ON DETERMINATIONS OF FINSLER CONNECTIONS BY DEFLECTION TENSOR FIELDS

著者	HASHIGUCHI Masao
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	2
page range	29-39
別言語のタイトル	たわみテンソルを生かしたフィンスラー接続の決定
	について
URL	http://hdl.handle.net/10232/00000491

Rep. Fac. Sci. Kagoshima Univ., (Math. Phys. Chem.) No. 2, p. 29-39, 1969

ON DETERMINATIONS OF FINSLER CONNECTIONS BY DEFLECTION TENSOR FIELDS

By

Masao Hashiguchi

(Received September 30, 1969)

The author [2] discussed parallel displacements in Finsler spaces and showed that the connection Γ defined by E. Cartan [1] is the shortest and fittest from a natural standpoint. In that case we imposed as a natural condition the torsion tensor field to vanish, but in its definition the supporting elements are confined to be parallel. And, M. Matsumoto [4] has proposed, from the standpoint of his modern Finsler theory, the following elegant axioms that determine uniquely that connection Γ and the associated non-linear connection N:

- (C1) the connection Γ be metrical,
- (C2) the deflection tensor field D=0,
- (C3) the (h)h-torsion tensor field T=0,
- (C4) the (v)v-torsion tensor field $S^1=0$,

where the axiom C2 expresses the geometrical meaning as above stated.

So, from the standpoint that the supporting elements may be displaced with respect to any non-linear connection N in the tangent bundle, we shall replace the condition C2 by some weaker conditions and find the conditions to be imposed thereon in order that the connection Γ defined by E. Cartan be obtained (Theorem A).

As a result of this consideration we shall notice that Finsler connections with the deflection tensor field $D = -\delta$ are somewhat canonical. We shall give an example of such a Finsler connection (Theorem B).

Throughout the present paper we shall use the terminology and notations described in M. Matsumoto [5]. In §1, we shall briefly sketch the materials in need of our discussions.

The author wishes to express his sincere gratitude to Prof. M. Matsumoto for the invaluable suggestions and encouragements.

§ 1. Preliminaries

1°. Given a differentiable manifold M of dimension n, we denote by $L(M)(M, \pi, GL(n, R))$ the bundle of linear frames and by $T(M)(M, \tau, F, GL(n, R))$ the tangent bundle, where the standard fiber F is a vector space of dimension n with a fixed base $\{e_a\}$.

The induced bundle $\tau^{-1}L(M) = \{(y, z) \in T(M) \times L(M) | \tau(y) = \pi(z)\}$ is called the *Finsler bundle* of *M* and denoted by F(M) (T(M), π_1 , GL(n, R)). The projection π_1 is the mapping

$$\pi_1: F(M) \to T(M) | (y, z) \to y,$$

and we shall denote by π_2 the mapping

$$\pi_2: F(M) \to L(M) | (y, z) \to z.$$

The Lie algebra of the structural group GL(n, R) of L(M) or F(M) is denoted by L(n, R) and the canonical base by $\{L_a^b\}$.

2°. A Finsler connection (Γ, N) is by definition a pair of a connection Γ in the Finsler bundle F(M) and a non-linear connection N in the tangent bundle T(M).

Given a Finsler connection (Γ, N) , let $l_u(u \in F(M))$ and $l_y(y \in T(M))$ be the respective lifts with respect to Γ and N. In terms of a canonical coordinate system (x^i, y^i, z_a^i) of F(M), they are expressed by

(1)
$$l_{u}\left(\frac{\partial}{\partial x^{k}}\right)_{y} = \left(\frac{\partial}{\partial x^{k}}\right)_{u} - z_{b}^{j}\Gamma_{jk}^{i}\left(\frac{\partial}{\partial z_{b}^{i}}\right)_{u},$$

(2)
$$l_{u}\left(\frac{\partial}{\partial y^{k}}\right)_{y} = \left(\frac{\partial}{\partial y^{k}}\right)_{u} - z_{b}^{j}C_{jk}^{i}\left(\frac{\partial}{\partial z_{b}^{i}}\right)_{u},$$

and

(3)
$$l_{y}\left(\frac{\partial}{\partial x^{k}}\right)_{x} = \left(\frac{\partial}{\partial x^{k}}\right)_{y} - F_{k}^{i}\left(\frac{\partial}{\partial y^{i}}\right)_{y},$$

where Γ_{jk}^{i} , C_{jk}^{i} are called the *components of* Γ and the F_{k}^{i} the *components of* N. C_{jk}^{i} are also the components of the (h)hv-torsion tensor field C.

