Approximation of Fourier Transforms by Piecewise Linear Functions

著者	SUDA Katsuhiro, KAWAI Toru
journal or	鹿児島大学理学部紀要.数学・物理学・化学
publication title	
volume	27
page range	13-16
別言語のタイトル	区分的線形関数によるフーリエ変換の近似
URL	http://hdl.handle.net/10232/00000501

Rep. Fac. Sci. Kagoshima Univ. (Math., Phys. & Chem.), No. 27, 13-16, 1994.

Approximation of Fourier Transforms by Piecewise Linear Functions

Katsuhiro SUDA¹⁾ and Toru KAWAI¹⁾

(Received September 12, 1994)

Abstract

An approximation theorem of Fourier transform by piecewise linear functions is proved.

Key words: Fourier transform, piecewise linear function.

1. Introduction

We denote Banach spaces of all integrable functions and all regular complex finite measures on the real line by $L^1(\mathbf{R})$ and $M(\mathbf{R})$, respectively. For a function $f \in L^1(\mathbf{R})$, the Fourier transform is

$$\hat{f}(\xi) = \int_{-\infty}^{\infty} \mathrm{e}^{-i\xi x} f(x) \, dx \quad (\xi \in \mathbf{R}),$$

and for a measure $\mu \in M(\mathbf{R})$, the Fourier-Stieltjes transform is

$$\hat{\mu}(\xi) = \int_{-\infty}^{\infty} \mathrm{e}^{-i\xi x} \, d\mu(x) \quad (\xi \in \mathbf{R}).$$

We define

$$A(\mathbf{R}) = \{ \hat{f}: f \in L^1(\mathbf{R}) \}, \| \hat{f} \|_{A(\mathbf{R})} = \| f \|_{L^1(\mathbf{R})}$$

and

$$B(\mathbf{R}) = \{ \hat{\mu}: \ \mu \in M(\mathbf{R}) \}, \ \| \hat{\mu} \|_{B(\mathbf{R})} = \| \ \mu \|_{M(\mathbf{R})}.$$

¹⁾ Department of Mathematics, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890, Japan

We denote Banach spaces of all integrable functions on one dimensional torus T by $L^1(T)$. For a function $f \in L^1(T)$, the Fourier coefficients are

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-inx} f(x) dx \text{ for integers } n.$$

We define

$$A(\mathbf{T}) = \{ \varphi \colon \sum_{n=-\infty}^{\infty} | \widehat{\varphi}(n) | < \infty \}, \ || \varphi ||_{A(T)} = \sum_{n=-\infty}^{\infty} | \widehat{\varphi}(n) |.$$

Herz [2] has proved that Cantor's ternary set is a spectral synthesis set. Kahane [3] has proved this result using an approximation of functions in A(T) by piecewise linear functions: if $\varphi \in A(T)$ and each φ_n is a continuous function on T to equal φ at the multiples of $2\pi/n$ and linear on the remainder, then $\varphi_n \in A(T)$ and $|| \varphi_n - \varphi ||_{A(T)} \to 0$ $(n \to \infty)$ (See also Kahane and Salem [4] and Benedetto [1]). In this paper, we prove that a similar result holds for $A(\mathbf{R})$.

2. Approximation of Fourier transforms

For a continuous function φ on **R** and a positive integer *n*, we define φ_n to be the function to equal φ at the points $2\pi k/n$, $k=0, \pm 1, \pm 2, ...,$ and linear on the remainder of **R**. For a continuous function φ on **T**, we define φ_n similarly.

Lemma. If $\varphi \in B(\mathbf{R})$, then $\varphi_n \in B(\mathbf{R})$ and $\| \varphi_n \|_{B(\mathbf{R})} \leq \| \varphi \|_{B(\mathbf{R})}$ for all n.

Proof. For all $x \in \mathbf{R}$, define the function e_x by $e_x(\xi) = e^{ix\xi}$ ($\xi \in \mathbf{R}$). We now show that if x is a rational number, then $(e_{-x})_n \in B(\mathbf{R})$ and $||(e_{-x})_n||_{B(\mathbf{R})} = 1$. Suppose that x is a rational number. Take a positive integer r and an integer s such that x = s/r. We see that $(e_{-s})_{rn}(\xi) = (e_{-x})_n(r\xi)$ for all $\xi \in \mathbf{R}$. Since e_{-s} is 2π -periodic, regarding e_{-s} as a function on T, we have $e_{-s} \in A(T)$. It follows that $(e_{-s})_{rn} \in A(T)$ and $||(e_{-s})_{rn}||_{A(T)} = 1$ (See Benedetto [1, p.168]. Hence $(e_{-x})_n \in B(\mathbf{R})$ and $||(e_{-x})_n||_{B(\mathbf{R})} = 1$. Let $\xi_1, ..., \xi_m \in \mathbf{R}$ and $c_1, ..., c_m$ be complex numbers such that $||\sum_{k=1}^m c_k e_{-\xi_k}||_{\infty} \le 1$. To prove $\varphi_n \in B(\mathbf{R})$ and $||\varphi_n||_{B(\mathbf{R})} \le ||\varphi||_{B(\mathbf{R})}$, it suffices to show that

