16
	5 開口部下無目	60	11.6	-	0. 26 0. 28 0. 08
	6 腰部中間無目	60	3.0	-	0.05 -0.03 -0.11
b) フ リオ	- シ (アルミフレーム 複層ナ	(ラマ田)			
0) ())		目付	熱書法家	綽熱書法家	日射執取得來「—]
タイプ	部位	[mm]	$\mathbb{W}/(m^2 \cdot \mathbf{K})$	「₩/(m.K)]	
-	1 眼口如士士 (160mm)	00	11 7		a = 0.2 a = 0.3 a = 0.0
	1 開口部力立(102mm)	00	11.7	0.03	0.10
<u> </u>	1 開口部方立 (212mm)	08	13.3	0.04	0.18
万立	1 開口部万立 (29/mm) 吹扳	80	15.1	0.05	0.21
	2 腰部方立 (162mm)	80	3.6	0.00	-0.07 -0.28 -0.49
	2 腰部方立 (212mm)	80	3.9	0.00	-0.06 -0.28 -0.49
	3 開口部中間無目	80	8.5	0.02	0.14
细口	4 開口部上無目	80	8.4	0.00	0. 25 0. 17 0. 11
#H	5 開口部下無目	80	9.6	0.04	0, 18 0, 13 0, 11
	6 腰部中間無目	80	3.4	0.00	-0.01 -0.20 -0.38
<u>い マリオ</u>	→ \恐逃町ノレーム、 後増7	リノへ用)	劫世达立	伯劫要达卖	口针动而泪索「「」
タイプ	部位	元1·J	怒貝流半 「W//=- ² いっ	秋愁貝沉平	ᇦᇻᄳᇏᄢᆁᆕᄮᆝᅳᅴ
			[W/(m·k)]		a = 0.2 a = 0.5 a = 0.8
	開口部方立 (162mm)	80	4.6	0.11	0.07
	1 開口部万立 (212mm)	80	4.8	0.12	0.07
方立	1 開口部方立 (29/mm)吹抜	80	5.1	0.14	0.08
	2 腰部方立 (162mm)	80	1.7	0.00	0.04 -0.18 -0.33
	2 腰部方立 (212mm)	80	2.0	0.00	0.04 -0.18 -0.33
	3 開口部中間無目	80	4.6	0.08	0.08
ám. 🗆	4 開口部上無目	80	5.0	0.18	0. 19 0. 16 0. 13
卅日	5 開口部下無目	80	4.9	0.16	0, 15 0, 17 0, 19
	6 腰部中間無目	80	1.8	0.00	0.06 -0.13 -0.27
d) "					
<u>u) y</u>				伯劫要达立	口针动取得变「]
			체 발 도 ত		니까졌다. (
タイプ	部位	兄1寸 「]	熱貰流率 [₩// ┳² K)]		
タイプ		兑1寸 [mm]	熱貫流率 [₩/(m ^² ・K)]	[W/(m·K)]	a= 0.2 a= 0.5 a= 0.8
タイプ 方立	部位 1 開口部方立 (250mm)	見1寸 [mm] 75	熱貫流率 [W/(m ² ·K)] 13.2	[W/(m·K)] -	a= 0.2 a= 0.5 a= 0.8 0.25
タイプ 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 	見1寸 [mm] 75 75	熱貫流率 [W/(㎡・K)] 13.2 3.2	[W/(m·K)] – –	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06
タイプ 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目	見付 [mm] 75 75 80	熱貫流率 [W/(m ² ·K)] 13.2 3.2 9.1	[W/(m·K)] - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12
タイプ 方立 毎日	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目	見1 [mm] 75 75 80 80	熱貫流率 <u>[W/(m²·K)]</u> 13.2 3.2 9.1 8.8	[W/(m·K)] - - - -	a= 0.2 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.24
タイプ 方立 無目	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目	<u>泉</u> 1 [mm] 75 75 80 80 80	熱貫流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9	[W/(m·K)] - - - - - -	a= 0.2 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.24 0.31 0.29 0.26
タイプ 方立 無目	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目	<u>見</u> 1寸 [mm] 75 75 80 80 80 80	熱貫流率 [W/(m ² ·K)] 13.2 3.2 9.1 8.8 8.9 3.3	[W/ (m·K)] - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
タイプ 方立 無目 e) ユニッ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム 複層+	見1 [mm] 75 75 80 80 80 80	熱貢流率 [W/(m ² ·K)] 13.2 3.2 9.1 8.8 8.9 3.3	[W/ (m·K)] - - - - - - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
タイプ 方立 無目 e) ユニッ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ,ト(アルミフレーム、複層カ	見1 [mm] 75 75 80 80 80 80 5ラス用)	熱貢流率 [W/(m ² ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3	[W/(m·K)] - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03
タイプ 方立 無目 e) ユニッ タイプ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト(アルミフレーム、複層た 部位	見17 [mm] 75 75 80 80 80 30 5ラス用) 見付 [mm]	熱頁流率 [W/(m ² ·K)] <u>13.2</u> <u>3.2</u> <u>9.1</u> <u>8.8</u> <u>8.9</u> <u>3.3</u> 熱貫流率 [W/(m ² ·K)]	www.gwi+ [W/(m·K)] - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8
タイプ 方立 無目 e) ユニッ タイプ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト(アルミフレーム、複層た 部位 1 開口部方立 (250mm)	見 (mm) 75 75 80 80 80 80 80 第ラス用) 見付 [mm] 75	熱貢流率 [W/(㎡·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(㎡·K)] 12.0	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16
タイプ 方立 無目 e) ユニッ タイプ 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層カ 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm)	見 (f) [mm] 75 75 80 80 80 80 5ス用) 見付 [mm] 75 75	熱貢流率 [W/(㎡・K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(㎡・K)] 12.9 3.2	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16
タイプ 方立 無目 e)ユニッ タイプ 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層た 部位 1 開口部方立 (250mm) 2 曜部方立 (250mm) 2 曜印式の世界	見付 [mm] 75 75 80 80 80 80 第 5 ス用) 見付 [mm] 75 75 90	熱貢流率 [W/(㎡・K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(㎡・K)] 12.9 3.2 0 0	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.16 0.04 -0.06 0.04 0.04 -0.06
タイプ 方立 無目 e) ユニッ タイプ 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム、複層 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 問口部 上無日	見付 [mm] 75 75 80 80 80 80 5ラス用) 見付 [mm] 75 75 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 0.1	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 0.04 -0.06 0.15 0.24 0.24 0.24
タイプ 方立 無目 <u>e) ユニッ</u> タイプ 方立 無目	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム、複層 かト (アルミフレーム、複層 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目	見 (mm] 75 75 80 80 80 80 80 9 ラス用) 5 ラス用) 75 75 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 0.04 -0.06 0.15 0.24 0.24 0.24
タイプ 方立 無目 e)ユニッ タイプ 方立 無目	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部上無目 5 開口部上無目	見付 [mm] 75 75 80 80 80 80 80 80 5 ス用) 見付 [mm] 75 75 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 (W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.8 0.04 0.04 -0.06 0.15 0.24 0.24 0.29 0.27 0.25
タイプ 方立 無目 e)ユニッ タイプ 方立 無目	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム、複層カ 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目	見 何 [mm] 75 75 80 80 80 80 80 9 75 75 75 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 f) 横強調	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口の部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目	見付 [mm] 75 75 80 80 80 80 80 80 75 75 75 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] <u>13.2</u> <u>3.2</u> <u>9.1</u> <u>8.8</u> <u>8.9</u> <u>3.3</u> <u>3.3</u> <u>12.9</u> <u>3.2</u> <u>8.8</u> <u>9.1</u> <u>9.3</u> <u>3.3</u>	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.8 0.04 0.04 -0.06 0.16 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.07 0.02 -0.03
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 f) 横強調	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層カ 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目	元何 [mm] 75 80 80 80 80 80 75 75 75 75 75 80 80 80 80 80 80 9 ス用)	熱頁流率 [W/(m ² ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(m ² ·K)] 12.9 3.2 8.8 9.1 9.3 3.3	[W/(m·K)] - - - - - - - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03
タイプ 方立 無目 e)ユニッ タイプ 方立 無目 f) 横強調 タイプ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層カ 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 5 開口部下無目 6 腰部中間無目	元 [mm] 75 75 80 80 80 80 80 75 75 75 75 75 80 80 80 80 80 80 7 ス用) 見付 [mm]	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3	[W/(m·K)] - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 -0.06 0.15 0.24 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03
タイプ 方立 無目 <u>e)ユニッ</u> タイプ 方立 無目 <u>f) 横強調</u> タイプ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ハト (アルミフレーム、複層 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部下無目 6 腰部中間無目 5 開口部下無目 6 腰部中間無目 1 開口部下無目 6 腰部中間無目 1 開口部下無目 1 開口部下無目 1 開口部下無目 1 開口部方立 (180mm)	元 何 [mm] 75 75 80 80 80 80 80 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 第.3 9.1 9.3 3.3 (W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 (W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 (W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 (W/(m [*] ·K)] 12.9 3.2 8.8 9.1 8.8 8 9.1 8.8 8 9.1 8.8 8 8 9.1 8 8 9.1 8 8 8 9.1 8 8 8 8 9.1 8 8 8 9.1 8 8 8 8 8 8 8 9 3.3 8 8 8 8 9 3.3 8 8 9 3.3 8 8 8 9 3.3 8 8 8 8 8 9 3.3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	[W/(m·K)] - - - - - - - - - - - - -	a= 0.2 a= 0.8 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.04 -0.04 -0.06 0.04 -0.04 -0.06 0.04 -0.04 -0.06 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03
タイプ 方立 無目 <u>e) ユニッ</u> タイプ 方立 無目 <u>f) 横強課</u> タイプ	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム、複層 た 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 5 開口部下無目 6 腰部中間無目 5 開口部上無目 5 開口部上無目 5 開口部上無目 5 開口部方立 (180mm) 1 開口部方立 (210mm)	元 何 [mm] 75 75 80 80 80 80 75 75 80 80 80 80 80 80 80 80 80 60 60	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 第.3 3.3 熟貫流率 [W/(m [*] ·K)] 2.0 2.0	[W/(m·K)] - - - - - - - - - - - - -	a= 0. 2 a= 0. 5 a= 0. 8 0. 25 0. 04 0. 04 -0. 06 0. 12 0. 24 0. 24 0. 24 0. 31 0. 29 0. 26 0. 07 0. 07 0. 02 -0. 03 日射熱取得率 [-] a= 0. 2 a= 0. 5 a= 0. 16 0. 16 0. 29 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 29 0. 27 0. 25 0. 07 0. 02 -0. 03
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 クイプ 方立 無目 タイプ 方立 新田 クイプ 方立 新田 クイプ 方立 新田 月) 横介プ 方立 方立 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 / ト (アルミフレーム、複層 2 腰部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 5 開口部「無目 6 腰部中間無目 9 (アルミフレーム、単板ガラ 1 開口部方立 (180mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 1 開口部方立 (200mm) 吹ち	^{見付} [mm] 75 75 80 80 80 80 80 75 75 80 80 80 80 80 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 第.3 3.3 熟貫流率 [W/(m [*] ·K)] 2.0 2.0 2.1	[₩/ (m·K)] - - - - - - - - - - - - -	a= 0. 2 a= 0. 5 a= 0. 8 0. 25 0. 04 0. 04 -0. 06 0. 12 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 24 0. 31 0. 29 0. 26 0. 07 0. 02 -0. 03 日射熱取得率 [] a= 0. 2 a= 0.5 a= 0. 04 0. 04 -0. 06 0. 15 0. 24 0. 24 0. 29 0. 27 0. 25 0. 07 0. 02 -0. 03
タイプ 方立 無目 e) ユニッ タイプ 方立 5 立 新目 タイプ 方立 5 立 5 立 5 立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層 かト (アルミフレーム、複層 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部方立 (180mm) 1 開口部方立 (200mm) 1 開口部方立 (200mm) 7 睡惑方立 (180mm) 1 開口部方立 (200mm) 7 睡惑方立 (180mm) 1 開口部方立 (200mm) 7 睡惑方立 (180mm)	元 「 「 「 「 「 「 「 「 「 「 「 「 「	熱貢流率 [W/(m ² ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(m ² ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 独貫流率 [W/(m ² ·K)] 2.0 2.0 2.0 2.1 1 2	[W/(m·K)] - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.04 0.02 0.03 0.05 0.03 0.05 0.03 0.05 0.03 0.05 0.02 0.03 0.05 0.02 0.03 0.04
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 クイプ 方立 無目 タイプ 方立 新田 クイプ 方立 新田 白山 ケイプ 方立 方立 方立 方立 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層カ 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部方立 (210mm) 1 開口部方立 (180mm) 2 腰部方立 (210mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (180mm) 2 腰部方立 (180mm)	元何 [mm] 75 75 80 80 80 80 80 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 (W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 (W/(m [*] ·K)] 2.0 2.0 2.1 1.2 1.2 1.2 1.2	[W/(m·K)] - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 0.07 0.02 -0.03 0.04 0.04 0.29 0.27 0.25 0.07 0.02 0.07 0.02 -0.03 0.04 0.04 0.04 0.04 0.04 0.08 0.05 0.04 0.04 0.04 0.04 0.04 0.08 0.05 0.02 0.04 0.04
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 f) 横強プ 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 4 開口部方立 (210mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (210mm) 2 腰部方立 (210mm) 2 腰部方立 (210mm) 2 腰部方立 (210mm) 2 腰部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (210mm) 2 腰部方立 (210mm) 1 開口部日	元何 [mm] 75 75 80 80 80 80 80 75 75 75 75 75 80 80 80 80 80 80 80 80 80 60 60 60 60 60 60	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 9.1 9.3 3.3 9.1 9.3 3.3 (W/(m [*] ·K)] 2.0 2.0 2.0 2.1 1.2 1.2 1.4	[W/(m·K)] - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.29 0.27 0.25 0.07 0.29 0.27 0.25 0.03
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 タイプ 方立 所用 (1) タイプ 方立 (1) タイプ 方立 方立 (1) タイプ 方立 方立 方立 方立 方立	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム、複層 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部下無目 6 腰部中間無目 5 開口部下無目 6 腰部中間無目 5 開口部下無目 6 腰部中間無目 5 開口部下無目 6 腰部中間無目 9 (アルミフレーム、単板ガラ 部位 1 開口部方立 (180mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (180mm) 2 腰部方立 (180mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (210mm) 2 腰部方立 (210mm) 3 開口部中間無目 4 開口部方面 に無日	元 何 [mm] 75 75 80 80 80 80 80 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 2.0 2.0 2.0 2.0 2.1 1.2 1.2 1.2 1.2 1.4 10 c	#W/K(U/W + K)] - - - - - - - - - - - - (W/(m·K)] 0.07 - (※) 0.03 0.07 - (※) 0.03 0.07 - (※) 4線熱貫流率 [W/(m·K)] - (※) - (m·K)] - (※) - - (※) - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.04 -0.05 a= 0.8 0.15 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03
タイプ 方立 無目 e) ユニッ タイプ 方立 無目 クイプ 方立 無目 タイプ 方立 新田 クイプ 方立 無目 ウィブ 方立 新田 強行プ 方立 無目 第 日	部位 部方立(250mm) 2 腰部方立(250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト(アルミフレーム、複層カ 部位 1 開口部方立(250mm) 2 腰部方立(250mm) 2 腰部方立(250mm) 3 開口部方立(250mm) 3 開口部方立(250mm) 3 開口部方立(250mm) 3 開口部上無目 5 開口部下加間無目 4 開口部方立(250mm) 3 開口部上無目 5 開口部下無目 6 腰部中間無目 9 (アルミフレーム、単板ガラ 部位 1 開口部方立(210mm) 1 開口部方立(210mm) 1 開口部方立(210mm) 2 腰部方立(210mm) 2 腰部方立(210mm) 3 開口部上無目 4 開口部方工(210mm) 3 開口部上無目 4 開口部二番声 7 開口部方面 3 開口部二番」 7 開口部二番」 7 開口部二番」 8 開口部二番」 9 同口部二番」 9 同口部二番」	元 何 [mm] 75 75 80 80 80 80 80 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 熱貫流率 [W/(m [*] ·K)] 2.0 2.0 2.1 1.2 1.2 1.2	www.gm/mk) [W/(m-K)] - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 -0.06 0.15 0.24 0.24 0.24 0.24 0.29 0.27 0.25 0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.8 0.24 0.24 0.24 0.24 0.25 0.07 0.02 -0.03 0.25 0.03 日射熱取得率 [] a= 0.2 a= 0.5 a= 0.8 0.04 0.04 0.02 -0.03 0.04 0.04 0.04 0.04 0.01 0.02 0.02 0.02 0.08 0.05 0.02 0.05 0.15 0.26 0.25
タイプ 方立 無目 e) タイプ 方立 第日 (a) タイプ 方立 無目 (b) タイプ 方立 (c) タイプ 方立 (c) タイプ 方立 無目 (c) タイプ (c) タイプ (c) タイプ (c) カーン (c) カーン	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 > ト (アルミフレーム、複層 た 部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 5 開口部下無目 6 腰部中間無目 5 開口部方立 (250mm) 1 開口部方立 (250mm) 1 開口部方立 (210mm) 2 腰部方立 (180mm) 2 腰部方立 (180mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 3 開口部中間無目 5 開口部下無目 5 開口部下無目 5 開口部下面	元 「 「 「 「 「 「 「 「 「 「 「 「 「	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 9.1 9.3 3.3 熟貫流率 [W/(m [*] ·K)] 2.0 2.0 2.0 2.1 1.2 1.2 1.2 1.2 1.4 10.6 10.7 0.2 0	#km:g,m(K)] [W/(m·K)] - - - - - - - - - - - - (※) 0.07 - (※) 0.07 - (※) 0.07 - (※) 0.07 - (※) 0.07 - (※) (W/(m·K)] - - (※) 0.07 - - (※) 0.07 - - (※) 0.07 - - (※) 0.07 - - - (※) 0.07 - - - - - - - - - - - - -	a = 0.2 a = 0.5 a = 0.8 0.25 0.04 0.04 0.12 0.24 0.24 0.29 0.26 0.70 0.02 0.07 0.02 0.07 0.02 0.07 0.02 0.07 0.02 0.07 0.02 0.07 0.02 0.08 0.16 0.04 0.04 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.29 0.27 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.01 0.08 0.05 0.02 0.08 0.04 0.01 0.20 0.25 0.15 0.20 0.25
タイプ 方立 無目 0) タイプ 方立 第日 ク 方立 前 月) 横イプ 方 新日 1) タイプ 第日 1) タイプ 第日 1) タイプ 第日 1) タイプ 第日 1) 日	部位 1 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 5 開口部下無目 6 腰部中間無目 ト (アルミフレーム、複層 かト (アルミフレーム、複層 7 開口部方立 (250mm) 2 腰部方立 (250mm) 3 開口部中間無目 4 開口部上無目 5 開口部中間無目 4 開口部上無目 5 開口部下無目 6 腰部中間無目 9 (アルミフレーム、単板ガラ 部位 1 開口部方立 (180mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 1 開口部方立 (210mm) 2 腰部方立 (180mm) 2 腰部方立 (210mm) 3 開口部中間無目 4 開口部上無目 5 開口部中間無目 4 開口部上無目 5 開口部方立 (210mm) 3 開口部中間無目 4 開口部上無目 5 開口部中間無目 4 開口部上無目 5 開口部中間無目	元 「 「 「 75 75 75 80 80 80 80 80 80 80 80 80 80	熱貢流率 [W/(m [*] ·K)] 13.2 3.2 9.1 8.8 8.9 3.3 3.3 熱貫流率 [W/(m [*] ·K)] 12.9 3.2 8.8 9.1 9.3 3.3 3.3 熱貫流率 [W/(m [*] ·K)] 2.0 2.0 2.0 2.0 2.0 2.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	[W/(m·K)] - - - - - - - - - - - - -	a= 0.2 a= 0.5 a= 0.8 0.25 0.04 0.04 -0.06 0.12 0.24 0.24 0.24 0.31 0.29 0.26 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.16 0.04 0.04 -0.06 0.15 0.24 0.24 0.24 0.29 0.27 0.25 0.07 0.02 -0.03 日射熱取得率 [-] a= 0.2 a= 0.5 a= 0.8 0.04 0.29 0.27 0.25 0.07 0.02 -0.03 日射熱取得本 [-] a= 0.2 a= 0.5 a= 0.8 0.04 0.05 0.02 0.02 0.02 0.02 0.02 0.03 0.05 0.03 0.05 0.05

(2) カーテンウォール全体の熱性能計算結果

フレーム熱性能の影響を確認するため、カーテンウォール全体の熱性能を算出した。ガラ スは FL5+A12+FL5 を用いて、フレーム考慮無し(全面ガラス)、マリオンのアルミフレー ム及び熱遮断フレームを用いた 3 ケースを腰パネル a:0.2 条件で比較した。カーテンウォー ル全体及び構成する各部材の熱貫流率(U)、通過熱流量(Q)、通過熱流量比(△Q)、日射 熱取得率(η)、日射熱取得(η·A)、日射熱取得比(△η·A)を表 4.5~4.8 及び図 4.14~4.17 に示す。

全面ガラスの条件で計算を行った結果、U値:1.93[W/(m²·K)]、η値:0.414[-]であった。

表 4.5 及び図 4.14 より、全面ガラスに比べ、フレームを考慮することによるカーテンウォ ール全体の熱貫流率は、アルミフレームで 149%、熱遮断フレームで 121%に増大すること が確認できた。フレームの材質による影響は大きいと言える。

本計算でモデル化した腰部壁厚 200mm は、決して厚くはない。額縁見込み内に設備を納める仕様等であれば、壁厚はさらに厚くなり、腰部パネルの性能は向上する。

当然の結果ではあるが、腰部内に納まる方立、無目は、石膏ボードと耐火ボードと空気層 の熱抵抗により断熱されているため開口部に露出している方立、無目に比べ性能がよくな っている。