For each $f \in F$ the *h*- and the *v*- basic vector fields $B^h(f)$ and $B^v(f)$ are defined by

$$(4) B^h(f)_u = l_u l_y(zf)$$

and

(5)
$$B^{v}(f)_{u} = l_{u}l_{y}^{v}(zf)$$

at u = (y, z) respectively, where l_y^v is the vertical lift expressed by

(6)
$$l_{y}^{v}\left(\frac{\partial}{\partial x^{i}}\right)_{x} = \left(\frac{\partial}{\partial y^{i}}\right)_{y}.$$

The *h*- and the *v*- basic forms θ^h and θ^v constitute, with the connection form ω of Γ , the dual system of $(B^h(f), B^v(f), Z(A))$, where Z(A) is the fundamental vector field corresponding to $A \in L(n, R)$. They are expressed by

(7)
$$\theta^h = z^{-1} a_i^a dx^i e_a,$$

On Determinations of Finsler Connections by Deflection Tensor Fields

(8) $\theta^{v} = z^{-1} \frac{a}{i} (dy^{i} + F_{k}^{i} dx^{k}) \boldsymbol{e}_{a}$

and

(9)
$$\omega = z^{-1a}_{i} (dz_b^i + z_b^j \Gamma_{jk}^i dx^k + z_b^j C_{jk}^i dy^k) \boldsymbol{L}_a^b.$$

If we denote by θ the basic form in L(M) then

(10) $\theta^h = \pi_2 \theta.$

3°. Given a Finsler connection (Γ, N) , we get the associated non-linear connection \underline{N} with the subordinate *F*-connection Γ_F to (Γ, N) . The pair (Γ, \underline{N}) is a Finsler connection and is called the *associated connection* with the given one. We shall denote by putting _____ the quantities with respect to (Γ, N) .

If we put

(11)
$$F_{jk}^i = \Gamma_{jk}^i - C_{jm}^i F_k^m,$$

the components \underline{F}_{k}^{i} of \underline{N} are

(12)
$$\underline{F}_{k}^{i} = \gamma^{j} F_{jk}^{i},$$

and differ by $y^{j}F_{jk}^{i} - F_{k}^{i}$ from F_{k}^{i} . The quantities

 $D_k^i = \gamma^j F_{jk}^i - F_k^i$

are the components of the deflection tensor field D defined by

(14)
$$D(f) = B^{h}(f)\gamma,$$

where γ is the *characteristic field* defined by

$$\gamma: F(M) \to F|(y, z) \to z^{-1}y = z^{-1a}y^i \boldsymbol{e}_a.$$

Between the h-basic vector fields $B^{h}(f)$ and $B^{h}(f)$ there exists the relation

(15)
$$B^{h}(f) = \underline{B}^{h}(f) + B^{v}(D(f)),$$

therefore, as the dual relation, we have

(16)
$$\theta^{v} = \underline{\theta}^{v} - D(\theta^{h}).$$

4°. Given a Finsler metric function L, the usual metric tensor field G is defined, its components g_{ij} being given by

(17)
$$g_{ij} = \frac{1}{2} \frac{\partial^2 L^2}{\partial \gamma^i \partial \gamma^j}.$$

A Finster space means here a differentiable manifold M endowed with such a metric tensor field G.

We put

(18)
$$\gamma_{jhk} = \frac{1}{2} \left(\frac{\partial g_{jh}}{\partial x^k} + \frac{\partial g_{hk}}{\partial x^j} - \frac{\partial g_{jk}}{\partial x^h} \right),$$

(19)
$$G^{i} = \frac{1}{2} \gamma^{i}_{jk} \gamma^{j} \gamma^{k},$$

and

(20)
$$G_k^i = \frac{\partial G^i}{\partial \gamma^k},$$

where $\gamma_{jk}^{i} = g^{ih} \gamma_{jhk}$.