$$\left|\sum_{k=1}^{m} c_k \varphi_n(\xi_k)\right| \leq ||\varphi||_{B(R)}.$$

Let $\varphi = \hat{\mu}$, $\mu \in M(\mathbf{R})$, and $\varepsilon > 0$. Take $\delta > 0$ so that $2(1 + ||\varphi||_{B(\mathbf{R})}) \delta \sum_{k=1}^{m} |c_k| < \varepsilon$. Since

 $(e_{-x})_n(\xi_k)$ is uniformly continuous as a function of x for each k, there is a positive number η such that $|(e_{-x})_n(\xi_k) - (e_{-y})_n(\xi_k)| < \delta$ for all x, y and k such that $|x-y| < \eta$. Since $\mu \in M(\mathbf{R})$, there are $t_0, ..., t_p \in \mathbf{R}$ so that $t_0 < ... < t_p, t_i - t_{i-1} = \eta$ for all i, and $|\mu|((t_0, t_p)^c) < \delta$. Choose rational numbers $x_1, ..., x_p$ such that $x_i \in (t_{i-1}, t_i]$ (i=1, ..., p). It follows that

$$\varphi_n(\xi) = \sum_{j=-\infty}^{\infty} \varphi\left(\frac{2\pi j}{n}\right) \Delta\left(\xi - \frac{2\pi j}{n}\right) = \sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty} (e_{-x}) \left(\frac{2\pi j}{n}\right) d\mu(x) \Delta\left(\xi - \frac{2\pi j}{n}\right)$$
$$= \int_{-\infty}^{\infty} (e_{-x})_n(\xi) d\mu(x),$$

where $\Delta(\xi) = \max\left(1 - \frac{n}{2\pi} |\xi|, 0\right)$ for $\xi \in \mathbf{R}$. This implies that

$$\begin{split} \left| \sum_{k=1}^{m} c_{k} \varphi_{n}(\xi_{k}) \right| &= \left| \sum_{k=1}^{m} c_{k} \int_{-\infty}^{\infty} (e_{-x})_{n}(\xi_{k}) d\mu(x) \right| \\ &\leq \left| \sum_{k=1}^{m} c_{k} \int_{(t_{0},t_{p}]} (e_{-x})_{n}(\xi_{k}) d\mu(x) \right| + \left| \sum_{k=1}^{m} c_{k} \int_{(t_{0},t_{p}]^{c}} (e_{-x})_{n}(\xi_{k}) d\mu(x) \right| \\ &\leq \left| \sum_{k=1}^{m} c_{k} \sum_{i=1}^{p} \int_{(t_{i-1},t_{i}]} (e_{-x_{i}})_{n}(\xi_{k}) d\mu(x) \right| + \sum_{k=1}^{m} |c_{k}| \delta || \varphi ||_{B(R)} \\ &+ \sum_{k=1}^{m} |c_{k}| | \mu | ((t_{0}, t_{p}]^{c}) \\ &\leq \sum_{i=1}^{p} \int_{(t_{i-1},t_{i}]} d |\mu| (x) \right| \sum_{k=1}^{m} c_{k} (e_{-x_{i}})_{n}(\xi_{k}) \Big| + \varepsilon. \end{split}$$

Since $(e_{-x})_n \in B(\mathbf{R})$ and $||(e_{-x})_n||_{B(\mathbf{R})} = 1$ for every rational numbers x, it follows that

$$\left|\sum_{k=1}^{m} c_k (\mathbf{e}_{-x_i})_n (\hat{\xi}_k)\right| \leq 1 \quad (i=1,...,p).$$

Consequently, we have

$$\bigg|\sum_{k=1}^m c_k \varphi_n(\xi_k)\bigg| \leq ||\varphi||_{B(R)} + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, this completes the proof of the lemma.

Theorem. If
$$\varphi \in A(\mathbf{R})$$
, then $\varphi_n \in A(\mathbf{R})$ for all n and $\|\varphi_n - \varphi\|_{A(\mathbf{R})} \to 0$ $(n \to \infty)$.

