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Abstract

We consider error estimates for the Galerkin approximations of two point boundary
value problems. The error formulas are asymptotically expressed in terms of a posteriori
errors.

1. Introduction

In this paper we consider error estimates for the Galerkin approximations of the
following two point boundary value problems :
—(ax)u' Y +bo(x)u=f(x), «x¢€l,

(LD 1(0)= 1(1)=0
and
(1.2) —u't+alx)u+o(x)u=r(x), xel,

u(0)=u(1)=0.

Already, by BabuSka and Rheinboldt, error formulas and optimal partitions have been
published in the case of the piecewise linear approximation for (1.1) ([1]). In this paper
we employ the piecewise polynomials of degree more than 2. The error formulas in [1]
were considered under the conditions :

ut "(x)*0, =x¢€l
and
(1.3) a2 (ue)=0, ud 2 (ue)#0, k=1, .. q, 0<u<p<..<pq<l,
where y, is the solution of (1.1).
The main object of this paper is to introduce error formulas under more general
condition than (1.3):
ui VN (pe)=0, k=1, ..., d, 0<m<ps<..<pe<l.
First, in Section 3, we consider the following simple problem :
—u"=f(x), «xe€l,
u(0)=u(1)=0.
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For this problem we consider the properties of the error and error estimates. And, based
on these properties and error formulas, we consider error formulas for (1.1) and (1.2) in
Sections 4 and 5, respectively. The error formulas are asymptotically expressed in terms
of a posteriori errors.

The results in this paper may be generalized for error estimates under other norms
than we use here. Also, by using the results of Sections 4 and 5, we shall mention optimal
partitions ([3]).

2. Notations

Let /=[0, 1]. On [ we consider partitions
A: 0=x0<x:1<x2< .. <Xm1<xm=1
and introduce the notations

Ij:[xj—l, xj] } =1
hj:xj_'xj—l ’ T= 5 e
h=max b b= min b
All partitions A which for fixed 1>0, x>1 satisfy
h=An*

are said to be (A, x)-regular.
On an interval J (J =) we define

(u, v);Zf]uv dx.

If P.(J) denote the collection of all polynomials of degree not greater than », then
continuous piecewise polynomial space .#% is defined as usual by
25={ve C°(I)| vy P:(I;), 7=1, ..., m; v(0)=0v(1)=0}.
And P?(J) consists of the polynomials which belong to P,(J) and vanish at the endpoints
of J.
Also let 5!, 74, ..., n7—. be the different zero points of the Jacobi polynomial

_ 1 a’ r

with weight function x(1—x) and we define
xhi=xi1+ha], i=1, ..., m, j=1, ..., r—1.
From now on, let »>2 and C be a generic constant independent of any partition.

3. A posteriori error estimates—Part I

In this section we consider the following two point boundary value problem :
Lu=—u"=7F(x), x€l,
u(0)=u(1)=0,
where we assume that fe€ C7(7).
The solution %, of (3.1) belongs to C™*%(/). Let za,€ #% be the Galerkin approx-
imation to g, determined by the relation
(2hr, V' i=(f, v)1, Yove #%.

(3.1)
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Set
Z=Uo—Za,.
Then the following result is well known :
LEMMA 3.1. For all partitions A the errvor z satisfies at the knots
z(x;)=0, 7=0, ..., m.
Proof. The Green’s function G(x, &) for (3.1) is given by

[ x(1=8), 0<x<¢,
G, 5)_{ £1-x), £<x<l.
In particular, at the knots it follows that
(3.2) G(x;,+ )e #§, 7=0, ..., m.

By using G(x, - ) we have
u(x)=(Lu, Gx, )

(v 5 e)),

This representation holds for y € H{(/) so that it can be applied to z. Since

(2", v')i=0, Yve 7%,
we have
2le)=(2", 9% (e ),
(3.3) PO
Z(z,—a?(xjn )—v)l, Yve 7%,

from which follows
|2 Gl <2 ln it 19 s+ )= s

From (3.2) it follows that
Z(Xj):(), f:O, veey, M.
This completes the proof of Lemma 3.1.
Note that this lemma holds for all continuous piecewise polynomials which are the
Galerkin approximations to %, Next lemma shows the relation between z,, and za., .
at the knots and the Jacobi points.