各部の通過熱流量は、各部の熱貫流率に面積をかけた値である。全体の性能に対し各部の 影響がどの程度か見ることができる。表 4.6 及び図 4.15 より、方立、無目を積算したフレ ーム全体からの通過熱流量は、アルミ:42%、熱遮断:24%だった。この結果からもカーテ ンウォールの熱性能向上には、ガラス部だけでなくフレームの性能向上が必須であること が分かる。

この熱流量に対しての面積比は、ガラス部、パネル部共に:42%、フレームは 16%となっている。

表 4.7 及び図 4.16 より、全面ガラスに比べ、フレームを考慮することによるカーテンウォ ール全体の日射熱取得率は、計算した 2 種類のフレームの材質に関わらず 87%に減少する ことが確認できた。アルミ及び熱遮断を比較した場合、材質による影響はほぼないと言え る。

日射熱取得とは、各部の日射熱取得率に面積を掛けた値である。全体の性能に対し各部の 影響がどの程度か見ることができる。

表 4.8 及び図 4.17 より、開口部のガラス部の影響が 87%と大部分を占めている。方立、 無目を積算したフレーム全体から 4%、腰部パネルからは耐火ボードの日射吸収率 α を 0.2 としたこともあり、全体の約 9%であった。カーテンウォールの遮熱性能を高めるには、ガ ラス部の性能向上が支配的であることがわかる。

以上の結果より、断熱性能及び遮熱性能どちらにおいてもフレームを無視できないことが 明確となった。

図4.14 総合及び各部の熱貫流率(U)と平均線熱貫流率(φ_g)

表4.5 総合及び各部の熱貫流率(U)と平均線熱貫流率(Øg)

				単	位:熱貫	流率 [W	/(m [*] ·K)]、線熱貫	₫流率[₩	/(m·K)]
/	カーテン ウォール	フレーム部							複層	腰部
ノレーム 種類		方立 無目 ガモ				ガラス部	ガラス	パネル		
12.74	全体	開口部	腰部	開口部	開口-上	開口−下	腰部		エッジ部	部
全面ガラス	1.93	-	_	-	-	-	_	2.81	-	1.06
アルミ	2.87	11.68	3.58	8.50	8.43	9.63	3.44	2.81	0.01	1.06
熱遮断	2.35	4.57	1.66	4.59	5.02	4.85	1.82	2.81	0.10	1.06

図 4.15 総合及び各部の通過熱流量(Q)

表4.6 全体に対する各部の通過熱流量比(△Q)

カーテン ウォール 全体	フレーム部							複層	腰部
	方立			無	目	ガラス部	ガラス	パネル	
	開口部	腰部	開口部	開口−上	開口-下	腰部		エッジ部	部
100%	-	-	-	-	-	-	72.6%	-	27.4%
100%	17.9%	5.5%	5.4%	5.4%	6.1%	2.2%	41.0%	1.1%	15.4%
100%	8.6%	3.1%	3.6%	3.9%	3.8%	1.4%	50.2%	6.5%	18.9%
	カーテン ウォール 全体 100% 100%	hーテン ウォール 全体 開口部 100% 一 100% 8.6%	カーテン ウォール 全体 万士 100% - - 100% 17.9% 5.5% 100% 8.6% 3.1%	カーテン ウォール フレー 全体 開口部 腰部 開口部 100% - - - 100% 17.9% 5.5% 5.4% 100% 8.6% 3.1% 3.6%	カーテン ウォール 全体 フレーム部 100% 一 一 一 100% 17.9% 5.5% 5.4% 5.4% 100% 8.6% 3.1% 3.6% 3.9%	カーテン ウォール フレーム部 ケオール 万立 第日 全体 開口部 腰部 開口部 開ロ-上 開ロ-下 100% - - - - - 100% 17.9% 5.5% 5.4% 5.4% 6.1% 100% 8.6% 3.1% 3.6% 3.9% 3.8%	hーテン ウォール フレーム部 ウォール 方士 「日本 全体 開口部 開口部 開口-上 開口-下 腰部 100% - - - - - - 100% 17.9% 5.5% 5.4% 5.4% 6.1% 2.2% 100% 8.6% 3.1% 3.6% 3.9% 3.8% 1.4%	hーテン ウォール 全体 フレーム部 グレーム第 グラス部 100% 一 一 第日部 開日部 開ロ-上 開ロ-下 腰部 100% 一 一 一 一 一 72.6% 100% 17.9% 5.5% 5.4% 5.4% 6.1% 2.2% 41.0% 100% 8.6% 3.1% 3.6% 3.9% 3.8% 1.4% 50.2%	hーテン ウォール 全体 ブレーン・ジーン・ジー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

図4.16 総合及び各部の日射熱取得率(ヵ)

表4.7 総合及び各部の日射熱取得率(η)

A 1.7	ηις Π γ							j	単位:[-]
_ 1. /	カーテン			フレー	-ム部				腰部
「石料	ウォール	方	立		無	目		ガラス部	パネル
1± XX	全体	開口部	腰部	開口部	開口-上	開口−下	腰部		部
全面ガラス	0.414	0.00	0.00	0.00	0.00	0.00	0.00	0.75	0.08
アルミ	0.361	0.16	-0.07	0.14	0.25	0.18	-0.01	0.75	0.08
熱遮断	0.361	0.07	0.04	0.08	0.19	0.15	0.06	0.75	0.08

図 4.17 総合及び各部の日射熱取得 (_n·A)

表4.8 全体に対する各部の日射熱取得比 (△ n·A)

,	カーテン	フレーム部							腰部
フレーム 種類	ウォール	方	立	無目				ガラス部	パネル
生天	全体	開口部	腰部	開口部	開口-上	開口-下	腰部		部
全面ガラス	100%	-	-	-	-	-	I	90.3%	9.7%
アルミ	100%	1.9%	-0.8%	0.7%	1.2%	0.9%	-0.1%	86.8%	9.4%
熱遮断	100%	0.8%	0.4%	0.4%	1.0%	0.8%	0.3%	86.9%	9.4%

また、表 4.4 で得られた全てのフレーム部の計算結果を用いて、フレームの熱貫流率(*U_f*)からフレームの日射熱取得率(*n_f*)を簡易に求められる算出式(4.8)より得られた値と精算値の比較を行った。フレーム構造、材質、部位は分けずに行った。

フレームの日射熱取得率(η)の比較を図 4.18 に、カーテンウォール全体の日射熱取得率 (η_{cw})の比較を図 4.19 に示す。図 4.18 より、フレーム部の日射熱取得率は、簡易計算値は 概ね精算値に近い値を示しているが合致しているとは言い難い。しかし、カーテンウォー ル全体の日射熱取得率にフレームが及ぼす影響は小さいため、図 4.19 が示すように簡易計 算値を用いても問題ないことが確認できた。

図4.19カーテンウォール全体の日射熱取得率の比較

4.8 まとめ

第4章では、フレームを考慮したカーテンウォールの熱的性能計算法について、メーカー 標準タイプのフレームを用いて ISO 10077-1、ISO 10077-2、ISO/DIS 12631、ISO 15099 及び 既往の研究に基づいて計算法を整理した。

得られた知見を以下にまとめる。

①基準階 1 層分を伝熱面積と定義し開口部と腰部を一体として熱性能を評価すればフレ ームを考慮したカーテンウォール全体の熱性能計算が可能であることを示した。

②腰部フレームの日射熱取得率(η)は負の値を示す場合があることを示した。また、フレ ームとガラスと耐火ボードの組み合わせによっては、腰部フレームから室外へ放熱される ケースがあることを示した。

③フレームとガラス間の熱橋係数となる線熱貫流率は、腰部の方立、無目に関係なくほぼ 0に等しいことを示した。また、マリオンタイプの場合の開口部の線熱貫流率は、ISO10077-1 の付属書に記載されている簡易計算用の線熱貫流率一覧表の値とほぼ一致していることを 示した。

④各部の熱貫流率(U_f)は、横強調を除いて、開口部に納まるフレームの場合、アルミタ イプが概ね平均10[W/(m²·K)]、熱遮断タイプが概ね平均5[W/(m²·K)]となることを示した。 また、腰部内に納まるフレームはそれぞれ開口部まわりに納まるフレームの1/3程度となる ことを示した。

⑤モデルケースで算出した結果、フレームを考慮することにより、カーテンウォール全体の熱貫流率は全面をガラスと仮定した場合よりも149%となり、日射熱取得率は87%となることを示した。カーテンウォールの評価でフレームを無視できないことを示した。

⑥フレームの日射熱取得率(*n_f*)を簡易に求められる算出式より得られた値と精算値の比較をフレーム構造、材質、部位は分けずに行った。その結果、フレーム部の日射熱取得率は、簡易計算値は概ね精算値に近い値を示しているが合致しているとは言い難い。しかし、 カーテンウォール全体の日射熱取得率に対するフレームが及ぼす影響は小さいため、簡易 計算値を用いても問題ないこと示した。

参考文献

- 1) エネルギーの使用の合理化に関する法律, 2008.5.30 改正
- 2) 平成 15 年経済産業省・国土交通省告示第1号:建築物に関わるエネルギーの使用の合理化に関する建築主の判断基準,2003.2.24 改正
- 3) 建築物の省エネルギー基準と計算の手引(平成18年度版):(財)建築環境・省エネル ギー機構,2006.9
- 4) 齋藤孝一郎・赤坂裕・二宮秀與・田代達一郎・木下泰斗:窓フレームを考慮したビル用 窓の熱性能簡易計算法:日本建築学会環境系論文集 Vol:74 No.636 pp.151-160, 2009.2
- 5) ISO 10077-1:2006, Thermal performance of windows, doors and shutters --Calculation of thermal transmittance -- Part 1:General
- 6) ISO 10077-2:2003, Thermal performance of windows, doors and shutters --Calculation of thermal transmittance -- Part 2:Numerical method for frames
- 7) ISO/DIS 12631,Thermal performance of curtain walling -- Calculation of thermal transmittance
- 8) ISO 15099:2003, Thermal performance of windows, doors and shading devices -Detailed calculations
- 9) 齋藤孝一郎・赤坂裕・二宮秀與・宇田川光弘・木下泰斗・伊藤春雄:カーテンウォール の熱貫流計算法,日本建築学会大会学術講演梗概集 D-2 pp15-16, 2009.8
- 10) 遮熱計算法に関する研究報告書,(社)リビングアメニティ協会, 平成13年度(2002.3), 平成14年度(2003.3),平成15年度(2004.3),平成16年度(2005.3),平成19年 度(2008.3)
- 11) 平成 22 年度版「ビル用建材使用状況調査」, (社)日本サッシ協会、(社)カーテンウ オール・防火開口部協会,2011.5
- 12) カーテンウォールってなんだろう、(社) カーテンウォール・防火開口部協会、1995.4
- 13) 平成20年国住指第619号:カーテンウォールの構造方法について(技術的助言),2008.5.9

第5章 カーテンウォールのフレームを考慮した簡易計算法

5.1はじめに

第4章では、カーテンウォールのフレームを考慮した熱貫流率及び日射熱取得率に関する 詳細計算法について述べた。

PAL 計算では外壁、屋根、窓等の建築外皮を構成する各部位の断熱性能値として熱貫流率 (*U* 値)、遮熱性能値として日射熱取得率(η 値)を用い、建築物の暖房期間、冷房期間そ して年間の空調負荷を算出している。

本章では、PAL等の非住宅建築を対象とした簡易な年間暖冷房負荷計算にフレームを考慮 したカーテンウォールの評価方法を追加することを目的として、詳細計算法による計算結 果を基に、実用的な簡易計算方法を提案する。また、フレームの影響を評価することで、PAL 値にどの程度の差が生じるかについてモデル建物を例に考察し、その必要性を明確にする。

5.2 フレーム部の簡易計算用熱性能

5.2.1 カーテンウォールフレーム部の簡易計算用熱性能

カーテンウォールの熱性能を簡易計算で評価できるように第4章の計算結果を基にフレ ームの整理を行った。カーテンウォールフレーム見付幅と熱貫流率、日射熱取得率を表5.1 に示す。フレームの見付幅(*b_{fc}*)は、各メーカーの見付幅を調査し標準的な寸法を設定した。 ブラインド無しの熱貫流率(*U_{fc}*)は、第4章の表4.4の詳細計算結果から強度が異なる方立 の見込み違いも含め、開口部、腰部各々の部材の平均値とした。簡易に計算できるよう複 層ガラス用は線熱貫流率を含む値とした。ブラインド有りの熱貫流率(*U_{fc}*)は、ブラインド無 しの値から熱抵抗0.035[m²·K/W]²を加算した。

日射熱取得率(*n_{fc}*)は、第4章の表4.4の詳細計算結果から開口部は各部材の平均値とし、 腰部は影響が小さいことと負の値になるケースも考慮し0とした。

表中の「開口部」は第4章の図4.10に示す開口部方立、開口部無目、開口部上無目、開 口部下無目を指し、「腰部」は第4章の図4.10に示す腰部方立、腰部無目を指す。

フレーム種類	材質	部伯	立	フレーム 見付 <i>b_{fc}</i> [mm]	熱貫 <i>U_{fc}</i> [W/ ブラインド無し	流率 ((m・K)] ブラインド有り	日射熱取得率 <i>ヵ _{fc} [一]</i>
	712	開口部	<u>方立</u> 無目	60	13. 5	9.0	0. 20
マリオン(単似用)	112	腰部	<u>- 二〇〇</u> 60		3.	5	0.00
マリオン(複層用)	712	開口部	<u>方立</u> 無目	00	11.0	8.0	0. 20
ユニット(単板用) ユニット(複層用)	アルミ	腰部	<u>方立</u> 無目	00	3. 5		0.00
株公 理(単振用)	71.5	開口部	方立 無目	60	<u>2.0</u> 13.5	<u>2.0</u> 9.0	0.10
傾 强調(単 极用)	112	腰部	<u>方立</u> 無目	00	<u>1.5</u> 3.5		0.00
フリナン(海屋田) 熱液に 開口部 無目	方立 無目	80	6.5	5.5	0. 10		
▼ ラカン (陵眉用)	きる医	腰部	方立 無目	00	2.	0	0.00

表 5.1 カーテンウォールフレーム見付幅と熱貫流率、日射熱取得率

5.2.2様々な開口仕様に対する簡易計算用熱性能

通常カーテンウォールフレームは嵌め殺しが主流であるが、カーテンウォールの開口部方 立・無目間に窓がつくケースがある。

この場合は、既報³⁾より単体窓は表 5.2、連窓方立・段窓無目は表 5.3 の値を用いる。表 5.2 及び表 5.3 はガラスが単板でも複層でも同一の見付寸法を用いる。

窓タイプ	材質	フレーム 見付 _{グが} [mm]	熱貫 <i>U_{fw}</i> [W/ ブラインド無し	流率 (m [*] ·K)] ブラインド有り	日射熱取得率 <i>1</i> 7 _{fw} [一]
コキ造い変	アルミ	50	15.0	11.5	0.27
	熱遮断	50	10.0	8.5	0.14
問キの	アルミ	60	12.0	10.0	0.26
王の	熱遮断	00	8.0	7.0	0.14
	アルミ	20	22.0	15.5	0.26
敗の返し志	熱遮断	20	14.0	11.0	0.11

表5.2 単体窓のフレーム見付幅と熱貫流率、日射熱取得率

表5.3 方立・無目のフレーム見付幅と熱貫流率、日射熱取得率

窓タイプ	材質	フレーム 見付 <i>b_{fj}</i> [mm]	熱貫 <i>U_{fj}</i> [₩/ ブラインド無し	流率 ((m・K)] ブラインド有り	日射熱取得率 <i>ヵ _{fj}</i> [一]
油农士士	アルミ	70	7.0	5.5	0.26
建芯力立	熱遮断	70	4.0	3.5	0.14
码宏细日	アルミ	100	7.0	5.5	0.26
权忌带日	熱遮断	100	2.5	2.3	0.14

5.3 腰部パネル部の簡易計算用熱性能

PAL の手引書¹⁾では、腰部(壁部)は算出式(5.1)で簡易に算出している。

$$\eta_{sp} = a \frac{U_{sp}}{\alpha_o} = 0.04 a U_{sp} \qquad \cdot \cdot \cdot (5.1)$$

ここで

η_{sp}:腰部(スパンドレル部)のパネル部の日射熱取得率 [-]
 U_{sp}:腰部(スパンドレル部)のパネル部の熱貫流率 [W/(m²·K)]
 a:腰部(スパンドレル部)のパネル外表面の日射吸収率 [-]
 α_o:室外側表面熱伝達率 [W/(m²·K)]

これは、壁に吸収された熱を内外の熱抵抗の比で案分し、室内側への侵入熱量を表したものである。

しかし、ガラスカーテンウォールの腰部は、ガラスを透過した日射が不透明パネル表面で 吸収されるため、 $\alpha_o=25$ [W/(m²·K)] (PAL 計算の場合、室外側表面熱伝達率 $\alpha_o=23$ [W/(m²·K)]、つまり 1/ $\alpha_o=0.043$ [m²·K/W] だが、有効数字1桁で表記しているため、 $\alpha_o=25$ [W/(m²·K)] と同じ値となる)のまま計算すると、表 5.4 中②に示すように η_{sp} は過少評価となり、 精算値①と比較すると、最大 10 倍程度の差となる。この場合、室外側表面から不透明パネ ル前の中空層までの熱抵抗の合計 (*SR*)を 1/ α_o の代わりに用いればよいことになる。こ

ここで、(1/Ug-1/ai)は、室外側表面熱伝達抵抗+ガラスの熱抵抗(複層ガラスの場合

は、中空層の熱抵抗を含む)を表す。カーテンウォールの場合、様々なガラスを使用する ため、簡易に入手できるガラスの熱貫流率(*U_g*)を用いて算出できる式とした。また、0.15 はガラスと耐火ボード間の中空層の熱抵抗を表す。これは、PALの手引書¹⁾に掲載されてい る密閉中空層熱抵抗である。この結果、表 5.4 中③に示すように精度が±17%以内となった。 不透明パネルへの影響を軽減する腰パネル部の熱的影響は開口部と比較すると 1/5~1/10 程 度と小さいため、実用的な精度を有すると考えられる。

$$\sum_{k=0}^{\infty} R = \left(\frac{1}{U_s} - \frac{1}{\alpha_i}\right) + 0.15$$
よって、算出式(5.1)、(5.2)より次式が得られる。
$$n_{sp} = \left(\left(\frac{1}{U_s} - \frac{1}{U_s}\right) + 0.15\right) a'U$$
....(5.3)

$$\eta_{sp} = \left(\left(\frac{1}{U_g} - \frac{1}{\alpha_i} \right) + 0.15 \right) a' U_{sp} \qquad \cdot \cdot \cdot (5.3)$$

ここで

η_{sp}:腰部(スパンドレル部)のパネル部の日射熱取得率 [-]
 U_{sp}:腰部(スパンドレル部)のパネル部の熱貫流率 [W/(m²·K)]
 U_g:腰部(スパンドレル部)のパネル部の熱貫流率 [W/(m²·K)]
 ∑R:腰部(スパンドレル部)の表面を構成するガラス及び中空層の熱抵抗 [m²·K/W]

a' :腰部 (スパンドレル部)の不透明パネル外表面の日射吸収率 [-] α_i :室内側表面熱伝達率 [W/(㎡・K)]