Proof. Let V_m be de la Vallée Poussin's kernel; that is,

$$\widehat{V}_{m}(\xi) = \begin{cases} 1 & (|\xi| \le m) \\ 2 - |\xi|/m & (m \le |\xi| \le 2m) & (\xi \in \mathbf{R}). \\ 0 & (2m \le |\xi|) \end{cases}$$

By Lemma, we have $(\varphi \tilde{V}_m)_n \in B(\mathbf{R})$. Since each $(\varphi \tilde{V}_m)_n$ has compact support, this means that $(\varphi \tilde{V}_m)_n \in A(\mathbf{R})$. Since $\| \varphi - \varphi \tilde{V}_m \|_{A(\mathbb{R})} \to 0 \quad (m \to \infty)$, Lemma shows that $\{(\varphi \tilde{V}_m)_n\}_m$ is a Cauchy sequence in $A(\mathbf{R})$. Let g denote the limit of $(\varphi \tilde{V}_m)_n$ in $A(\mathbf{R})$. The value $\varphi_n(x)$ is equal to g(x) since it is the limit of $(\varphi \tilde{V}_m)_n(x)$ for each $x \in \mathbf{R}$. Thus we have $\varphi_n \in A(\mathbf{R})$. To prove that $\| \varphi_n - \varphi \|_{A(\mathbb{R})} \to 0 \quad (n \to \infty)$, assume first that φ has compact support. Let Ebe the subset of $A(\mathbf{R})$ consisting of all functions h with compact support contained in $(-3\pi/4, 3\pi/4)$. Then there exists a linear mapping S of E into $A(\mathbf{T})$ and constant C such that Sh = h on $(-\pi, \pi)$ and $\| h \|_{A(\mathbb{R})} \leq C \| Sh \|_{A(T)}$ for all $h \in E$ (See Rudin [5, p.56]). It follows that $\| h_n - h \|_{A(\mathbb{R})} \leq C \| Sh_n - Sh \|_{A(T)}$ for all $n \geq 8$ and all $h \in A(\mathbf{R})$ with compact support contained in $(-\pi/2, \pi/2)$. To show that $\| \varphi_n - \varphi \|_{A(\mathbb{R})} \to 0 \quad (n \to \infty)$, let $\varepsilon > 0$ and pbe a positive integer such that the support of φ is contained in $(-\pi p/2, \pi p/2)$. Let T be a mapping defined by $Tf(\xi) = f(p\xi)$ for $f \in A(\mathbf{R})$ and $\xi \in \mathbf{R}$. Since $T\varphi \in A(\mathbf{R})$ and the support of $T\varphi$ is contained in $(-\pi/2, \pi/2)$, it follows that $ST\varphi \in A(\mathbf{T})$. Therefore there is a positive integer N such that $\| (ST\varphi)_{pn} - ST\varphi \|_{A(T)} < \varepsilon/C$ for every $n \geq N$ (See Benedetto [1, p.168]). For $n > \max(8/p, N)$, we have

$$\| \varphi_n - \varphi \|_{A(R)} = \| T\varphi_n - T\varphi \|_{A(R)} = \| (T\varphi)_{pn} - T\varphi \|_{A(R)} \le C \| S(T\varphi)_{pn} - ST\varphi \|_{A(T)}$$
$$= C \| (ST\varphi)_{pn} - ST\varphi \|_{A(T)} \le \varepsilon.$$

In the general case, we may use the fact that the functions with compact supports are dense in $A(\mathbf{R})$. Let $\varepsilon > 0$, and let ψ be a function with compact support such that $|| \varphi - \psi ||_{A(R)} < \varepsilon/3$. By Lemma, we have $|| \varphi_n - \varphi_n ||_{A(R)} \le || \varphi - \psi ||_{A(R)}$. Since ψ has compact support, there is a positive integer N such that $|| \psi_n - \psi ||_{A(R)} < \varepsilon/3$ for all n > N. It follows that

$$|| \varphi_{n} - \varphi ||_{A(R)} \leq || \varphi_{n} - \psi_{n} ||_{A(R)} + || \psi_{n} - \psi ||_{A(R)} + || \psi - \varphi ||_{A(R)} < \varepsilon.$$

This completes the proof of the theorem.

References

[1] J.J. Benedetto, Spectral Synthesis, Academic Press, 1975.

[2] C.S. Herz, Spectral synthesis for the Cantor set, Proc. Nat. Acad. Sci. USA, 42 (1956), 42-43.

[3] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer-Verlag, 1970.

[4] J.-P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonométriques, Hermann, 1963.

[5] W. Rudin, Fourier Analysis on Groups, Interscience, 1962.