LEMMA 3.2.  For all partitions A, at the knots and the Jacobi points we have
Zar+1(xi)—za,(x:)=0, i=0, ..., m,
Zar+1(x5)—za,(x5)=0, i=1,.., m, j=1, .., r—1.
Proof. 1t follows from Lemma 3.1 that
wo(x:)—2a,(x:)=0 } 0
wo(x:)—zarlx)=0 J T
Hence
ZA,r+l(xi)_ZA,r(xi):0, i:(), ey, M.
Since
(Zar, W)=(f, w,

, , Ywe PNI;), =1, ..., m,
(ZL,rH, w )Ii:(f, W)Ii } w ( ) ! "
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we have
(3.4) (2a,+1—Zn,, w)=0, Y w e PXI;), i=1, ..., m.
We take w; € P(I;) which satisfies w(x/.)=30;s as w. Since zs,r+1—Za,r € PPni(l;) and
w) € Pr_,(I;), it follows from the property of Jacobi points that there are positive constants
wr With 1<£<7r—1 such that
|(Zar 1= 26 Wil =(Zars1—Zar, w5l

_ ) - (ZA,V*-l(xirk)-ZA,r(x{k))w;,(x{k)
- hl kgl Wer nk(l—”k)

‘;77(1—7'77)—|ZA7+1(JCU) ZA,(x”H

Hence it follows from (3.4) that
Za,a1(x5)—za-(x5)=0.
This completes the proof of Lemma 3.2.
Also it follows from Lemma 3.1 that for each subinterval I; the following estimate
holds independent of every other subinterval.
LEMMA 3.3. For all partitions A there are constants C such that
"Z(k)"L (1)<C” u(r“)"r(/nh}“_k, k=0, ..., 7, j=1, ..., m,
where the constants C depend on v and k but not on h;.
Proof. Note that
(2, v')i;=0, Yve PX(I;), J=1,..,m
Let 7z, be the Lagrange interpolation of degree 7 to u, on [, Then it follows from Lemma
3.1 that za,— 0 € PY(I;), and, therefore,
(Z < )IJ (Z z +(ZAr ?;to),)u
(Z Uo— o )u
<C 2 |z Vs P N =iy G2,
ie.,
I 2" Moo < C llad™* | ocin 512

Hence we have

xy, h}/z
<ClludPl-aphi™.
Also we have
I 2a— g0 2= = || 2 |l L=t +1I 00— g0l s
<Cllub*Vluphi*,
which together with Markoff’s inequality implies that

I 28— @ =< C | ud* PVl -iphi* %, k=0, ..., 7.
On the other hand,
I 8 — a8 =< C | ™| =cipha3 ™%, k=0, ..., 7.

Hence it follows that
1 2® ) o< | 6 — a6 |-+l @62 — 2E0 |-
< Cll ud™*Pl=phit % k=0, ..., 7
This completes the proof of Lemma 3.3.
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Now set
05(x)=us(x)—zZ,(x)
$i(x)=2%,+1(x)—2%4,(x)
Then we obtain the following lemma :
LemMmA 3.4. Suppose that

}y xe[] ].:1, ceey M.

ud P (x )0, Vxel.
Then, for all partitions A there are constants C(r) and C(r) such that

m 1/2 —_ —
35) 12 huo=C) [ B 1] "1+ 0®) as T,
and
- m 1/2 — —
(3.6) ||Z'||L2(1)=C(7’)[J§1”¢§'r_1)”2u(mh§'r] (1+0(h)) as h~0,

where the constants in the bounds of the O-terms depend on f and r but not on A and
the constants C(r) and C(r) are uniquely determined by 7.
Proof. Set
0i(x)=p;(x)—¢;(x)
$i(x)=2arc1(x)—2a,(x) {, Vx€L, j=1, ..., m.
G25(x)=wo(x)—2a,+:1(x)

Then obviously

(3.7) 2(x)=¢r;(x)+ ¢2;(x) } .

(3.8) ()= ()= 2lnlz) o VFe IFL e,

(3.9) (¢§,j, U/)Ij:_(dj, 2))11, VZ)EH()I(]j), 7=1, ..., m.
Also set

oo=min {| 2y (x)|, x € I},

o;=max {| uf" " (x)|, x € I,}
¢;=max {| ¢ V(x)l, x € I}
By the assumption we have

}, 7=1, ..., m.