表 5.4 腰パネル部の日射熱取得率 (*ŋ*_{sp})の簡易計算との比較

	a) 711+1		S (C)	b) 711+	(Δ Ι	PG)	c) 211 †	(тн	PG)
	a= 0.2	a= 0.5	a= 0.8	a= 0.2	a= 0.5	a= 0.8	a= 0.2	a= 0.5	a= 0.8
① η sp(精算值)	0.06	0.12	0.17	0.08	0.16	0.24	0.08	0.16	0.24
ΣR(精算値)	0.20	0.18	0.17	0.35	0.32	0.30	0.35	0.32	0.30
②ηsp(簡易0.04)	0.01	0.03	0.04	0.01	0.02	0.03	0.01	0.02	0.03
<i>∐η</i> (精算/簡易)	5.38	4.49	4.19	9.53	7.74	7.22	9.53	7.74	7.22
③ηsp (簡易ΣR)	0.05	0.13	0.21	0.07	0.18	0.29	0.07	0.18	0.29
ΣR(簡易)	0.20	0.20	0.20	0.34	0.34	0.34	0.34	0.34	0.34
<i>∐η</i> (精算/簡易)	1.08	0.90	0.84	1.11	0.90	0.84	1.11	0.90	0.84
 フレーム種類	d) לאבי	(AL	SG)	e) ביו	· (AL	PG)	f) 横強詞	周(AL	SG)
フレーム種類 ブレーム種類 耐火ボード日射吸収率	d) ביש a= 0.2	(AL a= 0.5	SG) a= 0.8	e) ביין a= 0.2	(AL a= 0.5	PG) a= 0.8	f)横強言 a= 0.2	周(AL a= 0.5	SG) a= 0.8
フレーム種類 耐火ボード日射吸収率 ① η sp(精算値)	d) u= v k a= 0.2 0.06	(AL a= 0.5 0.12	s g) a= 0.8 0.17	e) שבע a= 0.2 0.06	(AL a= 0.5 0.12	PG) a= 0.8 0.17	f)横強言 a= 0.2 0.05	周(A L a= 0.5 0.11	sg) a= 0.8 0.17
フレーム種類 耐火ボード日射吸収率 ① η sp(精算値) ΣR(精算値)	d) 1= 7 k a= 0. 2 0. 06 0. 21	(A L a= 0.5 0.12 0.19	s g) a= 0.8 0.17 0.18	e) 1= 7 a= 0.2 0.06 0.21	(AL a= 0.5 0.12 0.19	PG) a= 0.8 0.17 0.18	f)横強言 a= 0.2 0.05 0.20	凋(A L a= 0.5 0.11 0.18	s G) a= 0.8 0.17 0.17
フレーム種類 耐火ボード日射吸収率 ① η sp(精算値) <u>ΣR(精算値)</u> ② η sp(簡易0.04)	d) 1=98 a= 0.2 0.06 0.21 0.01	(A L a= 0.5 0.12 0.19 0.03	s g) a= 0.8 0.17 0.18 0.04	e) 1=91 a= 0.2 0.06 0.21 0.01	(AL a= 0.5 0.12 0.19 0.03	P G) a= 0.8 0.17 0.18 0.04	f)横強言 a= 0.2 0.05 0.20 0.01	周(A L a= 0.5 0.11 0.18 0.03	SG) a= 0.8 0.17 0.17 0.04
フレーム種類 耐火ボード日射吸収率 ① η sp (精算値) <u>∑ R (精算値)</u> ② η sp (簡易0.04) <u>⊿ η (精算/簡易)</u>	d) 1=91 a= 0.2 0.06 0.21 0.01 5.50	(AL a= 0.5 0.12 0.19 0.03 4.59	s g) a= 0.8 0.17 0.18 0.04 4.28	e) 1=91 a= 0.2 0.06 0.21 0.01 5.50	(AL a= 0.5 0.12 0.19 0.03 4.59	P G) a= 0.8 0.17 0.18 0.04 4.28	f) 横強言 a= 0.2 0.05 0.20 0.01 5.37	周(A L a= 0.5 0.11 0.18 0.03 4.47	s G) a= 0.8 0.17 0.17 0.04 4.17
フレーム種類 耐火ボード日射吸収率 ① η sp (精算値) <u>ΣR (精算値)</u> ② η sp (簡易0.04) <u>Δ η (精算/簡易)</u> ③ η sp (簡易 ΣR)	d) 1= 7 k a= 0.2 0.06 0.21 0.01 5.50 0.05	(AL a= 0.5 0.12 0.19 0.03 4.59 0.13	s g) a= 0.8 0.17 0.18 0.04 4.28 0.20	e) 1=91 a= 0.2 0.06 0.21 0.01 5.50 0.05	(AL a= 0.5 0.12 0.19 0.03 4.59 0.13	P G) a= 0.8 0.17 0.18 0.04 4.28 0.20	f) 横強言 a= 0.2 0.05 0.20 0.01 <u>5.37</u> 0.05	周(A L a= 0.5 0.11 0.18 0.03 4.47 0.13	s G) a= 0.8 0.17 0.17 0.04 4.17 0.20
フレーム種類 耐火ボード日射吸収率 ① η sp (精算値) Σ R (精算値) ② η sp (簡易0.04) <u>Δ η (精算/簡易)</u> ③ η sp (簡易ΣR) ΣR (簡易)	d) 1= y k a= 0. 2 0. 06 0. 21 0. 01 5. 50 0. 05 0. 20	a= 0.5 0.12 0.19 0.03 4.59 0.13 0.20	s g) a= 0.8 0.17 0.18 0.04 4.28 0.20 0.20	e) 1= y a= 0.2 0.06 0.21 0.01 5.50 0.05 0.20	(AL a= 0.5 0.12 0.19 0.03 4.59 0.13 0.20	P G) a= 0.8 0.17 0.18 0.04 4.28 0.20 0.20	f)横強言 a= 0.2 0.05 0.20 0.01 <u>5.37</u> 0.05 0.20	周 (AL a= 0.5 0.11 0.18 0.03 4.47 0.13 0.20	SG) a= 0.8 0.17 0.04 4.17 0.20

5.4 カーテンウォール全体の簡易計算法

5.4.1 詳細計算法と簡易計算法の比較

簡易計算法による簡易計算値と詳細計算法による精算値を第4章の図4.8のモデルケース (腰パネル a:0.2 条件)で比較した。断熱性能をカーテンウォール全体の通過熱流量(Q)で、 遮熱性能をカーテンウォール全体の日射熱取得(η·A)で比較した結果、表 5.5 のように±2% 以内に納まった。よって簡易計算は実用的な精度を有すると考えられる。

表5.5 簡易計算値と精算値の比較

フレーム種類	材質	簡易計算値 ΣQ	精算値 ΣQ	⊿Q	簡易計算値 Ση·A	精算値 Ση·A	$\Delta \eta \cdot \mathbf{A}$
マリオン(単板)	アルミ	151.92	148.60	1.02	13.96	14.13	0.99
マリオン(複層)	アルミ	106.58	104.33	1.02	13.35	13. 13	1.02
マリオン(複層)	熱遮断	86.76	85. 23	1.02	13.33	13.11	1.02
ユニット(単板)	アルミ	151.37	149.39	1.01	13.53	13.87	0.98
ユニット(複層)	アルミ	109.55	109.13	1.00	12.89	13.12	0.98
横強調 (単板)	アルミ	135.45	135.35	1.00	13.68	13. 75	1.00

5.4.2 フレームを考慮したカーテンウォール全体の簡易計算法

フレームを考慮した簡易計算法によるカーテンウォール全体の熱貫流率及び日射熱取得 率算出のためのフローチャートを図 5.1 に示す。

各部の面積の考え方を図 5.2 に示す。また、計算に用いる算出式を式(5.4)~(5.18)に示す。

カーテンウォールフレームの割付寸法は、図 5.2 に示すように外観見付け寸法の芯々で決 まっているため、この寸法から計算できるようにした。カーテンウォールの方立と無目の 関係は、基本的に方立が無目に対し縦通しとなることから面積算出もこの考え方を反映さ せている。

図5.1 カーテンウォール全体の簡易計算法フローチャート

開口部内に入る窓が設置される場合の伝熱開口幅と高さは方立・無目の内法に設置される ため、w、h 寸法を用いた。この内法からさらに窓フレーム見付け寸法が内側に加算される 考え方とした。

開口部において段窓した窓を連窓することも考慮し、段窓無目の幅寸法は窓幅(w_w)としている。

また、カーテンウォール嵌め殺し部と窓部のガラス仕様は必ずしも同じとは限らないため、 別々に算出できる式とした。

・カーテンウォールフレーム面積算出式 開口部方立: $A_{mo} = b_{fc} \cdot H_{op} \cdot N_m$ ・・・(5.4)

腰部方立 : $A_{ms} = b_{fc} \cdot (H - H_{op}) \cdot N_m$ · · · (5.5)

開口部無目: $A_{to} = b_{fc} \cdot (W - N_m \cdot b_{fc}) \cdot N_{to}$ (5.6)

腰部無目 :
$$A_{ts} = b_{fc} \cdot (W - N_m \cdot b_{fc}) \cdot N_{ts}$$
 · · · (5.7)

・開口部内に窓がある場合のフレーム面積算出式

引き違い窓 :
$$A_{fw} = b_{fw} \cdot (2w + 3h) \cdot N_w$$
 ・・・(5.8)

開き窓・嵌め殺し窓: $A_{fw} = b_{fw} \cdot (2w + 2h) \cdot N_w$ ・・・(5.9)

- ・開口部内に窓があり、連断窓する場合のフレーム面積算出式 連窓方立 : $A_{fj} = b_{fj} \cdot h \cdot N_j$ ・・・(5.10) 断窓無目 : $A_{fj} = b_{fj} \cdot w_w \cdot N_j$ ・・・(5.11)
- ・開口部及び窓のガラス及び腰部パネル部面積算出式

開口部: $A_g = A_{op} - (A_{mo} + A_{to} - b_{fc} \cdot (W - N_m \cdot b_{fc}) + \sum A_w + \sum A_{fj})$...(5.12)

窓部 :
$$A_{gw} = A_w - A_{fw}$$
 ・・・(5.13)

腰部 :
$$A_{sp} = A_{cw} - (A_{op} + A_{ms} + A_{ts} + b_{fc} \cdot (W - N_m \cdot b_{fc}))$$
 · · · (5.14)

・カーテンウォール全体の熱貫流算出式

$$U_{cw} = \frac{A_g U_g + A_{sp} U_{sp} + A_{gw} U_{gw} + \sum A_{fc} U_{fc} + \sum A_{fw} U_{fw} + \sum A_{fj} U_{fj}}{A_{cw}} \qquad \cdot \cdot \cdot (5.15)$$

 $\sum A_{fc} U_{fc} = A_{mo} U_{mo} + A_{ms} U_{ms} + A_{to} U_{to} + A_{ts} U_{ts} \quad \cdot \quad \cdot \quad (5.16)$

・カーテンウォール全体の日射熱取得率算出式

$$\eta_{cw} = \frac{A_g \eta_g + A_{sp} \eta_{sp} + A_{gw} \eta_{gw} + \sum A_{fc} \eta_{fc} + \sum A_{fw} \eta_{fw} + \sum A_{fj} \eta_{fj}}{A_{cw}} \quad \cdots \quad (5.17)$$

$$\sum A_{fc} \eta_{fc} = A_{mo} \eta_{mo} + A_{ms} \eta_{ms} + A_{to} \eta_{to} + A_{ts} \eta_{ts} \quad \cdots \quad (5.18)$$

$$\frac{1}{2}$$

$$\frac{1}{$$

添字

- cw:カーテンウォール全体、g:ガラス、gw:窓部ガラス、f:フレーム、
- fc:カーテンウォールフレーム、fw:窓フレーム、
- fj: 連窓方立・段窓無目フレーム、o: 室外側、i: 室内側、
- *sp*:腰部パネル、*p*:断熱パネル、*psp*:腰部断熱パネル、*op*:開口部、
- w: 窓部、m: 方立、t: 無目、j: 連窓方立・段窓無目
- mo:開口部方立、ms:腰部方立、to:開口部無目、ts:腰部無目

5.5 フレームを考慮した PAL 計算

5.5.1 計算条件

カーテンウォールのフレームを考慮することで PAL 値にどの程度影響があるか事務所ビルでの算出結果を示す。ここでは PAL の手引書¹⁾の計算事例(K 事務所)の基準階を使用する。図 5.3 に基準階平面図を示す。基準階の南(S)ゾーンのプランを用い、南以外に方位を東/西/北に変更して計算を行い方位の影響を確認する。基準階の床面積、各外皮の面積、外皮の熱性能を表 5.7~5.11 に示す。

また、図 5.4 に南面基準階外観姿図(右半分)を示す。

建設地域は、札幌、東京、鹿児島の3地域とし、気象条件の違いを確認する。カーテンウ オールを現状の全面ガラスとして扱う場合と、本章で示した方法でフレームを考慮した場 合の PAL 値を比較する。

伝熱開口高さ方向の断面は図 4.8 と共通とした。

方立及び無目の割付ピッチは 1000mm とした。単板ガラス用と複層ガラス用のフレーム見 付寸法が 20mm 異なるため、カーテンウォールの伝熱開口幅寸法も 20mm 異なった条件で 計算した。

表 5.7 基準階南(S)ゾーンの床面積(m²)

日当の空調室	日陰の空調室	非空調室	合計
162.5	0	12.5	175

表 5.8 基準階南(S)ゾーン各外皮の面積(m²)

a) 単板ガラス仕様のフレームの場合

如/六	日	当	/\.≡⊥	스크	開口部率	
日の一次	空調室	非空調室	小司			
CW(単板)開口部	60.12		60.12			
CW(単板)腰部	60.12		60.12	160.00	37.6%	
外壁1	19.88	19.88	39.76			

b) 複層ガラス仕様のフレームの場合

立 7.4-5	日	当	∕I∖≢∔	스러	胆口如葱	
口口口	空調室	非空調室	い言		用口印平	
CW(複層)開口部	60.16		60.16			
CW(複層)腰部	60.16		60.16	160.00	37.6%	
外壁1	19.84	19.84	39.68			

ガラス仕様	カーテンウォール フレーム仕様	熱貫流率 UI[W/(㎡·K)]	日射熱取得率 n 「-]
	全面ガラス	3.51	0.43
甲极	横強調(アルミ)	3.83	0.38
FLIU	マリオン(アルミ)	4.24	0.39
並语指展	全面ガラス	1.96	0.42
百 进 復眉 FI 5+Δ12+FI 5	マリオン(アルミ)	2.92	0.37
	マリオン(熱遮断)	2.40	0.37
將劫!⊏ 按 図	全面ガラス	1.23	0.28
凶 恐LOWE 後 唐 FI 5+Δ12+LowE5	マリオン(アルミ)	2.31	0.26
	マリオン(熱遮断)	1.78	0.26
油 埶Ⅰ ѹ⊑指菌	全面ガラス	1.23	0.24
Marketoweで を 「 awketoweで を 」 awketoweで し awketowe	マリオン(アルミ)	2.31	0.23
201120120120	マリオン(熱遮断)	1.78	0.23

表5.9 カーテンウォール全体の熱性能一覧

表 5.10 外壁の熱性能

部位	熱貫流率 U [W/(㎡·K)]	日射熱取得率 η[−]
外壁1	3.78	0.12

図5.3 事務所ビルの基準階平面図

5.5.2 計算結果

札幌、東京及び鹿児島の各方位別の暖房・冷房 PAL 値計算結果を北、西、南面を抜粋して図 5.5 に示す。全面ガラスとフレームを考慮した場合の暖房・冷房 PAL 値の比較を図 5.6 に、年間 PAL 値の比較を図 5.7 に示す。

値の大小の違いはあるが、全体的に躯体内に納まるビル用窓フレーム、連窓方立・断窓無 目フレームと同様の傾向を示した³⁾。

図 5.6 より、暖房 PAL と冷房 PAL で明確に傾向が異なることがわかる。フレームを考慮 することにより、カーテンウォール全体の熱貫流率は大きくなるため暖房 PAL 値は大きく なり、逆に日射熱取得率は小さくなるため冷房 PAL 値は小さくなる。

PAL 値の変化の度合いは、ガラスとフレームの熱性能の差が大きいほど大きく、アルミフレームと断熱 LowE 複層ガラスの組合せが最も大きかった。逆に、ガラスとフレームの熱性能の差が小さいアルミフレーム(横強調)と単板ガラスの組合せが最も小さかった。

図 5.5 より、フレームの影響で暖房 PAL 値は、全面ガラスを 100%として、札幌:110~247%、 東京:112~288%、鹿児島:113~392%に増加している。フレームの影響で冷房 PAL 値は、 全面ガラスを 100%として、札幌:83~47%、東京:90~64%、鹿児島:93~62%に減少し ている。

どの地域においても、暖房 PAL、冷房 PAL ともに南方位のアルミフレームと断熱 LowE 複層ガラスの組合せで、全面ガラス条件と比べて暖房 PAL の最大、冷房 PAL の最小の比率 となっている。

断熱性に優れた熱遮断フレームは、アルミフレームに比べ暖房 PAL は小さい値を示すが、 冷房 PAL では大きな値を示す。これは、断熱性能が優れているために熱を室内にこもらせ ている結果になったことを示している。

年間 PAL 値は、フレームを考慮することにより、暖房 PAL と冷房 PAL の増減が相殺され て、全面ガラスと近い値になる場合もあるが、顕著な差が生じる場合もある。図 5.7 より、 札幌は暖房負荷が支配的なため、フレームを考慮することにより、熱遮断フレームと普通 複層ガラスの組合せを除いて、年間 PAL 値は上昇している。

鹿児島は冷房負荷が支配的なため、フレームを考慮することにより、北方位を除いて年間 PAL 値は減少している。東京は両地域の中間的な結果であることがグラフから読み取れる。

年間 PAL 値を指標として地域に適したフレームを選択することができる。図 5.5 の暖・冷 房 PAL 値の棒グラフの総計が年間 PAL 値となるが、札幌では、全ての方位、全てのガラス 仕様で熱遮断フレームの方がアルミフレームに比べ小さい値となり、寒冷地に適したフレ ームであることが示された。鹿児島の南面で普通複層と断熱 LowE 複層仕様の場合だけ、ア ルミフレームの方が小さい値となっている。冷房 PAL は、計算した 3 地域のほぼ全ての条 件でアルミフレームの方が熱遮断フレームより小さい値となるため、冷房負荷を小さくす ることに重きを置いて設計する場合には、年間 PAL 値により選択されたフレームとは異な る場合があると考えられる。

年間 PAL 値は、地域の気象条件と建物部位の断熱性能と遮熱性能の組み合わせで決まる ので単純に断熱性能が良い方が小さくなるとは限らない。年間 PAL 値を最小にする最適な 熱貫流率と日射熱取得率の組み合わせを検討する上でも、フレームの熱性能を正しく評価 する必要がある。

5.6 まとめ

第5章では、PAL等の非住宅建築の指標を算定する簡易な年間暖冷房負荷計算にフレーム を考慮したガラスカーテンウォールの評価方法を追加することを目的として、実用的な簡 易計算方法を検討した。また、フレームを考慮する場合と考慮しない場合の PAL 計算を行 い比較した。その結果以下の知見が得られた。

①構造の異なるフレームを簡易計算用に整理し、一覧表に示した。

②ガラスカーテンウォールの腰部の簡易計算法について整理した。ガラスカーテンウォールの腰部の場合、ガラスを透過した日射が不透明パネルで吸収されるため、PALの手引書に掲載されている計算式が適応できないことを示した。このため、容易に入手できるガラスの熱貫流率(U_e)を用いた簡易計算式を提案し、実用的な精度を有することを示した。

③簡易計算法による熱性能計算値と精算値をモデルケースで比較した結果、断熱性能及び 遮熱性能はそれぞれ±2%以内に納まった。よって提案する簡易計算法は暖冷房負荷を評価 する上で実用的な精度を有することを示した。

④フレームを考慮したカーテンウォール全体の簡易計算法を整理した。これらの結果は、 PAL 計算、BEST、BIM 等への適応できる。

⑤フレームの有無による PAL 値への影響を事務所ビルモデルで確認した。フレームを考慮することで、暖房 PAL は増大し、冷房 PAL は軽減することを示した。これにより PAL 計算においてフレームの影響を無視できないことを示した。

参考文献

- 1) 建築物の省エネルギー基準と計算の手引(平成18年度版):(財)建築環境・省エネル ギー機構,2006.9
- 2) 郡 公子:窓の設計法、日本建築学会環境工学委員会熱環境小委員会シンポジウム 空調シ ステム設計法の新技術, pp5-18, 2002.12
- 3) 齋藤孝一郎・赤坂裕・二宮秀與・田代達一郎・木下泰斗:窓フレームを考慮したビル用 窓の熱性能簡易計算法:日本建築学会環境系論文集 Vol:74 No.636 pp.151-160, 2009.2
- 4) 平成 22 年度版「ビル用建材使用状況調査」, (社)日本サッシ協会、(社)カーテンウ オール・防火開口部協会,2011.5
- 5) ビル用中高層サッシ総合カタログ,(株) LIXIL,2011.6
- 6) 中低層ビル用ファサード RMi シリーズ, 新日軽(株),2009.11

第6章 カーテンウォールの斜入射に対する日射熱取得率計算法

6.1はじめに

第4章では、カーテンウォールのフレームを考慮した垂直時の日射熱取得率に関する詳細 計算法について述べた。垂直入射では、カーテンウォールフレームフレームからガラス面 へ影を落とすことはほぼないが、斜入射を考慮するとフレームからフレーム自身やガラス 面へ影を落とすこととなる。この影の影響がどの程度あるのか、現状の垂直入射時の日射 熱取得率から予測が可能なのか、個々の入射角で解析する必要があるか明確にする必要が ある。また、斜入射は直達成分を考慮した場合であり、天空及び地物反射といった散乱成 分を考慮した場合も必要となる。第2章では、一般的な「窓」と呼ばれる単体窓の斜入射 に対する日射熱取得率計算法について述べた。

ここでは、斜入射及びカーテンウォールフレームを考慮した直達成分の開口部の日射熱取 得率計算法及び散乱成分を考慮した開口部の日射熱取得率計算法について述べる。

6.2 直達日射に対するカーテンウォールの計算法

垂直入射と斜入射の計算法の違いは、日射の入射角度が異なることと、窓フレーム材のよ うな不透明材料に日射があった場合、その先に透過せず影を作ることを考慮した計算プロ グラムとすることである。よって、窓及び各部の日射熱取得率を算出する式は基本的に垂 直入射時と同じと考えてよいが、フレームからガラス面へ落とす影の影響を考慮する必要 がある。

直達日射に対する窓全体の日射熱取得率は算出式(6.1)で整理できる。

$$\eta_{cw}(\theta) = \frac{\sum A_g \eta_g(\theta) S_{f,g}(\theta) + \sum A_{sp} \eta_{sp}(\theta) S_{f,sp}(\theta) + \sum A_f \eta_f(\theta)}{A_{cw}} \quad \cdot \quad \cdot \quad (6.1)$$

ここで

 $\eta_{cw}(\theta)$:入射角 θ に対するカーテンウォール全体の総合日射熱取得率 [-] $\eta_{g}(\theta)$:入射角 θ に対する開口部 (ビジョン部)のガラス部の日射熱取得率 [-] $\eta_{sp}(\theta)$:入射角 θ に対する腰部 (スパンドレル部)のパネル部の日射熱取得率 [-] $\eta_{f}(\theta)$:入射角 θ に対する開口部、腰部のフレーム部の日射熱取得率 [-] $S_{f,g}(\theta)$:入射角 θ に対するガラスに落とすフレーム部影による日射熱取減衰係数 [-]

 $A_{cw}: カーテンウォール全体の伝熱開口面積 [m²]$ $A_g: 開口部 (ビジョン部) のガラス部の見付面積 [m²]$ $A_{sp}: 腰部 (スパンドレル部) のパネル部の見付面積 [m²]$ $A_f: 開口部、腰部のフレーム部の見付面積 [m²]$

6.2.1 フレーム部の計算法

フレーム部の直達日射に対する日射熱取得率算出方法は、算出式(6.2)で整理できる。また、 解析モデルイメージを図 6.1 に示す。2次元解析モデルに日射受熱の発熱条件を設定したモ デル(図 6.1(b))を用いて、日射を受けた場合の室内への熱流束から日射を受けない場合(貫 流分)の熱流束を差引いた値を日射強度で除して算出する。

$$\eta_f(\theta) = \frac{q_{in,f}(\theta) - q_{in,f}(I_s = 0)}{I_s} \qquad (6.2)$$

