Approxi mation of Fouri er Tr ansforns by Pi ecewi se Li near Functions

著者	SUDA Kat suhi ro，KAWAl Tor u
j ournal or publ i cat i on titl e	鹿児島大学理学部紀要．数学•物理学•化学
vol une	27
page range	13－16
別言語のタイトル	区分的線形関数によるフーリエ変換の近似
URL	ht tp：／／hdl ．handl e．net／10232／00000501

Rep. Fac. Sci. Kagoshima Univ. (Math., Phys. \& Chem.),

Approximation of Fourier Transforms by Piecewise Linear Functions

Katsuhiro SUDA ${ }^{1)}$ and Toru KAwAI ${ }^{1)}$
(Received September 12, 1994)

Abstract

An approximation theorem of Fourier transform by piecewise linear functions is proved.

Key words: Fourier transform, piecewise linear function.

1. Introduction

We denote Banach spaces of all integrable functions and all regular complex finite measures on the real line by $L^{1}(\boldsymbol{R})$ and $M(\boldsymbol{R})$, respectively. For a function $f \in L^{1}(\boldsymbol{R})$, the Fourier transform is

$$
\hat{f}(\xi)=\int_{-\infty}^{\infty} \mathrm{e}^{-i \xi x} f(x) d x \quad(\xi \in \boldsymbol{R}),
$$

and for a measure $\mu \in M(\boldsymbol{R})$, the Fourier-Stieltjes transform is

$$
\bar{\mu}(\xi)=\int_{-\infty}^{\infty} \mathrm{e}^{-i \xi x} d \mu(x) \quad(\xi \in \boldsymbol{R})
$$

We define

$$
A(\boldsymbol{R})=\left\{\hat{f}: f \in L^{1}(\boldsymbol{R})\right\},\|\hat{f}\|_{A(R)}=\|f\|_{L^{1}(R)}
$$

and

$$
B(\boldsymbol{R})=\{\hat{\mu}: \mu \in M(\boldsymbol{R})\},\|\hat{\mu}\|_{B(R)}=\|\mu\|_{M(R)} .
$$

[^0]We denote Banach spaces of all integrable functions on one dimensional torus \boldsymbol{T} by $L^{1}(\boldsymbol{T})$. For a function $f \in L^{1}(\boldsymbol{T})$, the Fourier coefficients are

$$
\hat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-i n x} f(x) d x \text { for integers } n
$$

We define

$$
A(\boldsymbol{T})=\left\{\varphi: \sum_{n=-\infty}^{\infty}|\bar{\varphi}(n)|<\infty\right\},\|\varphi\|_{A(T)}=\sum_{n=-\infty}^{\infty}|\widehat{\varphi}(n)| .
$$

Herz [2] has proved that Cantor's ternary set is a spectral synthesis set. Kahane [3] has proved this result using an approximation of functions in $A(\boldsymbol{T})$ by piecewise linear functions: if $\varphi \in A(\boldsymbol{T})$ and each φ_{n} is a continuous function on \boldsymbol{T} to equal φ at the multiples of $2 \pi / n$ and linear on the remainder, then $\varphi_{n} \in A(\boldsymbol{T})$ and $\left\|\varphi_{n}-\varphi\right\|_{A(T)} \rightarrow 0(n \rightarrow \infty)$ (See also Kahane and Salem [4] and Benedetto [1]). In this paper, we prove that a similar result holds for $A(\boldsymbol{R})$.

2. Approximation of Fourier transforms

For a continuous function φ on \boldsymbol{R} and a positive integer n, we define φ_{n} to be the function to equal φ at the points $2 \pi k / n, k=0, \pm 1, \pm 2, \ldots$, and linear on the remainder of \boldsymbol{R}. For a continuous function φ on \boldsymbol{T}, we define φ_{n} similarly.

Lemma. If $\varphi \in B(\boldsymbol{R})$, then $\varphi_{n} \in B(\boldsymbol{R})$ and $\left\|\varphi_{n}\right\|_{B(R)} \leq\|\varphi\|_{B(R)}$ for all n.

Proof. For all $x \in \boldsymbol{R}$, define the function e_{x} by $\mathrm{e}_{x}(\xi)=\mathrm{e}^{i x \xi}(\xi \in \boldsymbol{R})$. We now show that if x is a rational number, then $\left(\mathrm{e}_{-x}\right)_{n} \in B(\boldsymbol{R})$ and $\left\|\left(\mathrm{e}_{-x}\right)_{n}\right\|_{B(R)}=1$. Suppose that x is a rational number. Take a positive integer r and an integer s such that $x=s / r$. We see that $\left(\mathrm{e}_{-s}\right)_{m}(\xi)=\left(\mathrm{e}_{-x}\right)_{n}(r \xi)$ for all $\xi \in \boldsymbol{R}$. Since e_{-s} is 2π-periodic, regarding e_{-s} as a function on \boldsymbol{T}, we have $\mathrm{e}_{-s} \in A(\boldsymbol{T})$. It follows that $\left(\mathrm{e}_{-s}\right)_{r n} \in A(\boldsymbol{T})$ and $\left\|\left(\mathrm{e}_{-s}\right)_{r n}\right\|_{A(T)}=1$ (See Benedetto [1, p.168]. Hence $\left(\mathrm{e}_{-x}\right)_{n} \in B(\boldsymbol{R})$ and $\left\|\left(\mathrm{e}_{-x}\right)_{n}\right\|_{\boldsymbol{B}(\mathbb{R})}=1$. Let $\xi_{1}, \ldots, \xi_{m} \in \boldsymbol{R}$ and c_{1}, \ldots, c_{m} be complex numbers such that $\left\|\sum_{k=1}^{m} c_{k} \mathrm{e}_{-\xi_{k}}\right\|_{\infty} \leq 1$. To prove $\varphi_{n} \in B(\boldsymbol{R})$ and $\left\|\varphi_{n}\right\|_{B(R)} \leq\|\varphi\|_{B(R)}$, it suffices to show that