(r-1)
ﬁ’]—po(—x—ﬂm, Vxel, Jj=1,..,

and, hence, it follows from Lemma 3.3 and (3.8) that

(r—1)
Loy () = | uf P (x)— 28 (x)| < Ch; < C———I N p ()| h;
0

This implies that

m.

()= x)— 0"V (x)
. =05 x)1+O(h;)) as h;~0.
Therefore, for all j with 1<;7<m,

lo,(x)| < Chi< CLipr
Oo

(3.10)

(3.11) ;
SCp—:h}(1+0(hj)) as h;—0, x €1;.

On the other hand, it follows from ¢, € P,_,(/;) that



36 S. Kajita

$,<C Il ¢ Vllrzunhi'”?
< Cll ¢ 2 | 2anhi?
< Cll é;llezanhs ™2
Combining this inequality with (3.11), we obtain
lo;(x)] < Cll ¢ lleeunhi?(1+ O(hy))
and
| o;(x) | < C | @5V Neunhi (14 O(hy)),
which imply

(3.12) I 6 lc2un=<C || $;lr2unh;(1+ O(h;)) as h;—=0
and
(3.13) [ o;llzzan<C | ¢5 " l2unhi(14+ OCh;)) as  h;—0.

Also, from (3.9) and ¢, , € H{(I;) we have
I 5.5 13200 < || 2.5 | 22an | 05 Nl 2ty
<C ” $2.5 “LZ(m " 0j "LZ(Ij)hj

ie.,
(3.14) I ¢35 |l 22un< C || 05 llL2un s,
which together with (3.12) and (3.13) gives
(3.15) I 3.5 200 < C | s ll2eanh3(1+ O(h;))
and
(3.16) I 5.5 1l L2un< C | 5Vl eanh i (1+ O(h;)).

Moreover, it follows from Lemma 3.2 that
dri(x5-1)=dr(xh)=...= dri(xfr-1)=¢1,;(x;)=0.
Let s,,, be the polynominal of degree »+1 on [ so that
sr+1(0)= Sr+1(7]17): e = Sr+1(77rr—1 )= sr+1(1)=0
and sY7"(x)=1.Then we have

le,j(X):(/)(1,Tj+1)(X)h;+15r+1 <m‘>, X € Ij, jzl,

h;
where ¢{*V(x) is a constant. We denote

Sr 2 S Sr 2

C(r)zm, C(r):_\l”?r%%'

From the representation of ¢,; we obtain
” &1, ||L2<1j): C(7) ” &1 ” eapnh; = C( ) || </'§,Tj+1) ”Lzuj)l’l;,
ie.,
(3.17) I 41 le2an= C(#) I s lezanh;= C(#) | 85 N L2un k.
It follows from (3.7), (3.15) and (3.17) that with some «
I 2" Wieun= (P2t ¢25, $15+ Pos)

= ¢Li ean—+2a || §1.5 N eean | 925 L2+ 95,5 13200

=C(r)? | ¢;132anh3(1+ O(h;))
and
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m 1/2 — —
12/ lisr=C(r) | & 15 etz "1+ 0D as T,
Similarly, by (3.16) and (3.17) we obtain
- m 1/2 — —
12 lsr=C) | BI85 Nk | 1+ 0 as =0

This completes the proof of this lemma.
From now on, let the constants C(#) and C(7) be the values in Lemma 3.4.
By Lemma 3.4 we obtain the following result :

THEOREM 3.5. On the assumption of Lemma 3.4 we have

m 1/2 — I
(318) ' liw=C() | £ losliahd| (1+0(R) as 70,
and

m 1/2 —
(319) ”Z,“Lz(])—- ( I:g ” %(r+1)|lL2(1,)h2r:| 1+ O( )) as h—>0,

where the constants in the bounds of the O-terms depend on f and v but not on A.
Proof. By (3.12) we have
I 05 llz2un= Il 65+ 0l 22
= | ¢;llz2an(1+ O(h;))
which together with (3.5) gives (3.18).
Also, by (3.10) we have
185" le2an= 105l 2an(1+ O(h;))
Since p{" Y= y{*? we have
165 P ll2an= I 2t l2an(1+ O(hy)).
Hence, by (3.6) we obtain (3.19).
In Lemma 3.4 and Theorem 3.5 we assume that #{*"(x)+0 for all x € /. Clearly, the
assumption is very severe. But, actually, the results are largely valid also when #{"*" has
zeros in /. In order to show these we prove the following lemma and theorem :

(3.20)

LEMMA 3.6. Suppose that
ud P (pe)=0, k=1, ..., q, 01 <pa<...<pqe<l.