ここで

η_f(θ):入射角θに対する開口部、腰部のフレーム部日射熱取得率 [-]
 q_{in,f}(θ):入射角θに対する開口部、腰部のフレーム部入射日射がある場合の
 室内への熱流束[W/m²]

q_{in,f}(I_s=0):開口部、腰部のフレーム部の入射日射がない場合の室内への熱流束 [W/m²]

 I_s :入射日射強度 [W/m²]

このとき、算出式(6.2)に入る q_{inf}は、図 6.1(a)に示すようにフレームを含む 2 次元熱流 計算モデルから、斜入射は考慮しているがフレームが落とす影の影響を受けていないガラ ス単体及び腰部パネル単体の 1 次元熱流を差引いて求める。そのため 2 次元熱流分の影響 及び影の影響は、フレームに残ることとなる(q_{inf}(Is=0)は同様に 2 次元熱流分の影響はフ レーム部に残る形となる)。しかし、この計算手法では純粋なフレーム成分ではないため式 (6.1)が成り立たない。

本計算プログラムを用いた場合、斜入射時のガラス面へ落とす影の影響についてガラスの 透過分は考慮せず、日射吸収による再放熱分のみ判定している。そのため、開口部(ビジ ョン部)の場合は、解析結果後の熱流量(Q_{in})にガラス面へ落とす影長さ分の熱流量を別途 加算するもしくは、ガラス長さ(b_g)から影長さ($b_{s,g}$)を除いた残りの分の熱量だけを解析結 果後の熱流量(Q_{in})から差し引く必要がある。同様に、腰部(スパンドレル部)の場合は、 解析結果後の熱流量(Q_{in})にパネル面へ落とす影長さ分の熱流量を別途加算するもしくは、 パネル長さ($b_{s,p}$)から影長さ($b_{s,sp}$)を除いた残りの分の熱量だけを解析結果後の熱流量 (Q_{in})から差し引く必要がある。

よって、算出式(6.2)のフレーム部の熱流束: q_{inf}及び q_{inf}(Is=0)の算出式は以下となる。

$$q_{in,f}(\theta) = \frac{Q_{in}(\theta) - q_{in,g}(\theta)(b_g - b_{s,g}) - q_{in,sp}(\theta)(b_{sp} - b_{s,sp})}{b_f} \cdot \cdot \cdot (6.3)$$

$$q_{in,f}(I_s = 0) = \frac{Q_{in}(I_s = 0) - q_{in,g}(I_s = 0) \cdot b_g - q_{in,sp}(I_s = 0) \cdot b_{sp}}{b_f} \cdot \cdot \cdot (6.4)$$

$$z = z$$

q_{in,f}(θ):入射角θに対する開口部、腰部のフレーム部の入射日射がある 場合の室内への熱流束 [W/m²]

 $Q_{in}(\theta)$:入射角θに対する入射日射があるモデル全体の室内への熱流量 [W/m] $q_{in,g}(\theta)$:入射角θに対する開口部 (ビジョン部)のガラス部の入射日射がある場合の室内への熱流束 [W/m]

q_{in,sp}(θ):入射角 θ に対する腰部(スパンドレル部)のパネル部の入射日射がある 場合の室内への熱流束 [W/m²] *q_{in,f}(I_s=0*):開口部、腰部のフレーム部の入射日射がない場合の室内への熱流束 [W/m²]

Q_{in}(I_s=0):入射日射がないモデル全体の室内への熱流量 [W/m]

q_{in.g}(I_s=0):開口部(ビジョン部)のガラス部の入射日射がない場合の室内への 熱流束 [W/m²]

q_{in,sp}(I_s=0):腰部(スパンドレル部)のパネル面の入射日射がない場合の室内への 熱流束 [W/m²]

 b_f:開口部、腰部のフレーム部の見付長さ [m]

 b_g:開口部(ビジョン部)のガラスの見付長さ [m]

 b_{sp}:腰部(スパンドレル部)のパネルの見付長さ [m]

 b_{s,g}:フレームから開口部(ビジョン部)のガラス面に落ちる影の見付長さ [m]

*b*_{s,sp}:フレームから腰部(スパンドレル部)のパネル面に落ちる影の見付長さ [m]

図 6.1 解析モデルイメージ

6.2.2 ガラス部、腰パネル部の計算法

(1) ガラスの斜入射日射特性

ガラスの斜入射計算は第2章同様、板硝子協会でまとめた近似式を用いた²⁾。

$$\tau(\theta) = \tau(0) \sum_{i=0}^{5} m_i \cos^i \theta \qquad \cdots \qquad (6.5)$$
$$\rho(\theta) = \rho(0) + (1 - \rho(0)) \sum_{i=0}^{5} m_i \cos^i \theta \qquad \cdots \qquad (6.6)$$
$$\Xi \subseteq \overline{C}$$

τ(0):垂直入射(入射角度0°)のときの日射透過率 [-]
 τ(θ):入射角度θのときの日射透過率 [-]
 ρ(0):垂直入射(入射角度0°)のときの日射反射率 [-]
 ρ(θ):入射角度θのときの日射反射率 [-]

また、表 6.1 に基準化透過率・反射率の近似式の係数(mi)を示す。

表 6.1 基準化	透過率・	反射率の	近似式の係数
-----------	------	------	--------

板ガラス品種分類	透過率 反射率	m ₀	<i>m</i> ₁	<i>m</i> ₂	m ₃	m4	m_5
透明フロート板ガラス	Т	0.000	2.552	1.364	-11.388	13.617	-5.146
	ρε	1.000	-5.189	12.392	-16.593	11.851	-3.461

※ τ:透過率、 ρ_g: ガラス面反射率、 ρ_f: 膜面反射率

(2) ガラス部、パネル部の多重反射計算

2層で構成された複層ガラスを考える。ガラス1及びガラス2の日射吸収率、日射透過率、 日射反射率をそれぞれ *a*₁、 *τ*₁、 *ρ*₁及び *a*₂、 *τ*₂、 *ρ*₂とする。

1番目と2番目の層で構成された複層ガラスの透過率 $\tau_{I,2}$ 、反射率 $\rho_{I,2f}$ (front 側からの入射に対する反射率) は多重反射を考慮して次式で表わされる。

$$\tau_{1,2} = \tau_1 \tau_2 \Big(1 + \rho_{1b} \rho_{2f} + \rho_{1b}^2 \rho_{2f}^2 \cdots \Big) = \frac{\tau_1 \tau_2}{1 - \rho_{1b} \rho_{2f}} \qquad (6.7)$$

$$\rho_{1,2f} = \rho_{1f} + \tau_1^2 \rho_{2f} + \tau_1^2 \rho_{1b} \rho_{2f}^2 + \dots = \rho_{1f} + \frac{\tau_1^2 \rho_{2f}}{1 - \rho_{1b} \cdot \rho_{2f}} \qquad (6.8)$$

ここで

 $\tau_{I,2}: 1$ 番目と2番目の層に挟まれた部分の透過率 [-] $\rho_{I,2f}: 1$ 番目と2番目の層に挟まれた部分のフロント側入射に対する反射率 [-] $\tau_{I}: 1$ 番目の層の透過率 [-] $\tau_{2}: 2$ 番目の層の透過率 [-] $\rho_{If}: 1$ 番目の層のフロント側入射に対する反射率 [-] $\rho_{Ib}: 1$ 番目の層のバック側入射に対する反射率 [-] $\rho_{2f}: 2$ 番目の層のフロント側入射に対する反射率 [-]

また、front 側からの入射に対する1番目と2番目の層での吸収率は次式で計算される。

$${}_{1}a_{2} = a_{1}\left(1 + \tau_{1}\rho_{2f} + \tau_{1}\rho_{1b}\rho_{2f}^{2} + \cdots\right) = a_{1}\left(1 + \frac{\tau_{1}\rho_{2f}}{1 - \rho_{1b}\rho_{2f}}\right) \quad (6.9)$$

$${}_{2}a_{2} = a_{2}\tau_{1}\left(1 + \rho_{b1}\rho_{2f} + \rho_{1b}^{2}\rho_{2f}^{2} + \cdots\right) = \frac{a_{2}\tau_{1}}{1 - \rho_{1b}\rho_{2f}} \qquad (6.10)$$

ここで

 1a2:1番目の層の front 側入射に対する吸収率 [-]

 2a2:2番目の層の front 側入射に対する吸収率 [-]

 a1:1番目の層の吸収率 [-]

 a2:2番目の層の吸収率 [-]

(3) ガラス部の日射熱取得率の計算基礎式

ガラス部の日射熱取得率は、ガラスの入射する日射エネルギーに対する室内へ伝達される 熱エネルギーの比で表わされる。ここで、室内側へ伝達される熱とは、ガラスを直接透過 する成分とガラスに吸収されて室内側に再放出される成分を合計したものである。但し、 室内外温度差による貫流熱分は室内への伝達熱に含めないので日射熱取得率の定義は次式 となる。

$$\eta_g = \tau_e + \frac{q_i - U_g (T_e - T_i)}{I_s} \qquad \cdot \cdot \cdot (6.11)$$

なお、熱貫流率 U_g は日射がない場合の室内外温度差 1K あたりの熱流束として次式で表わす。

$$U_g = \frac{q_i}{T_e - T_i} \bigg|_{I_{s=0}}$$
 (6.12)

ここで

η_g: ガラス部の日射熱取得率 [-]

τ。: ガラス部の日射透過率 [-]

 q_i : ガラスに吸収され室内側へ再放出される熱流束 $[W/m^2]$

Ug: ガラス部の熱貫流率 [-]

- I_s :入射日射強度 [W/m²]
- T_e:室外温度 [K]
- T_i:室内温度 [K]

6.3 散乱日射に対するカーテンウォールの計算法

第2章より、直達日射の入射角 θ における日射熱取得率: $\eta(\theta)$ を用いて、散乱日射に対する η_{dff} を求める。

窓面を覆う半球の散乱日射(天空日射及び地面反射日射)を均一に受けている状態として、 半球上の微小面から窓面へ照射される日射量に微小面位置のプロファイル角 θ から決まる 直達入射に対する光学特性を乗じて、これを半球について積分すると散乱日射に対する日 射熱取得率を得ることができる³⁾。

$$\eta_{dif} = \int_{0}^{\frac{n}{2}} 2\sin\theta\cos\theta \cdot \eta(\theta)d\theta \qquad \cdot \cdot \cdot (6.13)$$

$$\Xi \equiv \overline{C}$$

η_{dif}: 散乱日射に対する窓面の日射熱取得率 [-]
 η(θ): 入射角 θ 時の直達日射に対する窓面の日射熱取得率 [-]

これは、ガラス部の日射熱取得率($\eta_{g,dif}$)についてだが、太陽高度及び太陽方位によらな ければフレームを含んだ窓全体の日射熱取得率($\eta_{w,dif}$)でも同じ式が成り立つ。

6.4 計算結果

6.4.1 計算条件

カーテンウォールの仕様と環境条件を表 6.2 に、日射角度条件を表 6.3 に示す。

また、複層ガラスの斜入射時における日射反射率(ρ)、日射透過率(τ)、日射吸収率(a_o、 a_i)は、板硝子協会がまとめた近似式²⁾を用いて単板ガラスの特性値を算出し、2層の多重反 射計算を行い複層ガラスの特性値を算出した。普通複層ガラスの角度別の特性値を表 6.4 に 示す。夏季条件で日射熱取得率の計算を行った。また不透明材の日射吸収率 a はアルミ: 0.5、耐火ボード:0.2 で計算を行った。

斜入射特性を考慮した日射熱取得率の計算は、二次元定常熱解析プログラム「TB2D/BEM」²⁾を用いた。日射の方向ベクトルの考慮の仕方は第2章で記述した方法を用いた。

第4章と同様の図 6.2 の事務所ビル基準階1層分で計算を行った。計算結果を比較するため、①アルミフレーム(精算値)、②アルミ熱遮断フレーム(精算値)、③フレーム成分0

(簡易計算)、④全面ガラス、⑤開口部ガラス単体、⑥腰パネル単体の6種類を算出した。

フレー成分0は、詳細計算で得られるフレームの受熱による影響やフレームから落とす影の影響を比較する目的で、算出式(6.1)のフレーム部日射熱取得率 $\eta_f = 0$ 、フレームから落とす影による日射熱取得減衰係数 $S_{f,g}(\theta) = S_{f,sp}(\theta) = 1$ とみなした次式の簡易計算値とした。

$$\eta_{cw,f=0}(\theta) = \frac{\sum A_g \eta_g(\theta) + \sum A_{sp} \eta_{sp}(\theta)}{A_{cw}} \qquad (6.14)$$

ここで

 $\eta_{cwf=0}(\theta)$:入射角 θ に対するフレーム成分を0と仮定した

カーテンウォール全体の総合日射熱取得率 [-]

 $\eta_s(\theta)$:入射角 θ に対する開口部(ビジョン部)のガラス部の日射熱取得率 [-] $\eta_{sp}(\theta)$:入射角 θ に対する腰部(スパンドレル部)のパネル部の日射熱取得率 [-] A_{cw} :カーテンウォール全体の伝熱開口面積 [m²] A_g :開口部(ビジョン部)のガラス部の見付面積 [m²]

A_{sp}:腰部(スパンドレル部)のパネル部の見付面積 [m²]

また、図 6.3 に示すような、方立材室外側に日よけ効果のある化粧材^{4),5)}を装着した場合の比較も行った。フレーム材質の影響は小さいことが第 4 章で明らかになっているため、フレームはアルミ熱遮断フレームを用いた。化粧材の出寸法(d_m)は 100mm、200mm、300mmの3 種類を行った。化粧材を装着することで本計算条件を確認したところ影長さが最大約880mm になる場合もあるため、計算モデルのガラス及びパネル長さを 300mm から 900mm とした。

フレーム	材質	アルミ	アルミ熱遮断				
フレーム	枠種	スティックマリオン(Fix)					
ガラス種	類	FL5+A12+FL5					
計算伝熱	開口寸法	₩*H	m	9.08 × 4.0			
室内側表	面熱伝達率	αi	$W/(m^{2} \cdot K)$	一般部:7.69、隅角部:5			
室外側表面熱伝達率 αο W/(m ² ·K)			25				
	室内側温度	Ti	S	25			
	室外側温度	То	C°	30			
必款注肥	日射量	Is	₩/mੈ	500, 0			
日射入射角度		θ	0	0			
表面熱伝達率の温度依存性			考慮せず一定とする				
ガラス	夏季日射無し条件	λ	$W/(m \cdot K)$	0.0	796		
中空層 夏季日射有り条件			$W/(m \cdot K)$	0. 0829			

表6.2 カーテンウォールの仕様と環境条件

表6.3 日射角度条件

方位角度高度	0	20	45	70
70	70	71.3	76	83.3
45	45	48.4	60	76
20	20	28	48.4	71.3
0	0	20	45	70

表6.4 入射角度別普通複層ガラスの光学特性値

方位角度 高度		0	20	45	70	
	ρ	0.3047	0.3230	0.4095	0.6245	
70	Т	0.3887	0.3625	0.2535	0.0912	
/0	a _o	0.1964	0.2041	0.2314	0.2134	
	a _i	0.1101	0.1103	0.1050	0.0639	
	ρ	0.1370	0.1450	0.2021	0.4095	
45	т	0.6225	0.6102	0.5385	0.2535	
+5	ao	0.1380	0.1413	0.1549	0.2314	
	ai	0.1024	0.1035	0.1045	0.1050	
	ρ	0.1288	0.1283	0.1450	0.3230	
20	Т	0.6828	0.6720	0.6102	0.3625	
20	ao	0.1059	0.1126	0.1413	0.2041	
	ai	0.0825	0.0871	0.1035	0.1103	
	ρ	0.1255	0.1288	0.1370	0.3047	
0	Т	0.6858	0.6828	0.6225	0.3887	
	ao	0.1084	0.1059	0.1380	0.1964	
	ai	0.0803	0.0825	0.1024	0.1101	

図 6.3 方立材に化粧材がついた計算モデルイメージ

6.4.2 計算結果

(1) 日よけ効果のある化粧材をつけない場合

図 6.4 に入射角度(cos θ)と日射熱取得率の相関を示す。

本モデルケースは開口部と腰部の面積比が 50:50 としていることから、開口部ガラスの日 射熱取得率(η_g)と腰部パネルの日射熱取得率(η_{sp})の平均値が全面ガラスの日射熱取得率 (η_{cwag})となる。フレームを考慮し、詳細解析モデルから算出したカーテンウォール全体の 日射熱取得率がアルミフレーム精算値(η_{cwal})及び、アルミ熱遮断フレーム精算値(η_{cwat})で ある。また、フレーム構成面積比 16%の日射熱取得率を 0、フレーム影による日射取得減衰 係数=1 として簡易算出した日射熱取得率が簡易算出値(η_{cwet})である。

どの入射角度でもフレームを考慮していない η cm,ag よりフレームを考慮した η cm,al、 η cm,h 及び η cm,f=0 が小さい値を示した。計算を行った全ての入射角度において、フレームを考慮す ることにより日射熱取得率が減少することが確認できた。また、材質が異なるアルミ及び アルミ熱遮断フレームによる性能差はないことが確認できた。

フレーム全体の日射熱取得率($\eta_f(\theta)$)及びフレームから落ちる影の影響($S_{f,g}(\theta), S_{f,sp}(\theta)$)は、 簡易算出値($\eta_{cwf=0}$)と比較することで確認できる。入射角度が垂直に近い cos θ : 0.7~1.0 (45 ~0°)の場合、フレームが受熱した成分の方がフレームから落ちる影の影響より大きくな り、 η_{cwal} 及び η_{cwth} の方が大きくなっていることが確認できた。逆に cos θ : 0~0.7 (90~ 45°)の場合、フレームから落ちる影の影響が大きくなっていることが確認できた。

また、太陽高度及び方位角度の違いによる方立材と無目材の熱的影響の違いはほとんどな いことも確認できた。つまり、ガラス同様入射角度で簡易に評価することが可能と考えら れる。カーテンウォールの場合、影を形成する枠の先端からガラス表面までの見込み方向 の距離が四周同一であるため、縦部材、横部材による影響が小さいと考えられる。近年意 匠上、ガラス面とフレーム面をフラットにする傾向が強く、開口部では影ができにくいと 考えられる。腰部の場合は、パネル面が奥に入った部分で受熱するため、影を落とす面積 が開口部のガラス面に比べ大きくなるが、腰部自身の日射熱取得率は、開口部と比較する と非常に小さくカーテンウォール全体への影響は小さい。

よって、カーテンウォールにモール材等の日よけ材が装着されない場合であれば、フレーム面積だけを考慮しフレームから落とす影を考慮せずとも精度よく熱性能を評価できると言える。これは、現状 PAL で計算されている全面ガラスにフレーム面積だけを考慮すればよいということになり式(6.14)は式(6.15)と表すことができる。

$$\eta_{cw,f=0}(\theta) = \left(1 - \frac{\sum A_f}{A_{cw}}\right) \cdot \eta_{cw,ag}(\theta) \qquad \cdot \cdot \cdot (6.15)$$

ここで

 $\eta_{cwf=0}(\theta)$:入射角 θ に対するフレーム成分を0と仮定した

カーテンウォール全体の総合日射熱取得率 [-]

 $\eta_{cwag}(\theta)$:入射角 θ に対するフレームを考慮せず全面ガラスと仮定した カーテンウォール全体の総合日射熱取得率 [-]

A_{cw}:カーテンウォール全体の伝熱開口面積 [m²] A_f:開口部・腰部のフレーム部の見付面積 [m²]

そこで、日射熱取得率を垂直入射時の値 (η_{cw} (0)) と入射角度の余弦の多項式で近似式 を表すことを試みた。その結果、式(6.16)が成り立ち、表 6.5 に示すように面積比だけの違 いである簡易算出値($\eta_{cw,f=0}$)と全面ガラス($\eta_{cw,ag}$)の近似式係数が等しいことが確認できた。

$$\eta_{cw}(\theta) = \eta_{cw}(0) \sum_{i=0}^{5} m_i \cos^i \theta \qquad (6.16)$$

 $\eta_{cw}(\theta)$:入射角 θ に対するカーテンウォール全体の総合日射熱取得率 [-] $\eta_{cw}(0)$:垂直入射時に対するカーテンウォール全体の総合日射熱取得率 [-]

表6.	5	入射角度	・とE	射熱取得率の相関
10.	•		-	

	m5	m4	m3	m2	m1	m0	R ²
η cw, _{a/} 精算値 (アルミCW)	-6.7127	20.5290	-22.8350	9.9576	0.0622	0	0.9993
η cw, _{th} 精算值 (熱遮断CW)	-7.1319	21.7320	-24.0720	10.5010	-0.0279	0	0.9994
η cw, <i>_{f=0}</i> 簡易(フレーム成分=0)	-4.9937	14.8890	-15.5440	5.4470	1.2018	0	1
η cw,ag 現行PAL(フレーム無)	-4.9937	14.8890	-15.5440	5.4470	1.2018	0	1
η _{<i>«</i>} 開口部ガラス(フレーム無)	-5.5073	16.2930	-16.7850	5.6781	1.3213	0	1
η _{sp} 腰部パネル(フレーム無)	-0.2386	1.8904	-4.0567	3.3074	0.0959	0	1

これにより日よけ部材がない仕様では、ガラスの入射角度を考慮した日射熱取得率が一覧 表になることで、簡易にフレームを考慮した実用的な計算が可能になると考えられる。

図6.4 入射角度と日射熱取得率の相関(モール無し)

