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Abstract

An approximation theorem of Fourier transform by piecewise linear functions is
proved.
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1. Introduction

We denote Banach spaces of all integrable functions and all regular complex finite
measures on the real line by L' (R) and M(R), respectively. For a function f€L'(R), the
Fourier transform is

f©=[" e p@dr (¢ER),

and for a measure €M (R), the Fourier-Stieltjes transform is

p©=[" e dux) (zeR).
We define

AR)={f freL*(R)}, || fllaw =l fllow

and

B(R)={g: peMR)}, |l illsw=Il ¢ |luc.
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We denote Banach spaces of all integrable functions on one dimensional torus T by L'(T).
For a function f€L'(T), the Fourier coefficients are

f»(n)=%f_7:r e " f(x)dx for integers .

We define

A ={g: = lam|<o), | ollan= = |2,

n=—00 n=—oo

Herz [2] has proved that Cantor’s ternary set is a spectral synthesis set. Kahane [3] has
proved this result using an approximation of functions in A(T) by piecewise linear functions:
if p€A(T) and each ¢, is a continuous function on T to equal ¢ at the multiples of 27/x and
linear on the remainder, then ¢,€A(T) and || ¢,—¢ |lacny — 0 (n — ) (See also Kahane
and Salem [4] and Benedetto [1]). In this paper, we prove that a similar result holds for
A(R).

2. Approximation of Fourier transforms

For a continuous function ¢ on R and a positive integer #, we define ¢, to be the function
to equal ¢ at the points 27k/n, k=0, £1, £2, ..., and linear on the remainder of R. For a
continuous function ¢ on 7T, we define ¢, similarly.

Lemma. If 9€B(R), then ¢»€B(R) and || ¢l <I|| ¢ llzw for all n.

Proof. For all zER, define the function e, by e, (&) =e*** (§€R). We now show that if
x is a rational number, then (e_;),€B(R) and ||(e_2) . |lsw=1. Suppose that x is a rational
number. Take a positive integer » and an integer s such that x=s/». We see that
(e-9) m (&) = (e_p) »(#E) for all EER. Since e_; is 2m-periodic, regarding e_s as a function on
T, we have e_;€A(T). It follows that (e_s) »EA(T) and || (e-)m llacy=1 (See Benedetto
(1, p.168]. Hence (e_;),€B(R) and ||(e_)»llzw=1. Let &,...,E&x€R and ¢, ..., cn be

complex numbers such that || 2 cie_g ||«<1. To prove ¢,€B(R) and || ¢u llzw < ¢ 5@,
k=1

it suffices to show that

m
2 Ck <Pn(€k) S|| [ ||B<R).
k=1

Let =4, €M (R), and ¢>0. Take 6>0 so that 2(1+|| ¢ |lzw)d % | cx |[<e. Since
k=1
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(e-2) (&) is uniformly continuous as a function of x for each k, there is a positive number 7

such that |(e_z), (&) — (e-,)n (&)|<J for all x, y and k such that |z—y|<7n. Since
—ti.y=n for all 4, and | x| ((to, £,]1¢) <4.

LEM(R), there are o, ..., ;,, ER so that £, <...<ty, t;
It follows that

Choose rational numbers zi, ..., , such that z;€ (f;_1, t;]1 (=1, ..., p).

o ©= 5 o(H)a(e-2)= & [7 e (B a(e-22)

j=—o j=—o00

= [ eDn(® dut@),
where A(S)=max(1—%l £, O) for £E€R. This implies that

m

S [ edn@du)|
Seloae
é ,Zl »/;:,-_1,:,-1 (€—z)

‘Ckllﬂ|((t0, 1)

ﬁt‘l-l i

Since (e_2),€B(R) and ||(e-2),|lzw=1 for every rational numbers z, it follows that

(&0 |=

Saf, fednEdu@)

IA

IA

+E
b
<2

3 ci(ea)n(E) | +e
k=1

Z Ck (e—zz)n(gk) S]. (l= 1, ceey p)
=1
Consequently, we have
Ex ck 00 (8D | @ Iz +e.

Since ¢>0 is arbitrary, this completes the proof of the lemma.

—9law — 0 (n — ),

Theorem. If ¢€A(R), then ¢,€A(R) for all n and || ¢.
Proof. Let V, be de la Vallée Poussin’s kernel; that is,

1 (&1<m)
Vn(&)=1 2—|€|/m (m<|€|<2m) (E€ER).
0 @em<| &)
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By Lemma, we have (¢V,),EB(R). Since each (¢V,,), has compact support, this means
that (@V,),€A(R). Since || o=@V, llagw — 0 (m — ), Lemma shows that {(¢V,) .} » is
a Cauchy sequence in A(R). Let g denote the limit of (¢V,), in A(R). The value ¢,(x) is

equal to g{x) since it is the limit of (¢V,),(x) for each x€R. Thus we have ¢,€A(R).
To prove that || ¢,—¢ |la@w — 0 (n — ), assume first that ¢ has compact support. Let E
be the subset of A(R) consisting of all functions % with compact support contained in
(—3r/4,37/4). Then there exists a linear mapping S of E into A(T) and constant C such
that Sh=h on (—x, 7) and || 2 |law < C|| Sh|lacry for all hEE (See Rudin [5, p.56]). It
follows that || ,— 4 |law <C || Shy— Sh ||ay for all #=8 and all h€A(R) with compact
support contained in (—7/2, 7/2). To show that || ¢,— ¢ |law — 0 (n — ), let ¢>0 and p
be a positive integer such that the support of ¢ is contained in (—np/2, mp/2). Let T be a
mapping defined by Tf(&) =f(p&) for fEA(R) and E€ER. Since TpEA(R) and the support
of T¢ is contained in (—=x/2, 7/2), it follows that STo A (T). Therefore there is a positive
integer N such that || (ST¢) y»—STo ||lacr)<e/C for every n>N (See Benedetto [1, p.168]).
For n>max (8/p, N), we have

H On— @ ”A(R):H To,—To “A(R)=” (T(P)pn_TQD ||A<R>§C H S(T¢)pn— STy ”A(T)
=C|[(ST@) pn— ST ||acrr <e.

In the general case, we may use the fact that the functions with compact supports are
dense in A(R). Let ¢>0, and let ¢ be a function with compact support such that
Il o= ¢ llaw<e/3. By Lemma, we have || ¢,—¢ullaw <Il ¢—¢ |law. Since ¢ has compact
support, there is a positive integer N such that || ¢,— ¢ |la@ <&/3 for all n>N. It follows
that

H On— @ ||A<R)S|| On—n HA(R)+“ Pn—¢ ”A(R)+|| o—o ”A<R><€.

This completes the proof of the theorem.
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