For any (A, x)-vegular partition A with 1 <x<——- H_l we have
m 1/2 —_ —
(3.21) ”Z’”LZUFC(?’)[E I ¢>j”%2(m1’l§] (1+0(h*®)) as h—0
and
(322) 12 lew=C) | BNkt 1+ 07 as 70,

where ¢ =v+1—rx and the constants in the bounds of the O-terms depend on f and r but
not on A.
Proof. For any § >0 we introduce the sets
Is={xeI||x—pe| <8 for some u,}, I§=1\Us,
Je={/=1, ..., m; NI+ ¢}, J§={1, ..., mN\Us.
We assume that §,<(8¢)~* and, hence, that
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(3.23) D h;<2(80+h)g<480g <+ L for ”<do.

€ Jao 2’
Since min {| #{V(x)|, x € I§}=p00>0, for the subintervals J; with j € J§ we have
| 2" W2un=C(r )V | 6 [3eanh3™ (14 O(hy).
Hence, for <4, it follows from (3.23) that
Iz ”%2(1)2,-52/;,, I 2" 1725

=C(r) [2 I+ fsanh” | 1+ O(R))
(3.24) c

> Clr Pt h ™ (2 hy) 1+ 0(R))
jeJs
>Ch?*™*(1+ O0(h)).
On the other hand, by Lemma 3.3 we have
lo;(x)|<ChI, j=1,..,m
from which follows by (3.14) ‘
I 2. 720 < CRE™®
< C7’l_ 2(r+1—rx)% zrxhj
<Clz'lanh*h;,(1+0(h)) as h—0, i=1, ..., m.
Then there are some constants @, 8; and 3. such that

12" 2= 2 (f1it+ 25, d1st+¢25)1
(é 105 ) +2 (2190 len) (221 i)
(2145

m m 1/2 — —_
= (160l )+ (Z 1 0alan) 12 s “(1+ O(R))

+B: 1 2" 2y 2 (1+ O(h)).
Hence we have

I = 21 1llan )1+ O(R ) as T,

where the values | ¢1, 324, with 1<;7<m may be computed in the same way as in Lemma
3.4

THEOREM 3.7. On the assumption of Lemma 3.6 we have

(3.25) I 2" |2y = C(f’)[g‘.l I o ||%2(mh1} (1+0(h¢)) as k-0
and
12 _ —
(326) "Z/”Lzu)—- 1’)[2 H u(’“’llum)h”] (1+ O(he)) as ]/l“’O,

where the constants in the bounds of the O-terms depend on f and r but not on A.
Proof. 1t follows from Lemma 3.3 and (3.24) that

" 0j ||2Lz(,,)h§
(xSl 2R 5

Hence, by (3.21) there are some constants 3, 8. and @, with 1<j<m such that

(3.27) } < Chi < C | 2" |izwh *hs(1+ O(h)).
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COP(Z Noalisanhs )= Cr (£ 16+ o3 lanid)

m

=C(7r)? 2 (I @51z 2un+2a; 1| 65|l 2an llos | 2an 1l 65 12 ) 23

3

=C(r)? ng I 65 220y %

B 2 1 6lkt) 12 Lk 1+ O(R))

+8: 1 2" |32y 2(1+ O(h))
=z 301+ 0(Rh®)) as h—0,
which implies that (3.25) holds.
By (3.22) and (3.27) we obtain (3.26) in the same way as in the proof of (3.25).
Here we remark that (3.18) and (3.25) in Theorems 3.5 and 3.7 are a posteriori
computable error estimates.
Moreover let
51261’j262>0, jzl, ey, M
Then, similarly as in the proof of Lemmas 3.4 and 3.6, Theorems 3.5 and 3.7, we easily
obtain the following result :
THEOREM 3.8. If
uy*V(x)*+0, Vzxel.
Then, for all partitions A, we have