(2) 日よけ効果のある方立化粧材をつけた場合

図 6.5 に入射角度(cos θ)と日射熱取得率の相関を示す。

方立化粧材(以後化粧材)は、縦ラインを強調する等の意匠上の役割として用いられてい るが、日よけ部材としての役割ともなる。

2次元の解析のため、方立(縦部材)に装着した化粧材から落とす無目(横部材)影による影響はここでは考慮していない。縦に日よけ部材が装着されているため、方位角度が高くなるにつれ影面積は増大し、カーテンウォール全体の日射熱取得率は減少する。

太陽高度での変化はないため、化粧材が装着されていない場合のように入射角度で簡易に評価できないことを確認した。

図6.5 入射角度と日射熱取得率の相関(モール有り)

そこで、化粧材による影の影響がないと仮定し、日射熱取減衰係数($S_{f,g}(\theta)$ 、 $S_{f,sp}(\theta)$)を 1.0とした場合と化粧材が装着されていない場合を比較した。その結果を図 6.6 に示す。

カーテンウォール全体の日射熱取得率と比較して、垂直入射では、全ての条件で同じ値を 示した。また、太陽高度 45°、方位角度 45°、出寸法 300mm のとき最大で約 5%小さくな ることがわかった。これは、受熱する面積が増加した分、影になり放熱する面積も増加し たため、このような結果となったと考えられる。

これらの結果より、日よけ効果のある化粧材がカーテンウォールのフレームの日射熱取得 率に与える影響は小さいと考えられる。

つまり、化粧材の有無に関わらず、フレームの日射熱取得率は同じ値とでき、化粧材は日 射熱取得に影響しない、影を作るフィンとみなすことができるため、現行 PAL で採用して いるようなフレーム以外に装着されている日よけ材(この場合はサイドフィン)による日 よけ効果係数と同じ扱い方をしてもよいと考えられる。

図6.6 入射角度と日射熱取得率の相関(モールによる影減衰係数1.0と仮定した場合)

(3) 散乱日射に対するカーテンウォール全体の日射熱取得率

式(6.13)より求めた散乱日射に対するカーテンウォール全体の日射熱取得率を表 6.6 に示 す。フレームを考慮しなければならないことが明確となったが、カーテンウォールフレー ムから落とす影はほぼないため、面積だけを考慮した簡易計算で十分な精度であることが 確認できた。

計算仕様	ガラス仕様	フレーム 考慮	フレーム 面積比率	η cw(0)	η diff	SC*0.81
ガラスのみ	FL5+A+FL5	無 0.0%		0.414	0.350	0.381
フレーム考 慮 (簡易計算)		有(簡易)		0.348	0.293	0.320
アルミ フレーム		有(精算)	16.1%	0.361	0.293	0.333
熱遮断 フレーム		有(精算)		0.361	0.292	0.333

表6.6 散乱日射に対する日射熱取得率一覧(ガラス:普通複層)

6.5 まとめ

第6章では、斜入射時におけるフレームを考慮したカーテンウォールの日射熱取得率の 詳細計算法について日射の直達成分と散乱成分を分けて整理した。直達成分は、垂直入射 だけでなく斜入射で日射があたった場合のガラスの入射角度特性、フレームからガラス面 に落とす影の影響を考慮して計算を行った。

得られた知見を以下にまとめる。

①計算を行った全ての入射角度において、ガラス部単体の日射熱取得率(η_g)よりもフレームを含めたカーテンウォール全体の日射熱取得率(η_{cw})の方が小さい値を示した。フレームを考慮することにより、カーテンウォール全体の日射熱取得率が減少することを示した。フレーム面積比率の影響は大きくフレームを考慮しなければならないことを示した。

②フレームの受熱分及びフレームから落ちる影の影響は、入射角度が垂直に近い $\cos \theta$: 0.7~1.0(45~0°)の場合、フレームが受熱した成分の方がフレームから落ちる影の影響 より大きくなり、簡易計算値 ($\eta_{cwf=0}$) よりも精算値 (η_{cw})の方が若干大きいが、逆に $\cos \theta$: θ : 0~0.7(90~45°)の場合、フレームから落ちる影の影響が大きいことを示した。

③入射角度は同じでも高度と方位が異なった条件を計算しているが、日よけ効果のある化 粧材をつけない場合のカーテンウォール全体の日射熱取得率は、高度、方位問わず入射角 度と日射熱取得率の相関がうまく近似できていた。ガラス同様入射角度で簡易に評価でき ることを示した。

④腰部の場合は、パネル面が奥に入った部分で受熱するため、影を落とす面積が開口部の ガラス面に比べ大きくなるが、腰部自身の日射熱取得率は、開口部と比較すると非常に小 さくカーテンウォール全体への影響は小さいことを示した。

⑤カーテンウォールに日よけ効果のある化粧材が装着されない場合は、フレーム面積だけ を考慮しフレームから落とす影を考慮せずとも精度よく遮熱性能を評価できることを示し た。つまり、現状 PAL で計算されている全面ガラスにフレーム面積だけを考慮すればよい ということを示した。

⑥日よけ効果のある化粧材が縦についた場合は、方位角度が高くなるにつれ影面積は増大 し、カーテンウォール全体の日射熱取得率は減少するため、化粧材が装着されていない場 合のように入射角度で簡易に評価できない。そこで、化粧材による影の影響がないと仮定 し、日射熱取減衰係数(*S_{f,g}(θ)、S_{f,sp}(θ)*)を1.0とした場合と化粧材が装着されていない場合 を比較した結果、日よけ効果のある化粧材がカーテンウォールのフレームの日射熱取得率 に与える影響は小さいことを示した。つまり、現行 PAL で採用しているようなフレーム以 外に装着されている日よけ材(この場合はサイドフィン)による日よけ効果係数と同じ扱 い方をしてもよいことを示した。

⑦日よけ効果のある化粧材をつけない場合は、散乱成分についても直達成分同様フレーム から落とす影の影響は無視してもよいことを示した。

参考文献

- 1) ISO/DIS 12631,Thermal performance of curtain walling -- Calculation of thermal transmittance
- 2) 遮熱計算法に関する研究報告書,(社)リビングアメニティ協会, 平成13年度(2002.3), 平成14年度(2003.3),平成15年度(2004.3),平成16年度(2005.3),平成19年 度(2008.3)
- 3) 赤坂裕:建物の熱負荷と熱使用に関する研究,鹿児島大学工学部紀要,17号,1975
- 4) ビル用中高層サッシ総合カタログ,(株) LIXIL,2011.6
- 5) 中低層ビル用ファサード RMi シリーズ, 新日軽(株),2009.11

第7章 期間熱負荷計算への影響

7.1はじめに

開口部の熱性能は、断熱性能を熱貫流率、遮熱性能を日射熱取得率で評価している¹⁾。一 方、建物ではこの熱性能を用いて、期間熱負荷を地域に則して計算し評価している^{1),2)}。

開口部は外皮を形成するその他の部位と比較すると熱性能が劣るため、建物の暖冷房エネ ルギーは開口部の仕様に強く影響される。

しかし、開口部は唯一日射による自然の熱エネルギーを建物内に取り込むことができる部 位でもある。その性能を評価する日射熱取得率は、窓に照射される日射熱に対する室内へ の侵入熱量の比で定義され、この値が小さいものほど冷房エネルギー低減に効果的である。 逆にこの値が大きいものほど暖房エネルギー低減に効果的である。このバランスがよい商 品を選択することにより、建物の省エネルギー性を向上させることができる。

現在の国内の日射熱取得率に対する規格はガラスのみのため、フレームを考慮できていな い。そのため、伝熱開口面積全てをガラスとみなして熱負荷計算を行っている。さらに国 内の主要な熱負荷計算ソフト^{3),4)}では、ガラス部の入射角度特性は考慮しているが、単板ガ ラスの入射角度特性曲線及び散乱係数を用いて直達日射及び散乱日射に対する日射による 侵入熱量を計算している。そのため、近年普及しているガラスの複層化によって生じる多 重反射による日射熱取得率の減衰効果が考慮されていない。

本論文では、これまで考慮されることのなかった窓フレームの考慮(日射熱取得率と面積 率)、窓フレームから落とす影の影響、複層ガラスの多重反射の影響について入射角度別に 計算する手法を提案した。合わせて散乱日射に対する計算手法も提案した。

本章では、建物の期間熱負荷計算に用いている開口部の従来計算法と本論文で提案する計 算法の期間積算日射熱取得の比較を行う。

7.2 住宅の期間熱負荷計算に関する開口部の計算法

7.2.1 従来計算法

日本の住宅用熱負荷計算には、SMASH³⁾や AE-Sim/Heat⁴⁾といった計算ソフトが用いられ ることが一般的である。これらのソフトは、標準気象データから日射の直達成分と散乱成 分(地物反射成分含む)を窓の設置方位及び日射の入射角特性を考慮した計算を行ってい る。(7.1)から(7.6)に用いられている算出式を示す。

直達日射に対する日射熱取得率の入射角特性は FL3 を代表として用いている。

$$\eta_{FL3}(\theta) = 2.3920 \cdot \cos \theta - 3.8636 \cdot \cos^3 \theta + 3.7568 \cdot \cos^5 \theta - 1.3952 \cdot \cos^7 \theta \quad \cdot \quad \cdot \quad (7.1)$$

η_{FL3}(θ): 直達日射に対する FL3 の日射熱取得率の入射角特性[-]
 θ : 入射角[rad.]

拡散日射に対する日射熱取得率も FL3 を代表として用いている。

$$\overline{\eta}_{FL3} = 0.81 \qquad \cdot \cdot \cdot (7.2)$$

ここで

*η*_{FI3}: 散乱日射に対する FL3 の日射熱取得率[-]

窓の日射熱取得量は式(7.1)及び式(7.2)の FL3 の特性に各ガラスの日射遮蔽係数(SC 値)を 積算して次式で求める。

$$Q_{w} = I_{dir} \cdot \eta_{FL3}(\theta) \cdot SC_{w} + I_{dif} \cdot \overline{\eta}_{FL3} \cdot SC_{w} \qquad (7.3)$$

期間熱負荷計算をする場合、放射成分と対流成分に分配する必要がある。窓全体の日射熱 取得量を放射成分(SC_{wr})と対流成分(SC_{wc})に分配する場合は以下の式となる。

$$Q_{w,r} = I_{dir} \cdot \eta_{FL3}(\theta) \cdot SC_{w,r} + I_{dif} \cdot \overline{\eta}_{FL3} \cdot SC_{w,r} \qquad (7.4)$$

$$Q_{w,c} = I_{dir} \cdot \eta_{FL3}(\theta) \cdot SC_{w,c} + I_{dif} \cdot \overline{\eta}_{FL3} \cdot SC_{w,c} \qquad \cdot \cdot \cdot (7.5)$$

ここで

 Q_w: 窓全体の日射熱取得量 [W/m²]

 Q_{wr}: 窓全体の日射熱取得量の放射成分 [W/m²]

 Q_{wc}: 窓全体の日射熱取得量の対流成分 [W/m²]

 I_{dir}: 窓面直達日射量 [W/m²]

 I_{dif}: 窓面拡散日射量 [W/m²]

 SC_w: 窓全体の日射遮蔽係数 [-]

 SC_{wr}: 窓全体の日射遮蔽係数の放射成分 [-]

 SC_{wc}: 窓全体の日射遮蔽係数の対流成分 [-]

また、日射遮蔽係数(SC値)の算出式を以下に示す。

$$SC_{w} = \frac{\eta_{g}(0)}{0.88} \qquad (7.6)$$

_{刃g}(0):垂直入射時のガラスの日射熱取得率 [-]

0.88は、FL3の垂直入射時の日射熱取得率を示す。

7.2.2 フレームを考慮した詳細計算法

窓フレームの考慮(フレーム日射熱取得率及びフレーム面積比率)、窓フレームから落と す影の影響及び複層ガラスの多重反射の影響を考慮した日射熱取得量の算出式を以下に示 す。

$$Q_{w} = \left\{ I_{dir} \cdot \eta_{g}(\theta) \cdot S_{f}(\theta) + I_{dif} \cdot \overline{\eta}_{g} \cdot \overline{S}_{f} \right\} \cdot \left(1 - \beta_{f} \right) + \left\{ I_{dir} \cdot \eta_{f}(\theta) + I_{dif} \cdot \overline{\eta}_{f} \right\} \cdot \beta_{f}$$

$$\cdot \cdot \cdot (7.7)$$

窓全体の日射熱取得量を放射成分と対流成分に分配する場合は以下の式となる。

$$Q_{w,r} = \left\{ I_{dir} \cdot \eta_{g,r}(\theta) \cdot S_{f}(\theta) + I_{dif} \cdot \overline{\eta}_{g,r} \cdot \overline{S}_{f} \right\} \cdot \left(1 - \beta_{f}\right) + \left\{ I_{dir} \cdot \eta_{f,r}(\theta) + I_{dif} \cdot \overline{\eta}_{f,r} \right\} \cdot \beta_{f}$$

$$\cdot \cdot \cdot (7.8)$$

$$Q_{w,c} = \left\{ I_{dir} \cdot \eta_{g,c}(\theta) \cdot S_{f}(\theta) + I_{dif} \cdot \overline{\eta}_{g,c} \cdot \overline{S}_{f} \right\} \cdot \left(1 - \beta_{f}\right) + \left\{ I_{dir} \cdot \eta_{f,c}(\theta) + I_{dif} \cdot \overline{\eta}_{f,c} \right\} \cdot \beta_{f}$$

$$\cdot \cdot (7.9)$$

ここで

Q_w	:窓全体の日射熱取得量 [W/m²]	
$Q_{w,r}$: 窓全体の日射熱取得量の放射成分 [W/m ²]	
$Q_{w,c}$:窓全体の日射熱取得量の対流成分 [W/m ²]	
<i>I</i> _{dir}	: 窓面直達日射量 [W/m ²]	
I_{dif}	: 窓面拡散日射量 [W/m ²]	
$\eta_g(heta)$:入射角のに対するガラスの日射熱取得率 [-]	
$\eta_{g,r}(\theta)$:入射角 <i>θ</i> に対するガラスの日射熱取得率の放射成分	[-]
$\eta_{g,c}(heta)$:入射角 <i>θ</i> に対するガラスの日射熱取得率の対流成分	[-]
$\stackrel{-}{\eta_g}$:散乱日射に対する日射熱取得率 [-]	
$\bar{\eta}_{g,r}$:散乱日射に対する日射熱取得率の放射成分 [-]	
$\bar{\eta}_{g,c}$:散乱日射に対する日射熱取得率の対流成分 [-]	
$\eta_f(\theta)$:入射角のに対するフレーム日射熱取得率 [-]	
$\eta_{f,r}(\theta)$:入射角のに対するフレーム日射熱取得率の放射成分	[-]
$\eta_{f,c}(\theta)$:入射角のに対するフレーム日射熱取得率の対流成分	[-]
$\bar{\eta}_{f}$:散乱日射に対するフレーム日射熱取得率 [-]	
$\stackrel{-}{\eta}_{f,r}$: 散乱日射に対するフレーム日射熱取得率の放射成分	[-]
$\stackrel{-}{\eta}_{f,c}$: 散乱日射に対するフレーム日射熱取得率の対流成分	[-]
~		

- *β*f :フレーム面積率 [-]
- Sf(θ) :入射角θに対するフレーム影による日射熱取得低減効果 [-]
- S_f:
 散乱日射に対するフレームの影響による日射熱取得低減効果 [-]

7.2.3 従来計算法にフレームを考慮した簡易計算法

現状の日本の住宅用熱負荷計算に、フレームを考慮した場合の簡易計算法を以下に示す。 ここでは、複層ガラスによる多重反射の影響は従来計算法と同じ扱いとして FL3 の入射 角度特性値を用いる。また、フレームは受熱成分及びフレームから落とす影の影響が無い と仮定してフレーム面積分のフレーム日射熱取得率を 0 とし、フレームから落とす影によ る日射熱取得減衰係数を1としている。

よって、窓全体の日射熱取得量(*Q*_w)の算出式は、式(7.3)と同一となり、日射遮蔽係数(SC 値)を求める算出式が式(7.6)より以下の式となる。

$$SC_{w} = \frac{\eta_{g}(0)}{0.88} \cdot \frac{1 - A_{f}}{A_{w}} = \frac{\eta_{g}(0) \cdot A_{g}}{0.88 \cdot A_{w}}$$
(7.10)

7.3 斜入射計算法の違いによる期間日射熱取得量の比較

7.3.1 計算条件

期間熱負荷計算に影響を及ぼす開口部から取得する期間積算日射熱取得量の比較を住宅 用窓で行った。計算条件を表 7.1 に示す。

表7.1 計算条件

	地名		札幌	札幌 東京 鹿児						
位罢	北緯	[°]	43.06	35.69	31.55					
山同	東経	[°]	141.33	139.77	130.55					
	気象データ		拡張アメダス気象データ(標準年)							
直散分離計算モデル				Perezモデル						
アルベド [-]				0.10						
	Case	1	従来計算法(全面	ゴガラス)						
計昇	Case	2	従来計算法+フレ	ノーム面積考慮						
全性	Case	3	複層ガラス多重な	反射考慮(全面ガ	ラス)					
	Case	4	精算値(フレーム	精算値(フレーム面積+フレーム影+多重反射)						
窓種				引違い窓						
フレーム材質				アルミ樹脂複合						
フレー	ム色(case4	のみ)	ブラック(a=0.925)							
	ガラス種		FL3+A12+FL3							
フレーム	ム面積比率	[-]	0.232							
ガラス	面積比率	[-]	0.768							
窓サイ	イズ(W*H)	[m]	W:1.690 * H:1.170							
伝熱	開口面積	[㎡]	1.98							
	計算方位		東,西,南,北(4方位)							
表面熱伝達率の 温度依存性			考慮せず一定とする							
ガラスロ 率(中空層 等価熱 の温度依存	き た た し た	考慮せず一定とする							

建設地域は、札幌、東京、鹿児島の3地域とし、気象条件の違いを確認する。気象データ は拡張アメダス気象データの標準年気象データから Perez モデル⁵⁾を用いて、天空分窓面直 達日射量及び天空分窓面散乱日射量、地表面反射日射量を算出した。地表面反射日射量を 算出するために必要な反射比率を意味するアルベドは 0.10 とした。ここでは、地表面を反 射し窓面に照射される日射量は全て散乱日射として扱った。また、外部風速、風向による 表面熱伝達率の変化や表面熱伝達率の温度依存性及び、ガラス中空層の等価熱伝導率の温 度依存性は考慮せず一定とした。

対象とする開口部は、引違い窓1窓(16511:W:1.69m*H:1.17m、開口面積:1.98 m²)を東西 南北面にふり、積算日射熱取得量の比較を行った。 また、本計算で用いた直達日射に対する入射角と各条件(case1~4)の日射熱取得率の相関及びこの相関から得られた散乱日射に対する各条件の日射熱取得率を図 7.1 に示す。

図7.1 入射角と各条件の日射熱取得率の相関及び散乱日射に対する日射熱取得率

7.3.2 計算結果

表 7.2 及び図 7.2 に札幌、表 7.3 及び図 7.3 に東京、表 7.4 及び図 7.4 に鹿児島の計算結 果を示す。表 7.2~7.4 は月別の全方位合計の積算日射熱取得の比率を示す。図 7.2~7.4 は季節別(3ヶ月)の積算日射熱取得量を示す。

37. 4 月前空土月回日的210开日和3100时220日午(1100月												
全方位	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
Case1:従来計算法	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case2:従来+フレーム面積	0.772	0.772	0.773	0.773	0.774	0.773	0.774	0.774	0.772	0.772	0.772	0.772
Case3:ガラス多重反射	0.944	0.940	0.935	0.930	0.930	0.930	0.933	0.931	0.933	0.938	0.942	0.944
Case4:精算値(ブラック)	0.697	0.690	0.684	0.677	0.676	0.675	0.680	0.678	0.681	0.688	0.693	0.698
参考:多重反射+フレーム面積	0.725	0.722	0.718	0.714	0.714	0.714	0.716	0.715	0.716	0.720	0.723	0.725
表7.3 月別の全方位合計の積算日射熱取得の比率(東京)												
全方位	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
Case1:従来計算法	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case2:従来+フレーム面積	0.771	0.772	0.772	0.773	0.774	0.775	0.774	0.774	0.774	0.773	0.772	0.772
Case3:ガラス多重反射	0.942	0.936	0.930	0.930	0.932	0.934	0.931	0.932	0.932	0.934	0.939	0.942
Case4:精算値(ブラック)	0.692	0.685	0.677	0.677	0.679	0.683	0.677	0.680	0.679	0.682	0.689	0.694
参考:多重反射+フレーム面積	0.723	0.719	0.715	0.715	0.716	0.718	0.715	0.716	0.715	0.717	0.721	0.724
表7.4 月別の全方位	达合計	の積算	日射熱	熟取得	の比率	図(鹿り	凡島)					
全方位	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
Case1:従来計算法	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case2:従来+フレーム面積	0.772	0.772	0.773	0.773	0.773	0.774	0.774	0.773	0.773	0.772	0.772	0.771
Case3:ガラス多重反射	0.938	0.933	0.930	0.929	0.933	0.934	0.934	0.932	0.929	0.931	0.937	0.940
Case4:精算値(ブラック)	0.688	0.680	0.677	0.675	0.681	0.682	0.682	0.680	0.675	0.677	0.686	0.691
参考:多重反射+フレーム面積	0.721	0.716	0.714	0.713	0.716	0.717	0.717	0.716	0.713	0.715	0.719	0.722

表7.2 月別の全方位合計の積算日射熱取得の比率(札幌)

図7.2 季節別(3ヶ月)の積算日射熱取得量(札幌)

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

図7.3 季節別(3ヶ月)の積算日射熱取得量(東京)

図7.4 季節別(3ヶ月)の積算日射熱取得量(鹿児島)