And we shall sometimes use the notations

(21)
$$l^i = \frac{y^i}{L}, \ l_j = g_{ij}l^i.$$

5°. Let a Finsler connection (Γ, N) be given in a Finsler space (M, G). The conditions C1-C4 are expressed as follows:

(C1) (22)
$$\Gamma_{jhk} + \Gamma_{hjk} = \frac{\partial g_{jh}}{\partial x^k},$$

(23)
$$C_{jhk} + C_{hjk} = \frac{\partial g_{jh}}{\partial y^k},$$

(C2) (24)
$$F_k^i = \gamma^j F_{jk}^i,$$

$$(C4) (26) C_{jhk} = C_{khj},$$

where $\Gamma_{jhk} = g_{ih}\Gamma_{jk}^{i}$, $C_{jhk} = g_{ih}C_{jk}^{i}$ and $F_{jhk} = g_{ih}F_{jk}^{i}$. We shall here explain some geometrical meanings of these conditions.

Let C be a differentiable curve in M and \tilde{C} be a differentiable curve in T(M) mapped on the C by the projection τ . Tangent vectors X(t) along C are said to be *parallel along* C with respect to \tilde{C} , if the equations

(27)
$$\frac{dX^{i}}{dt} + \Gamma^{i}_{jk}(x, y)X^{j}\frac{dx^{k}}{dt} + C^{i}_{jk}(x, y)X^{j}\frac{dy^{k}}{dt} = 0$$

are satisfied, where C is expressed by $x^{i}(t)$ and \tilde{C} by $x^{i}(t)$, $y^{i}(t)$.

Under the parallel displacement along a curve C, if we take in particular \tilde{C} to be a lift \tilde{C}_N with respect to the non-linear connection N, i.e.

(28)
$$\frac{dy^i}{dt} + F_k^i(x, y)\frac{dx^k}{dt} = 0,$$

the equations (27) may be written in the form

(29)
$$\frac{dX^i}{dt} + F^i_{jk}(x, y)X^j \frac{dx^k}{dt} = 0.$$

The supporting elements y^i (the points of the lift \tilde{C}_N) are parallel with respect to \tilde{C}_N , i.e.

(30)
$$\frac{dy^i}{dt} + F^i_{jk}(x, y)y^j \frac{dx^k}{dt} = 0,$$

if and only if the equations (24) are satisfied, which is a geometrical meaning of the condition C2.

The connection Γ is called to be *metrical* if the length of a vector remains unchanged under the parallel displacement along any curve C with respect to any \tilde{C} , which is a geometrical meaning of the condition C1. On the other hand, the non-linear connection N is called to be *metrical* if the supporting elements as the points of a lift \tilde{C}_N of any curve C have a constant length, that is, the (28) yields

(31)
$$\frac{d}{dt}(g_{ij}(x, y)y^iy^j)=0.$$

In the case that the Γ is metrical, the non-linear connection N is metrical if and only if

(32)
$$g_{jh} \gamma^j D_k^h = 0, \quad \text{or} \quad l_i D_k^i = 0.$$

This is easily verified by (22), (23), (28) and (13). Hence, if the condition C2 is satisfied, the non-linear connection N is metrical.

Let T(x) be the fibre $\tau^{-1}x$ over a point $x \in M$ and F(x) be the Finsler subbundle $\pi_1^{-1}T(x)$. If we denote by Γ^v the restriction of the distribution Γ to F(x), the Γ^v is regarded as a linear connection on the differentiable manifold T(x), whose components are C_{jk}^i . Since the (v)v-torsion tensor field S^1 is expressed by $S_{jk}^i = C_{jk}^i - C_{kj}^i$, the condition C4 requires this connection Γ^v to be without-torsion.

If we restrict the metric tensor field G to T(x), then the T(x) becomes a Riemannian space. Thus, the connection satisfying (23) and (26) is the Riemannian connection, which is uniquely determined by the G as follows:

(33)
$$C_{jhk} = \frac{1}{2} \frac{\partial g_{jh}}{\partial \gamma^k}.$$

Therefore, C_{jhk} are symmetric and the relations

$$(34) C_{jhk} y^k = 0, \text{or} C_{jhk} l^k = 0$$

hold good.

Now, since $F_{jk}^i = \Gamma_{jk}^i - C_{jm}^i F_k^m$, the (h)h-torsion tensor field T, which is expressed by $T_{jk}^i = F_{jk}^i - F_{kj}^i$, depends not only on the Γ but on the N. However, the conditions C1 and C4 do not depend on the N. So, the condition C2 gives an influence upon the

definition of the T only. Hence, to determine the Γ only, it seems that the condition C2 is replaced by some weaker conditions.