m 1/2 m 1/2 — —
(328) |2 @2l | "= CON| B aslosliants| "+ 0 as B0
and

m 1/2 ~ m 1/2 —_ —
(3.29) |2 a2 | =CO| & asl b iy’ | 1+ 0(R)) as K-,

where the constants in the bounds of the O-terms depend on f and v but not on A.
Also if
u N (wa)=0, k=1, .., q, 0<p<p<..<pe<l,
r-f-l

then, for any (A, x)-regular partitions A with 1< x< , we have
m /2 — —_
(3.30) [ng a; | Z/”ium} = C(V)[ng a; |l o ||%z(1,~>h§:| (1+0(Rr®)) as h~0
and
m 1/2 — —_
33D B el ] =C0)| & alus | "+ 0G) as 7,

where e =y +1—rx and the constants in the bounds of the O-terms depend on f and r but
not on A.

These results shall play important parts in Section 4.

The following Table I shows some values of the constants C(7) and C(»).

In the following sections, we consider the more general two point boundary value
problems.
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TABLE I

r Cc(») C(»
) 1| 1
2v/15 12/5
] 1| 1
2v/42 1207

. B 1

120 5040

4. A posteriori error estimates—Part I1

In this section we consider the following two point boundary value problem :
Lu=—(a(x)u')+b(x)u=f(x), «x€l,
u(0)=u(1)=0,
where we assume that g€ C™*(]), b, f€ C™(I) and
a(x)=a>0, b(x)=0, =xe€l.
It is well known that the solution gz, of (4.1) belongs to C"*2(/). Let ua, € .#% be the
Galerkin approximation to y, determined by the relation
' (aub,, V' )i+ (bua,, vi=(f, v);, Vve 4%
and z,, € .74 be the solution of equations
(zar, Vi=(—ug, v);, Vv€E L
Note that z., is the Galerkin approximation for (3.1) whose the solution is exactly #,.
Set

(4.1)

€= Uo— Una.»
Z=Uo—Ra,r
Obviously the error z satisfies the properties in Section3. For =1, Babuska and
Rheinboldt have analyzed the error ¢ ([1]). Here we analyze it for »>2.
Now we introduce the norm

1/2
I 2leay= [fl(au’2+bu2)dx]

on H¢(I). If
I olleein< C Il o' |22y 2,
then
(4.2) IVau o=l ulea(l1+O0(h?)) as h-0.

First we prove the following lemma :
LEMMA 4.1. For each subinterval I; of a given partition A there is a constant C such
that
(4.3) le(x;-)—e(x)|<Cle lmh ™ ?h;, =1, ..., m,
where the constant C depends on a and b but not on A.
Proof. Let u, and ., be the solutions of the initial value problems :
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Lu=0, u(0)=0, u(0)=—1
Lu=0, u(1)=0, u'(1)=—
respectively.
Set

B = (@ (O i () -

Then the Green’s function for (4.1) is represented by

Glx, 5):{ () u{§)F(E), 0<x<¢,

ur(&)ux(x)F (&), E<x<l.
In the same way as in (3.3) we have
e(xj-1)—e(x;)=(ae’, aé.(G(xJ L )= G(xj5, * )
+(be, G(xj-1, * )—G(xj, * I
=(a¢’, SE(Glxis, - )= Glas, - D=0

+(be, G(x5-1,* )= G(xj,+ )—v), Vve.#j
from which follows

(4.4) Ie(xj_l)— e(Xj)| <C " e’ ||Lz(1)vi£1£r " a—aé(G(xj—l, * )" G(Xj, ° ))_ Z), "L2(1)
Hereon

inf "a—aé.(G(xj—l, )= G(xj, * )= e

= inf [2 I Coea(im1)— 22(x) ) Faer ) — 0 32

v(xe)= G(x; 1, Xw)
G(xj, X&)

Xj,
k=j— 11
m
+ 3 e w () Fua) = o'l
<Ch®*h}
and
inf == (G(x.l 1, 0 )= G(xj, + )= 0 |Faup< Ch™".
vE Pi(I;) aé
v(xe)= G(x;-1, X&)
— G, xx)
k=j—1,]

Therefore we obtain

mf || (G(xJ L) =G, 0 D=V |eay< Ch " "?h;.

