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Abstract

An approximation theorem of Fourier transform by piecewise linear functions is

proved.
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1. Introduction

We denote Banach spaces of all integrable functions and all regular complex卓nite

measures on the real line by Ll{R) and M(R), respectively. For a function f^Ll(R), the

Fourier transform is

/(｣)-王e-iixf{x)dx (｣∈R),

and for a measure fjt^M(R), the Fourier-Stieltjes transform is

J-ex e-fbcdfi(x) (｣∈R)･

A{R)- {f: fGLHR)},　A(R)-¥¥JuLHR)

B(R)-{fi: n∈M(R)}9 ¥¥/l¥¥B(R)-¥¥/Ji¥¥M(R)-

We define

and
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We denote Banach spaces of all integrable functions on one dimensional torus T by Ll(T).

For a function f^Ll{T)f the Fourier coefficients are

/(ォ) -去/: e mxf{x)dx for integers n.

We define

00                                                        00

A(T)-{¢: ∑ 1¢(サ)<->,中日A(T)-　∑ (p(n)¥.
n=-∞ォ=-oO

Herz [2] has proved that Cantor's ternary set is a spectral synthesis set. Kahane [3] has

proved this result using an approximation of functions in A( T) by piecewise linear functions:

if p∈ACT) and each pn is a continuous function on I7to equal <p at the multiples of 2%In and

linear on the remainder, then cpn∈A(T) and pn-<p¥¥AiT) - 0 (n - -) (See also Kahane

and Salem [4] and Benedetto [1]). In this paper, we prove that a similar result holds for

A(R).

2. Approximation of Fourier transforms

For a continuous function p on R and a positive integer n, we define pn to be the function

to equalやat the points 2izk/n, k-0, ±1, ±2,..., and linear on the remainder of R. For a

continuous function <p on I7, we define pn similarly.

Lemma. If p∈B(R), then <pn∈B(R) and ¥¥ <pH¥lB(Jf)≦H中日b(r) for all n.

For all x∈R, define the function e∬ by ex(?) -eォ(f∈R). We now show that if

x is a rational number, then (e-x)n∈B(R) and I(e-x)n IU(/?)-1. Suppose that x is a rational

number. Take a positive integer r and an integer 5 such that x-s/r. We see that

(e-s)^(?) - (e_x)n(re) for all f∈R. Since e_5 is 27T-periodic, regarding e_5 as a function on

T> we have e_5∈A(T). It follows that (e_s), ∈A(T) and (e_,)�"U<r>-l (See Benedetto

[1,p.168]. Hence (e_x)ォ∈BUI) and I (e_x)ォ¥B(R)-1. Let　　　　∈R and cu...,cm be

complex numbers such that　豊flfce-e* ｡｡≦1. T｡ prove pn∈B(R) and || <pn‖B(R)≦ll p‖B(R),
Jfc=l

it suffices to show that

2ckVnUZk)

k=l匡<p¥¥b(R)>

u22

Let p-{X, [X∈M(R), and s>0. Take ∂>O so that 2(1+||中日B{R))∂∑　ck <a. Since
fc=l
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te-Jn(w is uniformly continuous as a function of x for each k, there is a positive number rj

such that I(e_:)ォ(&)-(e_財)サ(&) <∂ for all x, y and k such that |x-y|<rj. Since

FL∈M(R), there are t｡,..., tp∈R so that U<...<tp, ti-ti-i-りfor all i, and lu¥({t｡, tpVX∂.

Choose rational numbers #1,...,#* such that x{∈ iu-u u¥ (1-1,…,p). It follows that

CO

?サ(｣)-∑　p
J=-oo (慧We一票) -真上(e-x) (慧)dfx(x)A^一票)

(e_∫)H(S)du(x),

-here A(?)--ax(1一芸　O for |∈R. This implies that

2ck<Pn(l;k)

k=l1-

5(

<

豊ck
k=l

芸ck
fc=l

王

∫
♪

豊ck∑
k=l i=l

(e-x)n (Zk) dfi (x)

to,tp]

∫

(e_ :)n(^k)dfJt(x)

ti-l,ti)

(e-xi) n (%k) dfji (x)

m

+∑　ck¥¥u¥({U, tpY)
k=l

♪

≦∑
1-1

fd¥v¥(x)

J(ti-uti]

〝‡

∑ck
A;=l ∫to,わ】C

(e-x)n (%k) d[JL (x)

m

+∑　ckI∂　<p¥¥B(R)
k=l

zck(e-xi)n(%k)

k=l+e.

Since (e_∫)n∈B(R) and ll (e_a?)サIl^<ie>-1 for every rational numbers x, it follows that

Consequently, we have

2Ck(Pn(^k)

k=l匡(p¥¥B{R)+S.

Since ｣>O is arbitrary, this completes the proof of the lemma.

Theorem. Ifcp∈A(R), then pn∈A(R)for all n and ¥¥q>n-中日A(R) - 0 (n - ∞).

Proof. Let Vm be de la Vallee Poussin's kernel; that is,

vm(0-

1　　　(1引≦m)

2-m/m (m≦I引≦2m) (｣∈R).

(2m≦ eb
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′lヽ

By Lemma, we have (pVJn∈B(R). Since each (pVm)n has compact support, this means

that (<pVJn∈A(R). Since || cp-cpVm¥¥A(R) - 0 (m- …), Lemma shows that {(pVm)n)m is

a Cauchy sequence inA(R). Let g denote the limit of (pVJn inA(R). The value pn(x) is

equal to g(x) since it is the limit of ((pVm)n(x) for each x∈R. Thus we have ¢n∈A(R).

To prove that pn-(P¥¥a(R) - 0 (n - …), assume first that ¢ has compact support. Let E

be the subset of A(R) consisting of all functions h with compact support contained in

(-37T/4, 37r/4). Then there exists a linear mapping 5 of E into A(T) and constant C such

that Sh-h on (-n, it) and ¥¥h‖A(R)≦C ¥Sh‖Am for all h∈E (See Rudin [5, p.56]). It

follows that ¥¥hn-h ‖A(R)≦C I Shn--Sh¥¥a(t) for all n≧8 and all h∈A(R) with compact

support contained in (-n/2,n/2). To show that pn-¢ ¥A(R) - 0 (n- ∞),let ｣>O and J

be a positive integer such that the support of ¢ is contained m (-7ip/2, np/2). Let T be a

mapping defined by 7Y(f) -/(/>?) for/∈A(R) and ｣∈R. Since Tや∈A(R) and the support

of Tp is contained in (-n/2f n/2), it follows that STcp∈A(T). Therefore there is a positive

integer N such that ¥¥(STp)♪n-STp ¥a(t)<s/C for every n≧N (See Benedetto [1, p.168]).

For w>max(8/p, N), we have

ll ¢n-¢ ¥A(R)-¥¥ Tpn-T(D ¥A(R)- (Tp)pn-T中日A(R)≦C¥¥ S(Tp)pn-ST(p |U(d

-C¥¥(STp)pn-STp ¥A(T)<｣.

In the general case, we may use the fact that the functions with compact supports are

dense in A(R). Let ｣>0, and let　¢ be a function with compact support such that

日中-¢‖iiu?)<s/3. By Lemma, we have ‖ pn-¢n¥¥A(R)≦=中一¢ ¥A(R)>　Since ¢ has compact

support there is a positive integer N such that　¢n-¢ Aォ><e/3 for all n>N. It follows

that

ll pn-中日A(R)≦H pn-¢n¥¥A(R)+¥ ¢n-¢ ¥A(R)+　¢-中日A(R)<S.

This completes the proof of the theorem.
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