§ 2. Determinations of Finsler connections by deflection tensor fields

6°. First, we shall consider the case that any non-linear connection is given in the tangent bundle of a Finsler space.

PROPOSITION 1. Given a non-linear connection N in the tangent bundle of a Finsler space, there exists a unique Finsler connection (Γ, N) satisfying the following four conditions:

(C1) the connection Γ be metrical,

(C2') the non-linear connection be the given N,

- (C3) the (h)h-torsion tensor field T=0,
- (C4) the (v)v-torsion tensor field $S^1=0$.

The components Γ_{jhk} and C_{jhk} of the Γ are

(35)
$$\Gamma_{jhk} = \gamma_{jhk} + \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial y^m} F_h^m - \frac{\partial g_{hk}}{\partial y^m} F_j^m \right),$$
(33)
$$C_{jhk} = \frac{1}{2} \frac{\partial g_{jh}}{\partial y^k},$$

where F_k^i are the components of the given non-linear connection N. In this case F_{jhk} are

(36)
$$F_{jhk} = \gamma_{jhk} - \frac{1}{2} \left(\frac{\partial g_{jh}}{\partial y^m} F_k^m + \frac{\partial g_{hk}}{\partial y^m} F_j^m - \frac{\partial g_{jk}}{\partial y^m} F_h^m \right),$$

and if we put

(37)
$$\frac{\partial}{\partial x^{k}} = \frac{\partial}{\partial x^{k}} - F_{k}^{m} \frac{\partial}{\partial \gamma^{m}},$$

then they are expressed by

(38)
$$F_{jhk} = \frac{1}{2} \left(\frac{\delta g_{jh}}{\partial x^k} + \frac{\delta g_{hk}}{\partial x^j} - \frac{\delta g_{jk}}{\partial x^h} \right).$$

PROOF. (33) follows from (23) and (26) as remarked in 5°. If we put

(39)
$$\Gamma_{jhk} = \gamma_{jhk} + \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial y^m} F_h^m - \frac{\partial g_{hk}}{\partial y^m} F_j^m \right) + A_{jhk},$$

then we obtain by (22) and (18)

$$(40) A_{jhk} + A_{hjk} = 0,$$

and by (11), (33) and (25)

$$(41) A_{jhk} = A_{khj}.$$

From these equations it follows that $A_{jhk}=0$. Hence, (39) becomes (35), and (36) follows.

And the Γ defined by (35) and (33) satisfies with the N our conditions.

From (36) and (34), we have

(42)
$$y^{j}F_{jk}^{i} = y^{j}\gamma_{jk}^{i} - \frac{1}{2}g^{ih}\frac{\partial g_{hk}}{\partial y^{m}}F_{j}^{m}y^{j}.$$

We may solve F_k^i from (13) and (42), and obtain

(43) $F_{k}^{i} = G_{k}^{i} + C_{kl}^{i} D_{s}^{l} \gamma^{s} - D_{k}^{i}.$

Substituting (43) into (35), we have

PROPOSITION 2. Given a Finsler tensor field D of type (1, 1) in a Finsler space, there exists a unique Finsler connection (Γ, N) satisfying the following four conditions:

- (C1) the connection Γ be metrical,
- (C2'') the deflection tensor field be the given D,
- (C3) the (h)h-torsion tensor field T=0,
- (C4) the (v)v-torsion tensor field $S^1=0$.

The components Γ_{jhk} , C_{jhk} and F_k^i of the (Γ, N) are

(44)
$$\Gamma_{jhk} = \gamma_{jhk} + \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial \gamma^m} G_h^m - \frac{\partial g_{hk}}{\partial \gamma^m} G_j^m \right) \\ + C_{jkm} C_{hl}^m D_s^l \gamma^s - C_{hkm} C_{jl}^m D_s^l \gamma^s - C_{jkm} D_h^m + C_{hkm} D_j^m,$$

(33)
$$C_{jhk} = \frac{1}{2} \frac{\partial g_{jk}}{\partial \gamma^k},$$

and

(43)
$$F_{k}^{i} = G_{k}^{i} + C_{kl}^{i} D_{s}^{l} y^{s} - D_{k}^{i},$$

where D_k^i are the components of the given Finsler tensor field D.