表 7.2~7.4 より、気象条件の異なるどの都市においても同様の結果が得られた。

Case1の従来計算法を1とした場合に対する条件違いの影響を比率で表している。

Case2のフレーム面積を考慮することで、フレーム面積比率分の約23%程度低下することが確認できた。フレーム面積比率を無視できないことを示した。

Case3のガラスの多重反射を考慮することで、93~94%に低下することが確認できた。これにより、ガラスの多重反射も無視できないことを示した。若干ではあるが、暖房負荷のかかる冬期(1~3月)よりも冷房負荷のかかる夏期(7~9月)の方が低下率は大きかった。これは、入射角が大きくなると多重反射の影響により乖離が大きくなるため、入射角が大きくなる頻度が高い夏期の方が冬期に比べ取得熱量の比率が低く推移したと考えられる。

Case4 の精算値としてガラスの多重反射、フレームによる日射熱取得率及びフレームから 落とす影を考慮することで、67~70%に低下することが確認できた。これは精算値を1とす ると従来計算法は年間を通じて約 1.5 倍多く日射熱が取得されていることとなる。これによ り、従来計算法では冬期の暖房負荷を小さく、夏期の冷房負荷を過大に見積もっているこ とが確認できた。

Case4 と参考値(多重反射+フレーム面積)を比較することで、フレームの日射熱取得率 分及び影による減衰効果分を確認することができる。その結果、3~4%程度の差であること がわかった。これは精算値を1とすると影を考慮しない場合と比較して 5~6%程度多く日 射熱が取得されていることとなり、その他の要因と比べて影響が小さいことが分かった。 第2章より、フレームの影による影響は直達・散乱どちらの場合においても日射熱取得率 で比較した場合に大きいと考えていたが、取得熱量で比較すると影響は小さい。これは影 による減衰効果の影響が大きい入射角度ではガラス自体の日射熱取得率が小さくなるため、 取得された熱量全体の中でこの影響が小さくなることが原因と考えられる。

これらの結果より、期間熱負荷計算時に用いる開口部の日射熱取得率は、ガラスの多重 反射とフレーム面積比率を考慮すれば十分な精度となることが分かった。

方位	地域	直散	1~3月	4~6月	7~9月	10~12月	年間
	1 市田	直達	0.596	0.261	0.312	0.626	0.474
南面東京	イレリ光	散乱	0.404	0.739	0.688	0.374	0.526
	由古	直達	0.638	0.139	0.168	0.614	0.466
	米示	散乱	0.362	0.861	0.832	0.386	0.534
	鹿児島	直達	0.583	0.126	0.187	0.640	0.453
		散乱	0.417	0.874	0.813	0.360	0.547
	ᆂᅵᆘᄆᠣ	直達	0.441	0.285	0.284	0.460	0.357
	ተሁየታ	散乱	0.559	0.715	0.716	0.540	0.643
今 古位	由古	直達	0.491	0.208	0.216	0.453	0.344
主力位	米示	散乱	0.509	0.792	0.784	0.547	0.656
	庙旧自	直達	0.441	0.275	0.276	0.490	0.366
	庇芁踦	散乱	0.559	0.725	0.724	0.510	0.634

表7.5 地域別の直達と散乱による積算日射熱取得の比率(精算値)

図 7.2~7.4 より、精算値で比較すると、直達日射による取得熱量と地表面反射を含む散乱 日射による取得熱量の比は、表 7.5 に示すようになった。

地域による気象条件は異なるが、全方位年間合計の直達日射による取得熱量と地表面反 射を含む散乱日射による取得熱量の比は、概ね35%:65%(札幌;36%:64%、東京;34%:66%、 鹿児島;37%:63%)となり、散乱日射による取得熱量の方が多いことがわかった。

7.4 住宅モデルにおける窓の期間日射熱取得量の比較

前節では、期間熱負荷計算時に用いる開口部の日射熱取得率は、複層ガラスの多重反射 とフレーム面積比率を考慮すれば十分な精度となることを示した。ここでは、建物モデル を用いて各方位に設置されている開口部から取得する日射による熱量の比較を行う。

7.4.1 計算対象建物

次世代省エネルギー基準の解説書¹⁾に記載されている住宅モデルを用いた。断面図を図 7.5 に示す。またこのモデルの開口部の寸法一覧を表 7.6 に示す。ここでは、玄関ドア及び 勝手ロドアは計算対象から除外している。また開口部の寸法及び仕様は、解説書記載例を 参照し、住宅サッシの新寸法体系⁶に準じた出荷頻度の高いものを選択した。

戸建住宅の場合、物干し場や庭への出入を目的として南面に掃き出し窓が設置されるこ とが多い。そのため、南面が最も開口面積比率が高く、日射のほとんど入らない北面が最 も開口面積比率が低い。本計算対象建物においても、このことが考慮された日本の標準的 なモデルとなっていることがわかる。

7.4.2 計算条件

計算条件を表 7.7 に示す。ここでは、従来計算法と簡易計算法(フレームの面積比率及び ガラスの多重反射の考慮)の比較を行った。また、ガラス仕様の違いによる取得熱量の比 較を行った。ガラスは普通複層(FL3+A12+FL3)、断熱 LowE 複層(FL3+A12+LowE3)、遮 熱 LowE 複層(LowE3+A12+FL3)の3 種類とした。地域条件は東京のみで行った。

図 7.5 では、バルコニーが記載されているが、ここでの斜入射計算では、屋根の軒の出も 含めて計算には考慮していない。

9,555

方位	窓面積	窓面積比	フレーム 面積	フレーム 面積比
東	4.43m ²	0.15	1.09m [*]	0.245
西	4.92 m [*]	0.16	1.27 m ²	0.259
南	17.68m [°]	0.58	3.90 m	0.220
北	3.32 m [*]	0.11	1.18m [*]	0.356
合計,平均	30.34m ²	1.00	7.44m ²	0.245

延べ床面積	121.73m ²
開口部面積(ドア除く)	30.34m [*]
開口部面積比率(ドア除く)	25%

図7.5 住宅モデル断面図

表7.6	開口	部寸法-	一覧
121.0	ם נוע		元

1

階	部屋	方位	建具 記号	建具タイプ	サイズ (W)	サイズ (H)	窓 サイズ	窓 面積	フレーム 面積比
単位					mm	mm	呼称	m	-
1F	キッチン	西	AW-1	引違い窓	1690	570	16505	0.96	0.370
	キッチン	北	AD-2	勝手ロドア	780	2030	07420	1.58	-
	リヒ゛ンク゛・ダイニンク゛	西	AW-2	引違い窓	1690	1170	16511	1.98	0.232
	リヒ゛ンク゛・ダイニンク゛	南	AW-3	引違い窓	1690	2030	16520	3.43	0.217
	リヒ゛ンク゛・ダイニンク゛	南	AW-4	引違い窓	1690	2030	16520	3.43	0.217
	和室	南	AW-5	引違い窓	1690	2030	16520	3.43	0.217
	和室	東	AW-6	引違い窓	1690	1170	16511	1.98	0.232
	て	東	AW-7	縦すべり出し窓	405	1170	03611	0.47	0.356
	浴室	光	AW-8	縦すべり出し窓	405	1170	03611	0.47	0.356
	洗面所	光	AW-9	縦すべり出し窓	405	1170	03611	0.47	0.356
	玄関	北	AD-1	玄関ドア	1200	2300	-	2.76	-
2F	洋室1	西	AW-10	引違い窓	1690	1170	16511	1.98	0.232
	洋室1	南	AW-11	引違い窓	1690	1170	16511	1.98	0.232
	洋室2	南	AW-12	引違い窓	1690	1170	16511	1.98	0.232
	主寝室	南	AW-13	引違い窓	1690	2030	16520	3.43	0.217
	主寝室	東	AW-14	引違い窓	1690	1170	16511	1.98	0.232
	主寝室	北	AW-15	縦すべり出し窓	405	1170	03611	0.47	0.356
	書斎	北	AW-16	縦すべり出し窓	405	1170	03611	0.47	0.356
	階段	北	AW-17	縦すべり出し窓	405	1170	03611	0.47	0.356
	トイレ	北	AW-18	縦すべり出し窓	405	1170	03611	0.47	0.356
	納戸	北	AW-19	縦すべり出し窓	405	1170	03611	0.47	0.356

表7.7	計算条件								
	地名			東京					
	北緯	[°]	35.69						
卫直	東経	[°]	139.77						
	気象データ		拡張アメ	ダス気象データ(標準年)				
直散	分離計算モ	デル		Perezモデル					
ア	ルベド	[-]		0.10					
	Case	5	従来計算法(全面	面ガラス):FL3+A1	2+FL3				
- Case6		簡易計算法:FL3	+A12+FL3						
司 昇 仏 接	Case7		従来計算法(全面ガラス):FL3+A12+LowE3						
111 惊 复加	Case8		簡易計算法:FL3	+A12+LowE3					
采件	Cases	9	従来計算法(全面ガラス):LowE3+A12+FL3						
	Case1	0	簡易計算法:LowE3+A12+FL3						
	ボニッ種		普通複層	断熱LowE複層	遮熱LowE複層				
	カラス裡		FL3+A12+FL3	FL3+A12+LowE	LowE3+A12+FL				
フレーム	ム面積比率	[-]							
窓サイ	イズ(W*H)	[m]	図7.5及び表7.6による						
外部遮蔽物			考慮せず遮蔽物はないものとする						
	計算方位		東,西,南,北(4方位)						
表	面熱伝達率(の	考慮せず一定とする						
ガラスロ	山立屆等価報	机行道	1	き虐せず 一定とす。	5				

また、本計算で用いた直達日射に対する入射角と各条件(Case5~10)の日射熱取得率の 相関及びこの相関から得られた散乱日射に対する各条件の日射熱取得率を図 7.6 に示す。 図中の簡易計算値はフレーム面積比率:0.220の場合を代表として掲載する。

7.4.3 計算結果

表 7.8 に月別の全方位合計の積算日射熱取得の比率を示す。図 7.7 に季節別(3ヶ月)の 積算日射熱取得量を示す。

表7.8	月別の全方位	た合計の積算	〔日射熱取〕	得の比率	(東京)
					V/IV/IV/

全方位	1月	2月	3月	4月	5月	6月	7月	8月	9月	10月	11月	12月
Case5:従来計算(普通複層)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case6:簡易計算(普通複層)	0.733	0.720	0.707	0.699	0.699	0.704	0.698	0.701	0.703	0.714	0.727	0.733
Case7:従来計算(断熱LowE複層)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case8:簡易計算(断熱LowE複層)	0.730	0.718	0.706	0.701	0.701	0.704	0.700	0.702	0.703	0.712	0.725	0.731
Case9:従来計算(遮熱LowE複層)	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Case10:簡易計算(遮熱LowE複層)	0.743	0.720	0.708	0.702	0.702	0.706	0.702	0.704	0.705	0.714	0.726	0.733

表 7.8 より、ガラス仕様により若干差はあるが、従来計算法と簡易計算法を比較すると、 春分から秋分(4~9 月)では、概ね 70%に低下し、秋分から春分(10~3 月)は 71~75% に低下することがわかった。

図 7.7 より、本計算対象建物は日本の標準的なモデルケースとなっているため、南面に開 口部面積が集中した形となっている(南面に約 60%、東西面が約 15%、北面が約 10%の開 口面積比率)。つまり、南面の日射熱取得に強く影響を受ける結果となっている。その結果、 開口部面積が同一の表 7.5 のような比率は示さず、表 7.9 が示すように全方位の直達と散乱 の比率は、太陽高度の低い秋分から春分(10~3 月)は直達日射の影響が大きく、春分から 秋分(4~9 月)は散乱日射の影響が大きくなる。

方位	地域	ガラス仕様	直散	1~3月	4~6月	7~9月	10~12月	年間
南面	東京	普通複層	直達	0.637	0.161	0.189	0.610	0.469
			散乱	0.363	0.839	0.811	0.390	0.531
		断熱LowE複層	直達	0.636	0.164	0.192	0.609	0.469
			散乱	0.364	0.836	0.808	0.391	0.531
		遮熱LowE複層	直達	0.633	0.164	0.192	0.610	0.469
			散乱	0.367	0.836	0.808	0.390	0.531
全方位	東京	普通複層	直達	0.584	0.198	0.215	0.553	0.419
			散乱	0.416	0.802	0.785	0.447	0.581
		断熱LowE複層	直達	0.583	0.200	0.217	0.552	0.413
			散乱	0.417	0.800	0.783	0.448	0.587
		遮熱LowE複層	直達	0.580	0.200	0.217	0.553	0.370
			散乱	0.420	0.800	0.783	0.447	0.630

表7.9 直達と散乱による積算日射熱取得の比率(簡易計算値)

期間日射熱取得量についても、南面の影響が強いため、太陽高度の低い季節の日射熱取 得量の割合が大きくなる。

Case5(従来計算:普通複層)では、冬期の期間日射熱取得量が多いため、暖房負荷は小 さく見積もられるが、Case6(簡易計算:普通複層)のようにフレームやガラスの多重反射 を考慮することで、Case7(従来計算:断熱LowE 複層)に年間を通じて近い値となる。

図7.7 季節別(3ヶ月)の積算日射熱取得量(東京)

逆に、夏期の熱負荷に注視して Case10 のような遮熱 LowE 複層を選択すると冬期の取得 熱量が不足する可能性が考えられる。

東京のように太陽高度が低くなる秋分~春分(10月~3月)にかけて快晴日が続く地域で は直達の比率が高くなる。特に南面ではこの傾向が顕著になる。また、太陽高度が高くな る春分~秋分(4月~9月)では、雲の出現率が高くなり散乱日射が圧倒的に多くなる。こ の結果、暖房負荷が冷房負荷よりも大きい地域では、基本的に冬期の暖房負荷を低減させ ることを目的として、日射熱取得率の高い窓を設置するとよいことが予測できる。夏期日 中は散乱日射の侵入を防止するため、窓面に簾やブラインド等の可変できる遮蔽物を一時 的に使うことが最も効率よく年間の熱負荷を低減できる手法と考えられる。

· · · (7.11)

7.5 建物モデルにおけるカーテンウォールの期間日射熱取得量の比較

ビル用建築物の建築外皮の熱性能は PAL で評価されている。PAL 計算²⁾では、算出式(7.11) 及び(7.12)に示すように壁面に照射された日射量(*I*_s)に垂直入射時の日射熱取得率(*n*_T)を乗 じて期間日射熱取得量を求め、期間暖房負荷及び期間冷房負荷に取り込んでいる。

ここでは、建物モデルを用いて各方位に設置されている外皮から取得する日射による熱 量を第6章で記述した斜入射計算法と従来計算法で比較を行う。

$$Q_{H} = 0.0864 \cdot k_{H} \sum_{if \mid 0 > 0} \left\{ \left(U_{T}^{*} + C_{v} \cdot V \cdot A_{p} \right) \cdot \left(\theta_{d} - \theta_{o} \right) - \eta_{T} \cdot I_{s} + \frac{\varepsilon}{\alpha_{o}} \cdot U_{T}^{*} \cdot I_{\ell} - G \cdot A_{p} \right\}$$

$$Q_{C} = 0.0864 \cdot k_{C} \sum_{if \mid 0 > 0} \left\{ \left(U_{T}^{*} + C_{v} \cdot V \cdot A_{p} \right) \cdot \left(\theta_{o} - \theta_{d} \right) + \eta_{T} \cdot I_{s} - \frac{\varepsilon}{\alpha_{o}} \cdot U_{T}^{*} \cdot I_{\ell} + G \cdot A_{p} \right\}$$

$$\cdot \cdot \cdot (7.12)$$

$$Q_H$$
 : 期間暖房負荷 [MJ/年]
 Q_C : 期間冷房負荷 [MJ/年]
 k_H : 各種建物用途に対する暖房期間の地域補正係数 [-]
 k_C : 各種建物用途に対する冷房期間の地域補正係数 [-]
 U_T^* : 外皮の総熱貫流率 [W/K]
 C_v : 容積比熱 [MJ/(㎡・K)]
 V : 取入外気量 [㎡/(㎡・h)]
 A_p : ペリメーターゾーンの床面積 [㎡]
 θ_d : 設定室温 [°C]
 θ_o : 外気温 [°C]
 η_T : 総日射侵入率 [-]
 I_s : 日射量 [W/㎡]
 ε' : 長波放射率 [-]
 α_o : 外表面の熱伝達率 [W/(㎡・K)]
 I_ℓ : 実効放射量 [W/㎡]
 G : 内部発熱密度 [W/㎡]

ここで

0.0684 は単位変換(day→hour、Wh→MJ)のための係数

7.5.1 計算対象建物

ここでは PAL の手引書²⁾の計算事例(K 事務所)の基準階を用いた。基準階平面図を図 7.8 に、南面基準階外観姿図(右半分)を図 7.9 に示す。基準階の南(S)ゾーンのプランの 壁面を除くカーテンウォール基準階 1 層分のみを用いて、南以外に方位を東/西/北に変更し て計算を行い方位の影響を確認する。

図7.9 事務所ビルの南面基準階外観姿図(右半分)

7.5.2 計算条件

計算条件を表 7.10 に示す。建設地域は、東京とした。カーテンウォールはスティックマリ オンタイプの窓をつけない前面 Fix 仕様とし、全面ガラスとして扱う従来計算法(Case11)と、 第5章で示したフレーム熱性能を考慮した簡易計算法 1(Case12)及び第6章で示したフレー ム面積と斜入射を考慮した簡易計算法 2(Case13)で期間日射熱取得量を比較する。

本計算で用いた直達日射に対する入射角と各条件(Case11~13)の日射熱取得率の相関及びこの相関から得られた散乱日射に対する各条件の日射熱取得率を図 7.10 に示す。

Case11 及び12 は直達と散乱の合計垂直日射量に一定の垂直入射時の日射熱取得率を乗じているため、直達も散乱も一定値となる。PAL計算では、暖房負荷時と冷房負荷時において異なる日射熱取得率を入力できるが、ここでは一定値とした。

表7.10 計算条件

	地名		東京					
位置	北緯	[°]	35.69					
	東経	[°]	139.77					
	気象データ		拡張アメダス気象データ(標準年)					
直散:	分離計算モ	デル	Perezモデル					
アルベド [-]		[-]	0.10					
計算	Case1	1	従来計算法(全面ガラス;垂直入射)					
仕様 条件	Case1	2	簡易計算法1(フレーム熱性能考慮;垂直入射)					
	Case1	3	簡易計算法2(フレーム面積+多重反射;斜入射)					
7	レーム種類	Į	スティックマリオン(Fix)					
	ガラス種類		FL5+A12+FL5					
フレーム面積比率 [-]		[-]	0.161					
伝熱開口寸法 [m]		[m]	W:9.08 * H:4.00					
	卟部遮蔽物		考慮せず遮蔽物はないものとする					
	計算方位		東,西,南,北(4方位)					
表	面熱伝達率	の	考慮せず一定とする					
	温度依存性							
ガラスロ	P空層等価類	骫伝導	老虐せずー会とする					
率(の温度依存	性	方思ヒッ―たとりる					

図7.10 入射角と各条件の日射熱取得率の相関及び散乱日射に対する日射熱取得率

7.5.3 計算結果

表 7.11 に月別の全方位合計の積算日射熱取得の比率を示す。図 7.11 に季節別(3ヶ月) の積算日射熱取得量を示す。

表 7.11 より、前節住宅用窓と同様の結果が得られた。

Casel1の従来計算法を1とした場合に対する条件違いの影響を比率で表している。

Case12 のフレーム熱性能を考慮することで、フレーム成分の約 10%程度低下することが 確認できた。これにより、フレームを無視できないことが明確となった。

Case13 のフレーム面積及びガラスの斜入射特性を考慮することで、69~73%に低下する ことが確認できた。これにより、ガラスの斜入射特性も無視できないことを示した。

これらの結果より、現状 PAL 計算で算出される PAL は、暖房負荷は増加し、冷房負荷は 減少すると考えられる。フレーム熱性能を考慮するだけでなく、斜入射特性も考慮しなけ ればならないことが明確となった。

7.6まとめ

第7章では、建物の期間熱負荷計算に用いている開口部の従来計算法と本論文で提案する計算法の期間積算日射熱取得の比較を住宅用、ビル用についてそれぞれ行った。

得られた知見を以下にまとめる。

①住宅用窓でSMASHやAE-Sim/Heatで用いられている従来計算法を1とした場合に対す る条件違いの影響を比率で表した結果、フレーム面積を考慮することで、フレーム面積比 率分の低下が、ガラスの斜入射特性を考慮することで 93~94%に低下することが確認でき た。また、フレームの日射熱取得率分及び影による減衰効果分は 3~4%程度の差であり、 その他の要因と比べて影響が小さいことがわかった。これらの結果より、期間熱負荷計算 時に用いる開口部の日射熱取得率は、ガラスの多重反射とフレーム面積比率を考慮すれば 十分な精度となることを示した。

②従来計算法に比べ精算値は 67~70%に低下することが確認できた。これは精算値を 1 とすると従来計算法は年間を通じて約 1.5 倍多く日射熱が取得されていることとなる。これ により、従来計算法では冬期の暖房負荷を小さく、夏期の冷房負荷を過大に見積もってい ることを示した。

③札幌、東京、鹿児島と地域による気象条件は異なるが開口部面積が同一の場合、全方 位年間合計の直達日射による取得熱量と地表面反射を含む散乱日射による取得熱量の比は 概ね35%:65%(札幌;36%:64%、東京;34%:66%、鹿児島;37%:63%)となり、散乱日射 による取得熱量の方が多いことを示した。

④標準的な住宅モデルで期間日射熱取得量を比較した。住宅は南面に開口部面積が集中した形となりやすい。つまり、南面の日射熱取得に強く影響を受ける傾向が多い。その結果、東京の気象条件における全方位合計の直達と散乱の比率は、太陽高度の低い秋分から春分(10~3月)は直達日射の影響が大きく、春分から秋分(4~9月)は散乱日射の影響が大きくなることを示した。期間日射熱取得量について、南面の影響が強い場合は太陽高度の低い季節の日射熱取得量の割合が大きくなることを示した。