which together with (4.4) gives (4.3).
Also we obtain the following relation between ¢ and z :
LEMMA 4.2. Let e and z be the errors associated with (4.1) and (3.1) which have the
same solution wu,, respectively. Then
(4.5) e lzey= 1 2’ l2y(1+ O(R?)) as h-0,
where the constant in the bound of the O-term depends on a, b and v but not on A.
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Proof. By the definition of z., we have
(Z/, Z,)IZ(Z/, e’)1

and
le' =2 l3ny=(e'—2", e—2') .
:(6’, e')1—2(e’, Z,)I“*—(Z,, P,
=(e’, ' h—(z', 2"k
=|e ||%2<1>— Iz ”izmy
ie.,
(4.6) e ey — 1 2" Izzr= Il & — 2" IF20a>.
Also
(4.7) (2", v'),=0, Yove PXI;), i=1, ..., m.

Let v be the piecewise linear function so that
vixs)=elx;), J=1, .., m.
It follows from the property of ¢ that

le’'—z Ilizmé%(a(e’—z’), e’—z'

=L {(ale=2), e =2 =V u+(ale'—2), V' )i}
a
S%{l(be, e—z—v)|+|(az’, &=z =V )|+|(ale’—2"), v )|}
Now let aj=a<£i:12—+ﬁ>, then
(4.8) la(x)—a;|<Ch;, x€l;;, j=1,.., m.
Also, since | e—z— v |r2ap< C || €’ — 2" || L2uph; and
(4.9) lellzin<Cll e i,
we have

m
le' =z —v |} <C El hi*le—z—vlian

(4.10) <C i hi* |l e’ = 2" teunhs

<Cle -2z }u
and
[(be, e—z—v)iI<Clelenle—z—vwm
<Clle el e’ =z lrxh?
It follows from (4.6), (4.7), (4.8) and (4.10) that

m
21 ((a—ai)z’, =2 —Vv )y
p=

[(az’, ' —z'— V' )| <

_+.

m
21 ai(z', e'—z'—V )y
£
<Clz lenll e =z e
<Clle lnlle’ =2z |y
Moreover it follows from (4.3) that
|(a(e'—z'), V')1| <C || e'—z ||L2(1> || e ||L2(1>7’l- Tz,
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Therefore
le'—z < Cle el e =2 |k
and
(4.11) le'= 2z lrzn< Cl e |l

Hence, from (4.6) we have
0< e lzan—l 2" lZzn< Cll & ey ?,
which gives (4.5).
Now set
7i(x)=(Lua,—f)x)
=a(x)e”"(x)+a (x)e'(x)—b(x)e(x), «x€l;|, j=1, ..., m.

a.:a<Xj—1+Xj>
’ 2

Obviously

la(x)—a;| < Ch; <Ca’ h;, x €1, i=1, ..., m

which implies
(4.12) a(x)=a;(1+O0(h;)) as h;»0, «x€l, Jj=1, .., m.
Using 7; and g; with 1<;<m, the following error formulas hold :
THEOREM 4.3. Suppose that
uy P (x)+0, «x€l.

Then

@13)  Jelw=cO) &1k p] "1+ 0@) as F-0

and

418)  lelsw=CO) & IVaud ™ Rahy ] (1+0M) as 70,

where the constants in the bounds of the O-terms depend on a, b, f and r but not on A.
Proof. Set
ri(x)=2%,(x)— ul (x)
7i(x)=us(x)—z%,(x)

<2 || ar; ||L2(1nh >

1 aj

di=(E N lranid)

J=1

}, x€l; 7=1, ..., m,

It follows that
|| \/EZI “?_2(1): Z‘ (dZ’, Z/)u

:<ng ” 4 "wm) 1+ 0(71 ),
which together with (3.28) and (4.12) implies that
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3

IWVaz liw=Cr)| 2 a7l 1+ 0(R))

m 7% 25, — —
=cr| & Leiliw 2% 4 o) as -0,

Also, by using (4.6) and (4.11), we have
l“ Jae' ||L2(1)_” fZ,||%2(1)|
=[(ale’+2"), (e'"— 2" )|
<Clle'+z lemle =2 I
<Cl e ltunh
<Clvaeltuh.
Thus
(4.15) IVae liw=1vaz liw(l+0(h)) as k-0
and
C(r)di=vae a1+ 0(h)) as h-0.
It follows from (4.11) that
d:<C |l s, — 20 [l 22y
<Cle' =z |
<Clle lenh
<Clelznh.
Hence, there are some constants ¢; with 1<;<9 such that

cry 1w oz oy 352 [ (000700 + alx) e (0)

=1 a;
+a'(x)e’(x)—b(x)e(x))dx

=C(r)Vdi+adi+a:lle |}mh?+as | elimh?
+a.didzt asd: | e llinh + asd: | ek
+a7d> || e’ ||L2(1)7"l+ a’sdz || e ||L2(1)—1’—l
+as | e ezl el 2y ?