7°. Proposition 2 shows that the connection Γ determined in Proposition 1 or 2 is the one defined by E. Cartan if and only if

(45)
$$C_{jkm}C_{hl}^{m}D_{s}^{l}y^{s}-C_{hkm}C_{jl}^{m}D_{s}^{l}y^{s}-C_{jkm}D_{h}^{m}+C_{hkm}D_{j}^{m}=0.$$

It is easily verified by (34) that (45) is equivalent to

(46)

36

$$C_{jkm}D_h^m = C_{hkm}D_i^m$$
, or $C_{jhm}D_k^m = C_{khm}D_i^m$.

Thus we have

THEOREM A. Given a Finsler tensor field D of type (1, 1) in the Finsler bundle of a Finsler space, there exists a unique Finsler connection (Γ, N) satisfying the following four conditions:

- (C1) the connection Γ be metrical,
- (C2'') the deflection tensor field be the given D,
- (C3) the (h)h-torsion tensor field T=0,
- (C4) the (v)v-torsion tensor field $S^1=0$.

And, a necessary and sufficient condition that the Γ thus determined be the one defined by E. Cartan is that the deflection tensor field D satisfies the condition

(47) $C(f_1, D(f_2)) = C(f_2, D(f_1)),$

where C is the (h)hv-torsion tensor field of the (Γ, N) , or equivalently that the components D_k^i of the deflection tensor field D satisfy the conditions

(48)
$$\frac{\partial g_{j_h}}{\partial \gamma^m} D_k^m = \frac{\partial g_{kh}}{\partial \gamma^m} D_j^m.$$

In this case the conditions

(49)
$$\frac{\partial g_{jh}}{\partial \gamma^m} D_s^m \gamma^s = 0$$

hold good, and the components Γ_{jhk} , C_{jhk} and F_k^i of the (Γ, N) are

(50)
$$\Gamma_{jhk} = \gamma_{jhk} + \frac{1}{2} \left(\frac{\partial g_{jk}}{\partial y^m} G_h^m - \frac{\partial g_{hk}}{\partial y^m} G_j^m \right),$$

(33)
$$C_{jhk} = \frac{1}{2} \frac{\partial g_{jh}}{\partial \gamma^k},$$

and

$$F_k^i = G_k^i - D_k^i.$$

8°. As a special example of the
$$D$$
 satisfying the condition (48), we have

PROPOSITION 3. In a Finsler space there exists a unique Finsler connection (Γ, N) satisfying the following four conditions:

(C1) the connection Γ be metrical,

(C2''') the deflection tensor field D be given by

$$(52) D_k^i = \lambda l^i l_k + \mu \delta_k^i,$$

where λ and μ are scalar functions on the tangent bundle,

- (C3) the (h)h-torsion tensor field T=0,
- (C4) the (v)v-torsion tensor field $S^1=0$.

The connection Γ is the one defined by E. Cartan. And, the non-linear connection N is metrical if and only if $\lambda + \mu = 0$.

This is easily proved by (34) and (32). Thus, we have noticed that, in order to determine the connection Γ defined by E. Cartan, the condition (C2) may be replaced by the weaker condition (C2'''). If we take D in (C2''') such that

 $(53) D_k^i = \lambda (l^i l_k - \delta_k^i),$

then the non-linear connection N is metrical, and so we have a generalization of the (Γ, N) defined by E. Cartan.

However, in order to obtain the Γ only, it does not need the non-linear connection to be metrical. In particular, if $\lambda = 0$, $\mu = -1$ (i.e. $D = -\delta$) then the components F_k^i of the non-linear connection N become $F_k^i = G_k^i + \delta_k^i$, which are somewhat canonical in features. So, it seems to be interesting that, apart from Finsler metrics, we treat Finsler connections with the deflection tensor field $D = -\delta$. Next, we shall give an example of such a Finsler connection.

§ 3. Finsler connections derived from affine connections

9°. Let $F(M)(M, \tilde{\pi}, \tilde{G})$ be the affine bundle over M, where $\tilde{G} = GL(n, R) \times F$ is the affine group with the multiplication

(54) $(g_1, v_1) (g_2, v_2) = (g_1 g_2, g_1 v_2 + v_1).$

Each $(g, v) \in \tilde{G}$ acts on F(M) by

$$\tilde{T}_{(g,v)}: F(M) \to F(M) | (\gamma, z) \to (\gamma + zv, zg),$$

so we have the restrictions

$$T_g: F(M) \to F(M) | (y, z) \to (y, zg)$$

and

$$S_v: F(M) \to F(M) | (\gamma, z) \to (\gamma + zv, z).$$

Therefore, a connection in the affine bundle is invariant not only by T_g but by S_v .