⑤ビル用開口部としてカーテンウォールで期間日射熱取得量を比較した。PAL 計算で用 いられている従来計算法を1とした場合に対する条件違いの影響を比率で表した結果、第5 章で示したフレーム熱性能を考慮する簡易計算法を用いることで、フレーム成分の約 10% 程度低下することが確認できた。また、第6章で示したフレーム面積及びガラスの斜入射 特性を考慮した簡易計算法を用いることで、69~73%に低下することが確認できた。

これらの結果より、現状 PAL 計算で算出される PAL は、暖房負荷は増加し、冷房負荷は 減少すると考えられる。フレーム熱性能を考慮するだけでなく、斜入射特性も考慮しなけ ればならないことが明確となった。

参考文献

- 1) 住宅の省エネルギー基準の解説,(財)建築環境・省エネルギー機構,2009
- 2) 建築物の省エネルギー基準と計算の手引(平成18年度版),(財)建築環境・省エネル ギー機構,2006.9
- 3) SMASH for Windows Ver.2 ユーザーマニュアル: (財)建築環境・省エネルギー機構,2004
- 4) AE-Sim/Heat 操作マニュアル:(株)山内設計室,2009
- 5) 赤坂裕 他: 拡張 AMeDAS 気象データ 1981-2000,日本建築学会,2005
- 6) 住宅サッシ「標準規格寸法」,(社)日本サッシ協会,2009.4 改訂

第8章 結論

8.1 本論文の要約

本論文は、ISO、JIS 等の規格や既往の研究を基に、建物の熱負荷計算をより精度よく計 算で評価できることを目的として、現在考慮されていないフレーム成分やガラスの多重反 射を考慮した斜入射に対する遮熱性能を計算と測定の両側から評価する方法をまとめたも のである。

第1章では、本研究の背景と目的を述べ、関連する既往の研究を概説した。

第2章では、斜入射時における窓フレームを考慮した開口部の日射熱取得率の詳細計算法 について日射を直達成分と散乱成分を分けて整理した。直達成分は、窓面に対して垂直入 射だけでなく斜入射で日射があたった場合のガラスの入射角度特性、フレーム自身の色違 いによる受熱分の影響及びフレームからガラス面に落とす影の影響を考慮して計算を行っ た。得られた知見を以下にまとめる。

- 計算を行った全ての入射角度及びフレームとガラスの組合せ条件において、ガラス部 単体の日射熱取得率(η_g)よりもフレームを含めた窓全体の日射熱取得率(η_w)の 方が小さい値を示した。フレームを考慮することにより窓全体の日射熱取得率が減少 することを示した。フレームを考慮しなければならないことを示した。
- 2)入射角度は同じで高度と方位が異なった条件について解析した結果、窓全体の日射熱 取得率は左右非対称の引き違い窓も含め、高度や方位の影響は小さく入射角度と日射 熱取得率の関係が適切に近似できていることが確認できた。つまり、ガラス部単体の 日射熱取得率の算定式と同様に入射角度で適切に評価できることを示した。
- フレームの受熱分及びレームによる影の影響は、入射角度が垂直に近い cos θ が 0.9 ~1.0(θ が 25°~0°)の場合、フレームが受熱した熱量がフレームによる影で減少 する熱量より大きくなり、ηωの方が 1~3%程度大きくなっているが、逆に cos θ が 0 ~0.7(θ が 90°~45°)の場合、フレームから落ちる影の影響が大きくなっている ことを示した。
- フレームの色(日射吸収率)による窓全体の日射熱取得率の差はほぼないことを示した。
- 5) フレームから落とす影の影響がでる入射角度 cos θ が 0~0.5(θ が 60°以上)の場合、伝熱開口面積が 0.8 m³以上あり、フレーム面積比率が 20%台のサイズでは、精算値(η_w) と簡易算出値(η_{w(θ)})との比は標準的なサイズで 25%以上であった。フレームから落と す影の影響を無視できないことを示した。
- 6) フレーム面積比率が同程度であれば影の影響度合いも同じとは言えない。ガラス面積 が大きい方(伝熱開口面積が大きい方)が、影の影響は小さくなることを示した。

開口部の熱性能に関するフィールド簡易測定法及び簡易評価法の研究

- 7) フレーム部の日射熱取得率(η)は、入射角度が大きくなると負の値を示した。これは、 計算方法(計算過程)によるものである。ガラスとフレームの2次元熱流分を全てフレームの熱流とみなしたため、最終的に算出する窓全体の日射熱取得率ではこの影響 も含んで計算していることから結果は正しいと言える。
- 8) 散乱日射による窓の日射熱取得率は、従来住宅熱負荷計算で用いているガラスのみの 日射熱取得率の50~85%になることを示した。フレームの日射熱取得率が0の場合と 比較して、フレーム面積比率20%~25%程度となると概ね5~10%程度小さくなるこ とを示した。直達日射同様フレームから落とす影の影響は無視できない値であること を示した。

第3章では、窓が実際に設置される状態で時々刻々変化する日射に対する日射熱取得率の簡易測定法について整理した。また、本測定法で測定可能な熱貫流率の簡易測定法についても整理した。計測箱は一般家庭で用いられる物置の壁面に開口を設け試験体を設置した。開口部以外の壁面から貫流熱損失が発生しづらいように断熱材で恒温室を作った。取得熱量は黒色に塗装したラジエータに日射熱を吸収させ、ラジエータ内部で循環している冷媒の出入口温度差及び流量で測定した。日射の熱源は、太陽そのものを扱ったフィールドテスト方法とした。試験体は屋内測定装置(日射熱取得率測定装置)で予備測定を行い、熱貫流率及び垂直入射時の窓全体の日射熱取得率において計算結果と測定結果に差異がないことを確認した。得られた知見を以下にまとめる。

- 本測定で得られた窓の日射取得率は、快晴日例(3月30日)でも曇天日例(4月9日) でもフレームや斜入射によるフレームから落とす影の影響、ガラスの多重反射を考慮 した計算結果と一致した。これにより、窓面に照射される直達日射量及び散乱日射量 が把握できれば照射される比率と計算により求めた直達成分及び散乱成分の日射熱 取得率を用いることで合算された日射取得率を簡易に求めることが可能であること を示した。
- 2) 日射の影響を受けずに貫流分の評価が行える夜間に測定を行った窓の熱貫流率は、JIS 規格の計算法や試験法による値よりも小さい値を示した。これは、JIS 規格は外部風 速を 4[m/s]で評価しているためである。測定した時刻の外部風速が自然対流程度の微 風である場合は室外側の表面熱伝達率を室内側表面熱伝達率と同じと仮定すること で、計算結果と測定結果が一致した。
- 3)本測定装置に用いられた9枚の冷却板の放射温度は、日射が当る午前、正午、午後ともに受熱している部分が受熱しない部分よりも温度が高いことが確認できた。また日中雲が発生した場合は、全ての面が同一温度となっていることが確認できた。夜間はコールドドラフト現象により下部が上部よりも冷やされているが水平方向は均等な温度となっていた。これにより冷媒が均等に流れ正しく測定できていることが確認できた。
4) 地表面反射率(アルベド)は、日射計を下向き水平に設置して測定せず、窓面同様、 鉛直に設置した状態で測定した結果を用いた。その結果、3月~8月の太陽高度の高 い季節は終日15%程度一定となっていることがわかった。これにより、周辺壁面から の反射成分も散乱日射で扱ってよいことを示した。太陽高度の低い季節は、時間が経 過するにつれアルベドが高くなることがわかった。太陽高度が低い場合、窓面に対し て水平近くなるため、鏡面反射を起こし易い材料の影響を受け易くなることを示した。 ここで得られた結果から、第2章で提案した詳細計算法で建物の熱負荷計算を行ってよ いことを示した。また、地表面反射日射量は全て散乱日射として扱ってよいことを示した。

第4章では、フレームを考慮したカーテンウォールの熱的性能計算法について、メーカー 標準タイプのフレームを用いて ISO 10077-1、ISO 10077-2、ISO/DIS 12631、ISO 15099 及び 既往の研究に基づいて計算法を整理した。得られた知見を以下にまとめる。

- 基準階1層分を伝熱面積と定義し開口部と腰部を一体として熱性能を評価すればフレ ームを考慮したカーテンウォール全体の熱性能計算が可能であることを示した。
- 2) 腰部フレームの日射熱取得率(*n_f*)は負の値を示す場合があることを示した。また、フレームとガラスと耐火ボードの組み合わせによっては、腰部フレームから室外へ放熱されるケースがあることを示した。
- 3) フレームとガラス間の熱橋係数となる線熱貫流率は、腰部の方立、無目に関係なくほぼ0に等しいことを示した。また、マリオンタイプの場合の開口部の線熱貫流率は、 ISO10077-1の付属書に記載されている簡易計算用の線熱貫流率一覧表の値とほぼ一致していることを示した。
- 4) 各部の熱貫流率(U_f)は、横強調を除いて、開口部に納まるフレームの場合、アルミ タイプが概ね平均10[W/(m²·K)]、熱遮断タイプが概ね平均5[W/(m²·K)]となることを 示した。また、腰部内に納まるフレームはそれぞれ開口部まわりに納まるフレームの 1/3 程度となることを示した。
- 5) モデルケースで算出した結果、フレームを考慮することにより、カーテンウォール全体の熱貫流率は全面をガラスと仮定した場合よりも149%となり、日射熱取得率は 87%となることを示した。カーテンウォールの評価でフレームを無視できないことを示した。
- 6) フレームの日射熱取得率(nf)を簡易に求められる算出式より得られた値と精算値の比較をフレーム構造、材質、部位は分けずに行った。その結果、フレーム部の日射熱取得率は、簡易計算値は概ね精算値に近い値を示しているが合致しているとは言い難い。しかし、カーテンウォール全体の日射熱取得率に対するフレームが及ぼす影響は小さいため、簡易計算値を用いても問題ないこと示した。

第5章では、PAL等の非住宅建築の指標を算定する簡易な年間暖冷房負荷計算にフレーム を考慮したガラスカーテンウォールの評価方法を追加することを目的として、実用的な簡 易計算方法を検討した。また、フレームを考慮する場合と考慮しない場合の PAL 計算を行 い比較した。その結果以下の知見が得られた。

- 1) 構造の異なるフレームを簡易計算用に整理し、一覧表に示した。
- 2) ガラスカーテンウォールの腰部の簡易計算法について整理した。ガラスカーテンウォールの腰部の場合、ガラスを透過した日射が不透明パネルで吸収されるため、PALの手引書に掲載されている計算式が適応できないことを示した。このため、容易に入手できるガラスの熱貫流率(Ug)を用いた簡易計算式を提案し、実用的な精度を有することを示した。
- 3) 簡易計算法による熱性能計算値と精算値をモデルケースで比較した結果、断熱性能及び遮熱性能はそれぞれ±2%以内に納まった。よって提案する簡易計算法は暖冷房負荷を評価する上で実用的な精度を有することを示した。
- 4) フレームを考慮したカーテンウォール全体の簡易計算法を整理した。これらの結果は、 PAL 計算、BEST、BIM 等への適応できる。
- 5) フレームの有無による PAL 値への影響を事務所ビルモデルで確認した。フレームを考慮することで、暖房 PAL は増大し、冷房 PAL は軽減することを示した。これにより PAL 計算においてフレームの影響を無視できないことを示した。

第6章では、斜入射時におけるフレームを考慮したカーテンウォールの日射熱取得率の 詳細計算法について日射の直達成分と散乱成分を分けて整理した。直達成分は、垂直入射 だけでなく斜入射で日射があたった場合のガラスの入射角度特性、フレームからガラス面 に落とす影の影響を考慮して計算を行った。得られた知見を以下にまとめる。

- 計算を行った全ての入射角度において、ガラス部単体の日射熱取得率(η_g)よりも フレームを含めたカーテンウォール全体の日射熱取得率(η_{cw})の方が小さい値を示し た。フレームを考慮することにより、カーテンウォール全体の日射熱取得率が減少す ることを示した。フレーム面積比率の影響は大きくフレームを考慮しなければならな いことを示した。
- 2) フレームの受熱分及びフレームから落ちる影の影響は、入射角度が垂直に近い cos θ :0.7~1.0(45~0°)の場合、フレームが受熱した成分の方がフレームから落ちる 影の影響より大きくなり、簡易計算値($\eta_{cwf=0}$)よりも精算値(η_{cw})の方が若干大き いが、逆に cos θ :0~0.7(90~45°)の場合、フレームから落ちる影の影響が大き いことを示した。

- 3)入射角度は同じでも高度と方位が異なった条件を計算しているが、日よけ効果のある 化粧材をつけない場合のカーテンウォール全体の日射熱取得率は、高度、方位問わず 入射角度と日射熱取得率の相関がうまく近似できていた。ガラス同様入射角度で簡易 に評価できることを示した。
- 4) 腰部の場合は、パネル面が奥に入った部分で受熱するため、影を落とす面積が開口部のガラス面に比べ大きくなるが、腰部自身の日射熱取得率は、開口部と比較すると非常に小さくカーテンウォール全体への影響は小さいことを示した。
- 5) カーテンウォールに日よけ効果のある化粧材が装着されない場合は、フレーム面積だけを考慮しフレームから落とす影を考慮せずとも精度よく遮熱性能を評価できることを示した。つまり、現状 PAL で計算されている全面ガラスにフレーム面積だけを考慮すればよいということを示した。
- 6) 日よけ効果のある化粧材が縦についた場合は、方位角度が高くなるにつれ影面積は増大し、カーテンウォール全体の日射熱取得率は減少するため、化粧材が装着されていない場合のように入射角度で簡易に評価できない。そこで、化粧材による影の影響がないと仮定し、日射熱取減衰係数(S_{f,g}(θ)、S_{f,sp}(θ))を1.0とした場合と化粧材が装着されていない場合を比較した結果、日よけ効果のある化粧材がカーテンウォールのフレームの日射熱取得率に与える影響は小さいことを示した。つまり、現行 PAL で採用しているようなフレーム以外に装着されている日よけ材(この場合はサイドフィン)による日よけ効果係数と同じ扱い方をしてもよいことを示した。
- 7) 日よけ効果のある化粧材をつけない場合は、散乱成分についても直達成分同様フレームから落とす影の影響は無視してもよいことを示した。

第7章では、建物の期間熱負荷計算に用いている開口部の従来計算法と本論文で提案する計算法の期間積算日射熱取得の比較を住宅用、ビル用についてそれぞれ行った。

- 得られた知見を以下にまとめる。
- 1) 住宅用窓で SMASH や AE-Sim/Heat で用いられている従来計算法を1とした場合に対 する条件違いの影響を比率で表した結果、フレーム面積を考慮することで、フレーム 面積比率分の低下が、ガラスの斜入射特性を考慮することで93~94%に低下すること が確認できた。また、フレームの日射熱取得率分及び影による減衰効果分は3~4%程 度の差であり、その他の要因と比べて影響が小さいことがわかった。これらの結果よ り、期間熱負荷計算時に用いる開口部の日射熱取得率は、ガラスの多重反射とフレー ム面積比率を考慮すれば十分な精度となることを示した。
- 2) 従来計算法に比べ精算値は67~70%に低下することが確認できた。これは精算値を1 とすると従来計算法は年間を通じて約1.5倍多く日射熱が取得されていることとなる。 これにより、従来計算法では冬期の暖房負荷を小さく、夏期の冷房負荷を過大に見積 もっていることを示した。

- 3) 札幌、東京、鹿児島と地域による気象条件は異なるが開口部面積が同一の場合、全方 位年間合計の直達日射による取得熱量と地表面反射を含む散乱日射による取得熱量 の比は概ね35%:65%(札幌;36%:64%、東京;34%:66%、鹿児島;37%:63%)とな り、散乱日射による取得熱量の方が多いことを示した。
- 4) 標準的な住宅モデルで期間日射熱取得量を比較した。住宅は南面に開口部面積が集中した形となりやすい。つまり、南面の日射熱取得に強く影響を受ける傾向が多い。その結果、東京の気象条件における全方位合計の直達と散乱の比率は、太陽高度の低い秋分から春分(10~3月)は直達日射の影響が大きく、春分から秋分(4~9月)は散乱日射の影響が大きくなることを示した。期間日射熱取得量について、南面の影響が強い場合は太陽高度の低い季節の日射熱取得量の割合が大きくなることを示した。
- 5) ビル用開口部としてカーテンウォールで期間日射熱取得量を比較した。PAL 計算で用いられている従来計算法を1とした場合に対する条件違いの影響を比率で表した結果、第5章で示したフレーム熱性能を考慮する簡易計算法を用いることで、フレーム成分の約10%程度低下することが確認できた。また、第6章で示したフレーム面積及びガラスの斜入射特性を考慮した簡易計算法を用いることで、69~73%に低下することが確認できた。これらの結果より、現状 PAL 計算で算出される PAL は、暖房負荷は増加し、冷房負荷は減少すると考えられる。フレーム熱性能を考慮するだけでなく、斜入射特性も考慮しなければならないことが明確となった。

第8章では、結論として本研究で得られた検討結果及び知見をまとめた。さらに今後の 研究によって解決すべき課題を整理し、展望を述べた。

8.2 今後の課題と展望

開口部の熱性能の計算法及び測定法について以下の課題があげられる。

1) フレームを考慮した遮熱性能の計算法及び測定法の規格化

窓のフレームを考慮した遮熱性能の汎用計算法は既に国際規格化されている。次世代 省エネルギー基準に採用されるためには、まず国内の規格制定が必要である。また、付 属物を併用した場合の熱性能を評価するためには、測定法の規格化が必要である。

2) カーテンウォールの汎用計算法の規格化

カーテンウォールの汎用的計算法は、現在国際規格化が進められている段階である。 カーテンウォールの熱性能を測定することは容易ではないため、国内においても計算法 を規格化することが必要である。国際規格では、断熱性能のみだが、遮熱性能について も規格化する必要がある。その場合、本論文で検討できてないエアフローやダブルスキ ンといった通気を伴う高性能窓システムについても検討が必要である。

3) 斜入射計算法の熱負荷計算ソフトへの提案

住宅用、ビル用共に熱負荷計算に本論文で提案した斜入射計算法が採用されていない。 正しく熱負荷を評価するために本計算法を導入することが必要である。

4) 風向・風速と表面熱伝達率の変化の把握

開口部の断熱性能はその他の部位と比較して熱性能が劣るため、表面熱伝達率に対す る影響が大きい。現在の基準では、規格に準じた熱貫流率の計算値もしくは測定値を用 いて年間熱負荷計算を行っている。しかし、これは外部風速を4m/s 一定で評価している こととなる。国内各地の風向・風速は拡張アメダス気象データ等で日射量と同じくデー タベース化されている。製品の横並び性能評価では現在の規格を用いれば問題ないが、 建物の熱負荷計算では、取得・損失熱量を正しく計算するためには必要である。そのた め、設置された窓面に対してどの方向からどのような風が吹くことでどの程度熱伝達率 が変化するか測定と計算で把握することが必要である。

また、ビルでは単板ガラスを使用するケースが多く、外部風速に対する表面熱伝達率の 影響は大きい。そのため、建物高さに対する風向・風速の予測も必要である。 5) 風向・風速と換気量の変化の把握

開口部の熱性能は閉めているときだけではない。外部風速を利用することにより、自 然通風を利用して、顕熱だけでなく潜熱も除去することが可能となる。つまり冷房負荷 を減らすことが可能となる。窓は開閉方法により、風をうまく室内へ取り込むことも室 外に流すこともできる。またその逆もおきる。風向風速のデータベースを利用すること と開口部の開閉形式を入力することで換気量が計算できるようにすることが必要である。

本論文で得られた知見とここにあげた課題に継続的に取り組むことで、より精度の高 い開口部の熱性能評価法の構築を推進していく。これらを標準化して開口部の熱性能を 適切にかつ簡易に評価できるしくみを提供することで、建築環境設計において高性能な 窓の有効性の認識と住宅や建築物でのより熱性能のバランスのよい商品の選択が促進さ れ、暖冷房エネルギー消費量削減の促進と地球環境への影響低減に大きく寄与できると 期待される。 謝辞

謝辞

本論文は、私が新日軽株式会社に入社し、会社統合により株式会社 LIXIL となる現在に 至るまでの社内横串プロジェクト、社外研究会、鹿児島大学大学院で行ってきた窓の熱性 能の計算法及び測定法に関する研究の成果をまとめたものです。最後に、ご指導を賜りま した方々にお礼を申し上げたいと思います。

鹿児島大学大学院理工学研究科教授 二宮秀與先生には、私が 2002 年から社団法人リビ ングアメニティ協会主催の窓の熱性能計算法研究委員会に参加した頃より、様々なご指導 をいただきました。当時、住宅用開口部の設計を行っていた私に PAL 計算にフレームを考 慮した開口部の計算方法を検討する機会を与えてくださり、ビル用開口部の知見を得るこ とができました。また、窓のエネルギー性能評価指標の研究委員会、窓の熱性能計算方法 JIS 原案作成委員会他多くの研究委員会に研究委員として招集してくださり、様々な研究者 と意見を交わすことで多くのことを学ぶことができました。2009 年には鹿児島大学大学院 へ社会人学生として入学する機会を与えていただき、その後は主任教官としてご多忙の中 においても私の研究の方向性、論文作成に至るまで昼夜を問わず懇切丁寧なご指導を賜り ました。将来のことを考え、国際学会へ参加し発表する機会を与えてくださり、海外の先 生方、学生との意見交換等、貴重な経験をさせていただきました。全てのご厚意に深く感 謝申し上げます。

鹿児島大学工学部建築学科教授 松村和雄先生、同准教授 曽我和弘先生には、鹿児島大 学大学院での指導教官として、専攻ゼミナールや特別演習の私の報告に対し、有益かつ的 確なご指導、ご助言をいただきました。また、論文作成にあたっては、まとめ方や一字一 句の細部に至るまで貴重なご指導を賜りました。ここに深く感謝申し上げます。