=|vae li:n(14+0(h)) as h—0.

Since (4.9) holds, from (4.2) this implies

m 12, 1/2 _ _
||e||E(1):C(7)[§1“LjﬁLf‘(ﬂlh§] (1+0(h)) as h~-0.
Moreover, it follows from (3.29) that

1/2 —
IVaz L= C)| B al u ek’ |1+ OR))

=N B IWaug ™ laph | "0+ 0R) as -0,

where together with (4.2) and (4.15) gives (4.14).
Also we obtain the following theorem :
THEOREM 4.4. Suppose that

uT N (we)=0, k=1, .., q, 0<m<p<..<pg<l.
7+1

Su

, we have

For any (A, x)-vegular partition A with 1<x<
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- z ” 7’.7'“%2(1:‘) 2 |2 T e A
(4.16)  lelew=Clr)| 2 =52 05| (1+0(k) as h—0
and
- 1/2 _ _
(4.17) lelewy=C(r) [2 ”x/_u(rﬂ)Ummh?r] (1+0(h*)) as h-0,

where the constants in the bounds of the O-terms depend on a, b, f and r but not on A.
Proof. 1t follows from (3.30) that

Waz low=| & a:l2 lia| 1+ 0R))
=CO)| & asl 7t | (14 02 )
=] & 198w 111 o)) as 0.

. 1 a;
Also, it follows from (3.31) that

Va2 o= Co)| £ s lus k| (14 02 )

=G| B IWauf skt | "1+ 07 ) as 70,

After this, on the same proof as Theorem 4.3, we obtain (4.16) and (4.17).

We remark that (4.13) and (4.16) in Theorems 4.3 and 4.4 are a posteriori computable
error estimates. Also, (4.14) and (4.17) will play the important parts in the discussion of
optimal partitions ([3]).

5. A posteriori error estimates—Part I1I

In this section we consider the following two point boundary value problem :
Lu=—u"+a(x)u'+b(x)u=r(x), x€1,
u(0)=u(1)=0,

where we assume that ¢, b, f€ C™(I).

It is well known that the solution z, of (5.1) belongs to C"™*2(7). Let ua, € #% be the
Galerkin approximation to g, determined by the relation

(uar, V' i+ (aus,+bua,, v)1=(f, v)i, YVove i
and z., €. .74 be the solution of equations
(Zar, V)i=(—us, v);, Vve#i.

Note that the Galerkin approximation ., exists for 7 sufficiently small and that z,, is
the Galerkin approximation for (3.1) whose the solution is exactly z,.

Set

(5.1)

€= Uo— Una.r,
Z=Uo— Zar.
Obviously the error z satisfies the properties in Section 3. The following relation holds
between ¢ and z :
LEMMA 5.1. Let e and z be the ervors associated with (5.1) and (3.1) which have the
same solution wu,, vespectively. Then
(5.2) e leer= 1 2" llzr(1+ O(R?)) as h—0,



46 S. Kajita

where the constant in the bound of the O-term depends on a, b and r but not on A.
Proof. By the definition of the Galerkin approximation we have
(e, e )+(ae’+be, eh=(e, 2’ )i+ (ae’+be, z),
(z', 2’ h=(2', &)1
By Theorem 8 of [2], we have
leln<Cle lunh,
12 20 < C | 2" Nl 2y 2.
Moreover let y be the piecewise linear function so that
vix;)=elx;), 7=0, ..., m.
Also let G(x, &) be the Green’s function for (5.1). Then in the same way as in (3.3), we
have
e(xj)=<e’, %(xj, : )—v’>1+(ae’+be, G(xs, + )=o), Vve#s

from which follows

le(x;)| < C e |l Uigla“%(xj, < )=

L2(1).
Therefore
Ivlzn<Cl e lzyh”
and
(5.3) le—zlen<le—z—vleao+lvies

<Cle' =z lunh+le lunh™).
On the other hand, we have
'—z', e’ —z' )
e h—20e, 2t (2, 2’
(e/, en—(2', 2"}
=|e ||3.2(1)— ” z |2za).
Hence it follows from (5.3) and (5.4) that
0< e Izer—I 2" 3ey=(ae’+ be, z—e)
<Cl e lezn+lellza) | 2 — el