The Lie algebra of the structural group \tilde{G} is L(n, R) + F, if we identify the Lie algebra of the additive group F with F itself. If we denote by Z(A) and Y(f) the respective fundamental vector fields corresponding to $A \in L(n, R) + 0$ and $f \in 0 + F$, then Z(A) is also the fundamental vector field in the Finsler bundle F(M), and Y(f) is the induced fundamental vector field.

The induced vertical distribution F^i defined by

$$F(M) \ni u \to \{X \in F(M)_u \mid \pi_2 X = 0\}$$

is spanned by Y(f), where $F(M)_u$ is the tangent space at $u \in F(M)$.

10°. Let $\tilde{\Gamma}$ be a connection in the affine bundle F(M). Then, a Finsler connection (Γ, N) is obtained by pairing $\tilde{\Gamma}$ with the induced vertical distribution F^i . In this case the v-basic vector field $B^{\nu}(f)$ is Y(f).

Since the $\tilde{\Gamma}$ is S_v -invariant, the h-basic vector field $B^h(f)$ is S_v -invariant. Therefore, the subordinate F-connection to (Γ, N) is a linear connection and the deflection tensor field D of (Γ, N) is S_v -invariant.

Now, we shall treat the connection forms.

PROPOSITION 4. Let $\tilde{\omega}$ and ω be the connection forms of $\tilde{\Gamma}$ and Γ respectively. If we consider the form $\omega + \theta^v$ to take values in the Lie algebra L(n, R) + F, then

(55)
$$\tilde{\omega} = \omega + \theta^{v}$$
.

PROOF. Since $(\theta^h, \theta^v, \omega)$ constitutes the dual system of $(B^h(f), Y(f), Z(A))$, we have

(56)
$$(\omega + \theta^{\nu}) (B^{h}(f)) = 0,$$

(57)
$$(\omega + \theta^{\nu}) (Z(A)) = A, \quad (\omega + \theta^{\nu})(Y(f)) = f.$$

These relations show that $\omega + \theta^{\nu}$ is just the connection form $\tilde{\omega}$ of the $\tilde{\Gamma}$. Because, with respect to the connection in the affine bundle F(M) over M, the horizontal subspace is spanned by $B^{h}(f)$ and the vertical subspace by the fundamental vector fields Z(A) and Y(f).

PROPOSITION 5. Let $\tilde{\omega}$ be the connection form of $\tilde{\Gamma}$, and $\underline{\omega}$ be the connection form of the subordinate linear connection to (Γ, N) . If \mathfrak{c} is the injection

 $\iota: L(M) \to F(M) \mid z \to (0, z),$

then

(58)
$$\iota^* \tilde{\omega} = \omega - D(\theta).$$

The proof will be obtained from (55), (16), (12) and (10). A connection Γ in the affine bundle is canonical, if the $\iota^* \tilde{\omega}$ has the form

(59)
$$\iota^* \tilde{\omega} = \omega + \theta$$
,

and is called the *affine connection* [3]. The formula (58) shows that the connection $\tilde{\Gamma}$ is affine if and only if

$$(60) D = -\delta.$$

Thus we have

THEOREM B. Let $\tilde{\Gamma}$ be a connection in the affine bundle F(M) over M. Then, a Finsler connection (Γ, N) of M may be defined by the Finsler pair $(\tilde{\Gamma}, F^i)$, where F^i is the induced vertical distribution. Its subordinate F-connection becomes a linear connection and its deflection tensor field D is S_v -invariant. In particular, the connection $\tilde{\Gamma}$ is an affine connection of M if and only if $D = -\delta$.

References

- [1] E. Cartan: Les espaces de Finsler, Actualités 79, Paris, 1934.
- [2] M. Hashiguchi: On parallel displacements in Finsler spaces, J. Math. Soc. Japan, 10, (1958), 365-379.
- [3] S. Kobayashi and K. Nomizu: Foundations of differential geometry I, Interscience, 1963.
- [4] M. Matsumoto: A Finsler connection with many torsions, Tensor (N. S.), 17 (1966), 217-226.
- [5] M. Matsumoto: On F-connections and associated non-linear connections, J. Math. Kyoto Univ. 9 (1969), 25-40.