国土交通省国土技術政策総合研究所 倉山千春先生には、私が 2002 年に前述の研究委員 として参加した頃より、開口部の熱性能の計算法、測定法、評価法について昼夜を問わず 懇切丁寧なご指導を賜りました。会社の実務である自然エネルギー利用に関して、様々な 考え方や将来性をご教示いただき、興味深いデータを提供していただきました。鹿児島大 学の先輩でもあり、東京での指導教官役となっていただき本研究の測定方法から論文作成 の進め方に至るまで懇切丁寧なご指導を賜りました。全てのご厚意に深く感謝申し上げま す。

鹿児島工業高等専門学校校長 赤坂裕先生には、私が2002年に前述の研究委員として参加した頃より、研究委員会の委員長として様々なご指導を賜りました。社会人学生となる ときに研究への取り組み方、心構えをご教示くださいました。ここに深く感謝申し上げま す。

滋賀県立大学環境科学部講師 伊丹清先生には、本論文で用いた計算プログラム 「TB2D/BEM」の斜入射計算法に関しまして様々なご助言を賜りました。ここに深く感謝申 し上げます。 日本板硝子株式会社 木下泰斗氏には、ガラスの熱性能計算法について懇切丁寧に多く のご助言をいただきました。また、鹿児島大学の先輩として講義、専攻ゼミナール、特別 演習、論文作成の進め方に至るまで多くのご助言をいただきました。この他、窓に関わる 日本の技術者として、将来について多くの有益な意見交換をさせていただきました。ここ に深く感謝申し上げます。

YKKAP 株式会社 伊藤春雄氏、齋藤孝一郎氏には、競合他社という立場でありながら、 海外に遅れをとっている日本の開口部熱性能に関する技術者育成を第一と考えてくださり、 共に課題に取り組む 1 人の技術者として多くのご指導とご助言を賜りました。ここに深く 感謝申し上げます。

株式会社 LIXIL 内山貴弘氏、石積広行氏には、私がサッシの設計業務に従事するように なった入社3年目より、開口部の熱性能に関する基礎を最初に叩き込んでくださいました。 私が開口部の熱性能に関する職務に従事するきっかけとなりました。平野利信氏、佐々木 道夫氏には、私が社会人学生として博士後期課程への進学の機会を与えていただきました。 高橋努氏には、アルミサッシメーカーの設計者としての仕事の進め方、ビル用開口部の設 計の考え方を懇切にときに厳しくご指導くださいました。ここに深く感謝申し上げます。

会社及び鹿児島大学の後輩にあたる株式会社 LIXIL 宮澤千顕氏には、本研究の測定装置 製作時や改良時に作業を手伝っていただきました。また、社内業務及び社外研究委員会の 課題を分担して行うことで、多くの知見を得ることができました。ここに深く感謝申し上 げます。

日本軽金属株式会社 高木正夫氏、松永章生氏、中村拓海氏には、社内横串プロジェクトにおいて、環境工学の基礎から計算技術、測定技術に至るまで懇切丁寧にご指導くださいました。ここに深く感謝申し上げます。

このほか、三協立山アルミ株式会社 鈴木宏政氏、上乗正信氏、折原規道氏、不二サッ シ株式会社 須田宏氏、株式会社ニチベイ 佐久間英二氏、立川ブラインド工業株式会社 鳥居由樹男氏、トーソー株式会社 近藤友洋氏には、前述研究委員会において開口部の熱 性能計算法、測定法について、競合他社という立場を超えて、共に検討し意見を交わすこ とで多くの知見を得ることができました。ここに深く感謝申し上げます。

最後に私事になりますが、週末課題に取り組むことが多く一緒に過ごすことができない 私の代わりに文句一つ言わず、家庭を守り続けてくれた妻 真由美、遊び盛りの年頃であり ながら我慢してくれた長女 陽渚、長男 吏に深く感謝申し上げます。

> 2012 年 3 月 田代達一郎

既発表論文一覧

■既発表論文

	学術論文 研究発表・報告 特許等の	発行又は発表	発行場所、発表		
No	子 州 ⊪ 文、 ሣ 九 光 衣 ⁺ 秋 日 、 竹 叶 寻 ッ タ 称	の年、巻、号、	雑誌等又は発表	著	者名
		項等	学会等名称		
1*	フレームを考慮したカーテンウォー	2011 年 12 月	日本建築学会	田代	達一郎
	ルの熱性能計算法	第 76 巻	環境系論文集	二宮	秀與
		第 670 号		齋藤	孝一郎
		1033-1042 項			
2*	窓フレームを考慮したビル用窓の熱	2009年2月	日本建築学会	齋藤	孝一郎
	性能簡易計算法	第 74 巻	環境系論文集	赤坂	裕
		第 636 号		二宮	秀與
		151-160 項		木下	泰斗
				田代	達一郎

1. 論文(査読あり) *本研究と関係する論文

2. 論文(査読なし)

*本研究と関係する論文

	学術論文 研究発表・報告 性許笙の	発行又は発表	発行場所、発表		
No	子州・・小九光衣・和口、村計寺の	の年、巻、号、	雑誌等又は発表	著	者名
	石松	項等	学会等名称		
1*	開口部の遮熱性能の計算法	2003 年	日本建築学会	伊丹	清
	その2 窓の日射侵入率計算法と Fix	環境工学Ⅱ	大会(東海)	赤坂	裕
	窓計算例	(41158) 337 項		倉山	千春
				田代	達一郎
				伊藤	春雄
				齋藤	孝一郎
				石積	広行
				増山	新作
2*	開口部の遮熱性能の計算法	2003 年	日本建築学会	田代	達一郎
	その3 Fix 窓の日射侵入率計算結果	環境工学Ⅱ	大会(東海)	赤坂	裕
	と考察	(41159) 339 項		倉山	千春
				伊丹	清
				伊藤	春雄
				齋藤	孝一郎
				石積	広行
				増山	新作

No	学術論文、研究発表・報告、特許等の 名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発表 学会等名称	著	者名
3*	開口部の遮熱性能の計算法	2003 年	日本建築学会	齋藤	孝一郎
	その 4 ガラス種類の違いによる枠	環境工学Ⅱ	大会(東海)	赤坂	裕
	部の日射侵入率の変化	(41160) 341 項		倉山	千春
				伊丹	清
				伊藤	春雄
				石積	広行
				増山	新作
				田代	達一郎
				木下	泰斗
4*	住宅用窓製品の総合熱性能評価プロ	2004 年	日本建築学会	齋藤	孝一郎
	グラムの開発	環境工学Ⅱ	大会(北海道)	赤坂	裕
	その3 フレーム部の計算方法	(41050) 99 項		倉山	千春
				伊丹	清
				二宮	秀與
				伊藤	春雄
				石積	広行
				上乗	正信
				田代	達一郎
				木下	泰斗
5	住宅用窓製品の総合熱性能評価プロ	2004 年	日本建築学会	上乗	正信
	グラムの開発	環境工学Ⅱ	大会(北海道)	赤坂	裕
	その4 表面温度指標 STI による防露	(41051) 101 項		倉山	千春
	性能予測			伊丹	清
				伊藤	春雄
				齋藤	孝一郎
				田代	達一郎
				石積	広行

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発表 学会等名称	著	者名
6*	開口部の遮熱性能の計算法	2004 年	日本建築学会	田代	達一郎
	その 6 各窓種の日射侵入率計算結	環境工学Ⅱ	大会(北海道)	赤坂	裕
	果と考察	(41158) 343 項		倉山	千春
				伊丹	清
				伊藤	春雄
				齋藤	孝一郎
				上乗	正信
				石積	広行
7*	開口部の遮熱性能の計算法	2005 年	日本建築学会	齋藤	孝一郎
	その8 窓フレームの断熱・遮熱性能	環境工学Ⅱ	大会(近畿)	赤坂	裕
	計算結果と考察	(41110) 249 項		倉山	千春
				伊丹	清
				伊藤	春雄
				田代	達一郎
				石積	広行
				折原	規道
8*	開口部の遮熱性能の計算法	2005 年	日本建築学会	宮沢	千顕
	その9 窓フレームの断熱・遮熱性能	環境工学Ⅱ	大会(近畿)	赤坂	裕
	計算結果と考察	(41111) 251 項		倉山	千春
				伊丹	清
				伊藤	春雄
				田代	達一郎
9*	開口部の断熱・遮熱性能	2005 年	日本建築学会	上乗	正信
	その2 日射熱取得率測定結果	環境工学Ⅱ	大会(近畿)	倉山	千春
		(41113) 255 項		石積	広行
				齋藤	孝一郎
				田代	達一郎
				折原	規道

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発表 学会等名称	著者名	
10*	開口部の断熱・遮熱性能	2005 年	日本建築学会	石積	広行
	その3 熱貫流率測定結果	環境工学Ⅱ	大会(近畿)	倉山	千春
		(41114) 257 項		上乗	正信
				齋藤	孝一郎
				田代	達一郎
				折原	規道
11*	PAL 計算における窓フレームの評価	2005 年	日本建築学会	田代	達一郎
	方法	環境工学Ⅱ	大会(近畿)	二宮	秀與
	その1 ビル用窓製品のフレームの	(41534) 1097		赤坂	裕
	評価方法	項		木下	泰斗
12*	PAL 計算における窓フレームの評価	2005 年	日本建築学会	二宮	秀與
	方法	環境工学Ⅱ	大会(近畿)	赤坂	裕
	その 2 フレームが PAL 値に及ぼす	(41535) 1099		田代	達一郎
	影響	項		木下	泰斗
13	開口部の断熱・遮熱性能	2006 年	日本建築学会	石積	広行
	その4 引違い窓の断熱・遮熱性能に	環境工学Ⅱ	大会 (関東)	倉山	千春
	対する実験及び計算評価	(41075) 149 項		上乗	正信
				齋藤	孝一郎
				田代	達一郎
				折原	規道
14	開口部の断熱・遮熱性能	2006 年	日本建築学会	木下	泰斗
	その 5 真空ガラスを用いた窓の熱	環境工学Ⅱ	大会 (関東)	倉山	千春
	性能の測定と計算	(41076) 151 項		石積	広行
				田代	達一郎
				赤坂	裕
15	開口部の断熱・遮熱性能	2006 年	日本建築学会	折原	規道
	その9 住宅用窓製品の総合熱性能	環境工学Ⅱ	大会 (関東)	倉山	千春
	評価プログラム WindEye 算出値の有	(41080) 151 項		二宮	秀與
	効性の検証			上乗	正信
				齋藤	孝一郎
				石積	広行
				田代	達一郎

		発行又は発表	発行場所、発表		
No	字術論人、研究発表・報告、特計等	の年、巻、号、	雑誌等又は発	著	者名
	の名称	項等	表学会等名称		
16	開口部の断熱・遮熱性能	2006年	日本建築学会	宮沢	千顕
	その 10 窓-RC 造外壁間の線熱貫流	環境工学Ⅱ	大会 (関東)	赤坂	裕
	率計算結果と考察	(41081) 153 項		伊丹	清
				倉山	千春
				田代	達一郎
17*	PAL 計算における窓フレームの評価	2006 年	日本建築学会	田代	達一郎
	方法	環境工学Ⅱ	大会 (関東)	二宮	秀與
	その3 ビル用窓製品のフレームの	(41143) 285 項		赤坂	裕
	評価方法			木下	泰斗
18*	開口部構成材料の光学特性	2007 年	日本建築学会	田代	達一郎
	その 3 ブラインドスラット及びサッ	環境工学Ⅱ	大会(九州)	赤坂	裕
	シ形材の光学特性測定結果	(41058) 115 項		倉山	千春
				上乗	正信
				齋藤	孝一郎
				石積	広行
19	開口部の断熱・遮熱性能	2007 年	日本建築学会	折原	規道
	その12 台形出窓の断熱・遮熱性能	環境工学Ⅱ	大会(九州)	倉山	千春
	計算結果	(41073) 145 項		田代	達一郎
				上乗	正信
20	開口部の遮熱性能計算方法	2007 年	日本建築学会	宮沢	千顕
	その13 窓-外壁(外張断熱工法)間	環境工学Ⅱ	大会(九州)	赤坂	裕
	の線熱貫流率計算結果と考察	(41077) 153 項		伊丹	清
				倉山	千春
				田代	達一郎
21	太陽熱集熱板の横並び性能評価	2008 年	日本建築学会	宮沢	千顕
	その1 測定機器、装置及び試験体概	環境工学Ⅱ	大会(中国)	倉山	千春
	要	(41059) 117 項		田代	達一郎
				齋尾	梨沙
22	太陽熱集熱板の横並び性能評価	2008 年	日本建築学会	齋尾	梨沙
	その2 屋内測定結果	環境工学Ⅱ	大会(中国)	倉山	千春
		(41060) 119 項		田代	達一郎
				宮沢	千顕

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発 表学会等名称	著	者名
23	太陽熱集熱板の横並び性能評価	2008 年	日本建築学会	田代	達一郎
	その3 気流確認及びフィールドテ	環境工学Ⅱ	大会(中国)	倉山	千春
	ストとの比較	(41061) 121 項		齋尾	梨沙
				宮沢	千顕
24	空気式太陽光集熱器を用いたデシカ	2008 年	日本冷凍空調	井上	絢子
	ント空調システムに関する実験研究	(A141) 145 項	学会大会(大	河合	素直
	第1報:システム提案と特性解析		阪)	小金井	丰 真
				小松	健
				田代	達一郎
				吉田	康敏
25	空気式太陽光集熱器を用いたデシカ	2008 年	日本冷凍空調	田代	達一郎
	ント空調システムに関する実験研究	(A142) 149 項	学会大会(大	井上	絢子
	第2報:ソーラースパンドレルの概		阪)	河合	素直
	要			小松	健
				高木	正夫
				小金井	‡ 真
26	開口部の遮熱性能計算方法	2009 年	日本建築学会	田代	達一郎
	その 16 防犯性を考慮した屋外側	環境工学Ⅱ	大会 (東北)	宮沢	千顕
	付属物を付けた窓の熱的性能測定結	(41072) 155 項		倉山	千春
	果				
27	窓-躯体間の熱移動について	2009 年	日本建築学会	石積	広行
	その1 測定結果	環境工学Ⅱ	大会 (東北)	宮沢	千顕
		(41074) 155 項		倉山	千春
				田代	達一郎
28	窓-躯体間の熱移動について	2009 年	日本建築学会	宮沢	千顕
	その2 計算結果と測定結果の比較	環境工学Ⅱ	大会 (東北)	倉山	千春
		(41075) 155 項		石積	広行
				田代	達一郎

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発 表学会等名称	著者名	
29*	CALCULATION METHOD FOR	2010年1月	YSRIM2010	Tatsuichiro	
	THERMAL PERFORMANCE OF		(上海)	Tashiro,	
	THE CURTAIN WALLING WITH			Hideyo	
	FRAMES			Nimiya,	
				Hiroshi	
				Akasaka,	
				Koichiro Saito	
30	低炭素社会における太陽熱活用に関	2010年	空気調和・冷凍	井上 絢子	
	する具体的検討 第2報 日射	第 44 巻,	連合講演会講	小金井 真	
	変動に対するデシカント空調システ	83-86項	演論文集	中村 拓海	
	ムの挙動に関する考察			田代 達一郎	
				吉田 康敏	
31	空気式太陽光集熱器の開発とその評	2008 年	太陽/風力エネ	井上 絢子	
	価手法の提案	353-356項	ルギー講演論	河合 素直	
			文集	小金井 真	
				小松健	
				田代 達一郎	
32*	開口部の熱性能の屋外測定法と評価	2010 年	日本建築学会	倉山 千春	
	方法に関する研究	環境工学Ⅱ	大会(北陸)	田代 達一郎	
	その2 計算法と計算結果	(41226) 451 項		二宮 秀與	
				宮沢 千顕	
33*	開口部の熱性能の屋外測定法と評価	2010 年	日本建築学会	田代 達一郎	
	方法に関する研究	環境工学Ⅱ	大会(北陸)	倉山 千春	
	その2 計算法と計算結果	(41227) 453 項		二宮 秀與	
				宮沢 千顕	
34	窓-躯体間の熱移動について	2010 年	日本建築学会	石積 広行	
	その3 測定結果その2	環境工学Ⅱ	大会(北陸)	宮沢 千顕	
		(41210) 419 項		倉山 千春	
				田代 達一郎	

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発 表学会等名称	著	者名
35	窓-躯体間の熱移動について その 4 局所熱伝達率を考慮した計 算結果と測定結果の比較 太陽熱集熱機能を追加した建材型太 陽光発電システムの性能評価	2010年 環境工学Ⅱ (41211) 421項 2010年 太陽/風力エネ ルギー講演論 文集 2010,	日本建築学会 大会(北陸) 日本太陽エネ ルギー学会	宮 倉 二 田 石 川 田 太田 二 田 石 一 田 工 田 石 一 田 工 田 工 田 工 田 工 田 太田 田 太田	千
37	太陽熱集熱機能を追加した建材型太 陽光発電システムの性能評価(その 2)外部風が太陽熱集熱機能に及ぼす 影響	355-358頃 2011年 太陽/風力エネ ルギー講演論 文集 2011, 131-134項	日本太陽エネ ルギー学会	佐藤 川上 太田 田代	理人 隆士 勇 達一郎
38	太陽熱集熱機能を追加した建材型太 陽光発電システムの性能評価(その 3)シミュレーション計算値と実測値 との比較	2011年 太陽/風力エネ ルギー講演論 文集 2011, 135-138項	日本太陽エネ ルギー学会	川上 太田 佐藤 田代	隆士 勇 理人 達一郎
39	太陽熱集熱機能を追加した建材型太 陽光発電システムの性能評価(その 4) AMeDAS を用いた数値解析結果 と実測値との比較	2010年 太陽/風力エネ ルギー講演論 文集 2011, 139-142項	日本太陽エネ ルギー学会	太田 川上 佐藤 田代	勇 隆士 理人 達一郎
40	フレームと斜入射を考慮したガラス カーテンウォールの遮熱性能計算	2011 年 環境工学Ⅱ (41278)561 項	日本建築学会 大会(関東)	田代二宮	達一郎 秀與

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、 項等	発行場所、発表 雑誌等又は発 表学会等名称	著者名	
41	窓の断熱性能計算規格の検証および	2011 年	日本建築学会	木村	敏朗
	実証試験	環境工学Ⅱ	大会 (関東)	永田	明寛
		(41160)325 項		中山	哲士
				田代	達一郎

3. 技術報告(査読あり)

*本研究と関係する論文

No	学術論文、研究発表・報告、特許等 の名称	発行又は発表 の年、巻、号、	発行場所、発表 雑誌等又は発 まご会知4	著	者名
		·	衣子云寺名称		
42	窓と躯体の間の熱移動に関する数値	2009年10月	日本建築学会	宮沢	千顕
	解析と線熱貫流率について	第 15 巻,	技術報告集	赤坂	裕
		第 31 号,		伊丹	清
		789-792 項		田代	達一郎

Summary

Study of field simple measurement and simple evaluation method on the thermal performance of opening

Tatsuichiro TASHIRO

Summary:

With the aim to enable more precise assessment of thermal load calculation, this thesis summarizes the methods for evaluating, from the perspectives of calculation and measurement, the solar shading performance against oblique incidence in a way that takes into account the frame impact and the multiple reflections of the glasses, which currently have not been considered.

Chapter 1 outlines the background and purpose of this research. It includes a literature review and describes the physical theories to be used in this study.

Chapter2 describes a detailed calculating method for solar heat gain coefficient (SHGC) at a window opening considering window frame at the time of oblique incidence. Direct solar radiation component was calculated by taking account of incident angle characteristics of the glass, influence of heat reception due to the difference in frame color and that of shadow on the glass surface cast from the frame, in case of insolation which was received on the window surface by both vertical and oblique incidence. As the result, it has been proved that influence of heat reception due to difference in frame color doesn't have to be taken in to account for the calculation, since it is negligible. Diffuse solar radiation component was found that less than approximately 0.81 times of that obtained by vertical incidence as a result of incident angle calculation by hemispheric integration, while considering the characteristics of window which is mounted vertically against the ground.

Chapter3 describes an apparatus which is able to easily measure SHGC for oblique incidence on the field by using actual product. Even though there was some difference between the results of measurement and calculation since not all phenomena were measured in detail, it has been proved that a tendency similar to the case of calculation appears on measurement result data. The result indicates that it is acceptable to use the calculating method for both direct solar radiation component and diffuse solar radiation component. Further, we've performed comparison with theoretical calculation by organizing heat transmission coefficient (U-Value), radiative heat transfer coefficient and the like from field measurement data.

Chapter 4 as a non- window opening, describes the calculation method for the thermal performance of curtain wall considering frame. Because there are no established international standards, was examined on the basis of European standards about how to take the heat transfer area and the scope of the analysis model. Also, the calculation method of the generic window frames was applied to curtain wall frames, examined how to calculate the heat shield performance and thermal insulation performance. After considering six different frame structures, spandrel panels with openings, showed that there are common trends, respectively.

Chapter 5 describes a simplified calculation method, can be used to calculate the heat load of the building's curtain wall frame. Based on detailed calculations in Chapter 4, we proposed a simplified calculation method. Moreover, SHGC of the waist, because it consists of a glass surface, SHGC calculation of the wall in the PAL has been underestimated. Therefore, we proposed a simplified calculation method for the glass curtain wall. The difference between detailed calculation method and Simplified calculation method, showed that within a few %.

In Chapter 6, about curtain wall, describe similar to calculation method for oblique incidence in Chapter 2. Curtain wall, as much as possible because they tend to flatten the surface of the frame and glass, drop shadow effect in the opening frame is small, and showed that the calculations do not have to consider.

In a case that sun-shading member is used, it has also been proved that sunshade effect calculating formula may be used as it is for direct solar radiation component comparing with that used for PAL calculation. Chapter 7 using the results of Chapter 2 and Chapter 6, the heat penetration by region, compared with the calculation method has been used in traditional simulation. When considering the oblique and frame, confirmed the impact of the building heat load calculations.

Chapter 8 the results of this study are summarized and avenues for future research on this topic are discussed.