<Cle oW le =12 Fnh+le lenh™)

le'—2z" |3y =(e
(e

(5.4)

ie.,

Ve lzwm—1z n<Cle lenh.
From above we obtain
(5.5) 0< e ey 2" ltzn< Cll €’ 32y,
which implies
e ler= 1 2" lL2y(1+ O(R?)) as h~0.
Now set
7i(x)=(Luar—f)x)
=e"(x)—alx)e’(x)—blx)e(x), =x€l;, j=1, ..., m.
Then from Theorem 3.5 we obtain the following theorem :

THEOREM 5.2. Suppose that
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Wr()£0,  xel.
Then
656)  1¢lw=CO)| E I liuwii| 1+0@) as -0
and
1/2 — —_
G e lwn=C [leu"“’ll k| (14 0(B) as T,

where the constants in the bounds of the O-terms depend on a, b, f and r but not on A.
Proof. Set
zi(x
7i(x

Za.(x)— ul.(x)

)=
)= uo(x)—2%.(x)
(;é | 75 1320 3 >

dz—<2 bk

From (5.4) and (5.5) we have
” Zﬁ,r— UA,» ”izu): " e —z "2L2(1)
= e’ Izzy—1 2" 20y
<C " e II%Z(I)Tl 2
and it follows from (za,— ua., )| € P-(I;) that

n ’ ’ 12
dzs C<§1 “ Zar— uA,r ”%%1]))

(5'8) =C ” Z’A,r_ uz;,r "Lza)
<Cl e lleznyh.
Also there are some constants @; with 1<;<9 such that

C(r) g‘.l | 75 120nhi= C(r)? gl hﬁf“(fj(x)—k ti(x)—alx)e (x)—b(x)e(x))dx

(5.9) =C(rPdi+ardé+a: | e |2:mh*+as I e Hizu)ﬁ ’+a4d d
+asdy || e |k + asdy || el ek + ard: || € ek
tasdz | ellznmh+as | el e lay i ?

It follows from (3.18) and (5.2) that
C(r)di= 2" lzax(1+ O(h))
=l e lezy(1+0(R)) as k-0,
which together with (5.8) and (5.9) gives

? 27 lanhi= e fxa(1+ O(R) as To-0.

Moreover, from (3.19) and (5.2) we obtain the error formula (5.7).
Also from Theorem 3.7 we obtain the following theorem :
THEOREM 5.3.  Suppose that

u V(pe)=0, k=1, .., q  0<m<p<..<p.<l.
r+1

}, x€l;, 7=1, ..., m,
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m 1/2 _ —
(5.10) I e l2ar=C(7) [g 7,11 2(1;)h§] (1+0(h®)) as h~-0
and

(5.11) ”e,”Lzu)— [2 “ u‘””ll z(/,)hzr:l 1+0(h )) as 7z—>0,

where the constants in the bounds of the O-terms depend on a, b, f and r but not on A.
Proof. 1t follows from (3.25) and (5.2) that
C(r)di=|z" |l L2ay(1+ O(R ®))
=l e llzi(1+O0(R®)) as k-0,
which together with (5.8) and (5.9) implies that

r¥ 2 rsltnhi= e 1+ 0 %) as 70,

Hence (5.10) is given.

Also, from (3.26) and (5.2) we obtain the error formula (5.11).

We remark that (5.6) and (5.10) in Theorems 5.2 and 5.3 are a posteriori computable
error estimates. Also, (5.7) and (5.11) will play the important parts in the discussion of
optimal partitions ([3]).

In this paper we consider the error estimates for » >2. But, the proofs of the lemmas
and the theorems in Sections 3, 4 and 5 apply to the case of »=1. Hence similar results
are given for »=1. Then we obtain
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