$$
\left|\sum_{k=1}^{m} c_{k} \varphi_{n}\left(\xi_{k}\right)\right| \leq\|\varphi\|_{B(R)} .
$$

Let $\varphi=\hat{\mu}, \mu \in M(\boldsymbol{R})$, and $\varepsilon>0$. Take $\delta>0$ so that $2\left(1+\|\varphi\|_{B(R)}\right) \delta \sum_{k=1}^{m}\left|c_{k}\right|<\varepsilon$. Since
($\left.\mathrm{e}_{-x}\right)_{n}\left(\xi_{k}\right)$ is uniformly continuous as a function of x for each k , there is a positive number η such that $\left|\left(\mathrm{e}_{-x}\right)_{n}\left(\xi_{k}\right)-\left(\mathrm{e}_{-y}\right)_{n}\left(\xi_{k}\right)\right|<\delta$ for all x, y and k such that $|x-y|<\eta$. Since $\mu \in M(\boldsymbol{R})$, there are $t_{0}, \ldots, t_{p} \in \boldsymbol{R}$ so that $t_{0}<\ldots<t_{p}, t_{i}-t_{i-1}=\eta$ for all i, and $|\mu|\left(\left(t_{0}, t_{p}\right]^{c}\right)<\delta$. Choose rational numbers x_{1}, \ldots, x_{p} such that $x_{i} \in\left(t_{i-1}, t_{i}\right] \quad(i=1, \ldots, p)$. It follows that

$$
\begin{aligned}
\varphi_{n}(\xi) & =\sum_{j=-\infty}^{\infty} \varphi\left(\frac{2 \pi j}{n}\right) \Delta\left(\xi-\frac{2 \pi j}{n}\right)=\sum_{j=-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\mathrm{e}_{-x}\right)\left(\frac{2 \pi j}{n}\right) d \mu(x) \Delta\left(\xi-\frac{2 \pi j}{n}\right) \\
& =\int_{-\infty}^{\infty}\left(\mathrm{e}_{-x}\right)_{n}(\xi) d \mu(x),
\end{aligned}
$$

where $\Delta(\xi)=\max \left(1-\frac{n}{2 \pi}|\xi|, 0\right)$ for $\xi \in \boldsymbol{R}$. This implies that

$$
\begin{aligned}
\left|\sum_{k=1}^{m} c_{k} \varphi_{n}\left(\xi_{k}\right)\right| & =\left|\sum_{k=1}^{m} c_{k} \int_{-\infty}^{\infty}\left(\mathrm{e}_{-x}\right)_{n}\left(\xi_{k}\right) d \mu(x)\right| \\
& \leq\left|\sum_{k=1}^{m} c_{k} \int_{(t, t, t]}\left(\mathrm{e}_{-x}\right)_{n}\left(\xi_{k}\right) d \mu(x)\right|+\left|\sum_{k=1}^{m} c_{k} \int_{\left(t_{0}, t p\right] c}\left(\mathrm{e}_{-x}\right)_{n}\left(\xi_{k}\right) d \mu(x)\right| \\
& \leq\left|\sum_{k=1}^{m} c_{k} \sum_{i=1}^{\infty} \int_{(t i-1, t i]}\left(\mathrm{e}_{-x_{i}}\right)_{n}\left(\xi_{k}\right) d \mu(x)\right|+\sum_{k=1}^{m}\left|c_{k}\right| \delta\|\varphi\|_{B(R)} \\
& +\sum_{k=1}^{m}\left|c_{k}\right||\mu|\left(\left(t_{0}, t_{p}\right]^{c}\right) \\
& \leq \sum_{i=1}^{p} \int_{(t-1-1, t]} d|\mu|(x)\left|\sum_{k=1}^{m} c_{k}\left(\mathrm{e}_{-x i}\right)_{n}\left(\xi_{k}\right)\right|+\varepsilon .
\end{aligned}
$$

Since $\left(\mathrm{e}_{-x}\right)_{n} \in B(\boldsymbol{R})$ and $\left\|\left(\mathrm{e}_{-x}\right)_{n}\right\|_{B(R)}=1$ for every rational numbers x, it follows that

$$
\left|\sum_{k=1}^{m} c_{k}\left(\mathrm{e}_{-x_{i}}\right)_{n}\left(\xi_{k}\right)\right| \leq 1 \quad(i=1, \ldots, p)
$$

Consequently, we have

$$
\left|\sum_{k=1}^{m} c_{k} \varphi_{n}\left(\xi_{k}\right)\right| \leq\|\varphi\|_{B(R)}+\varepsilon .
$$

Since $\varepsilon>0$ is arbitrary, this completes the proof of the lemma.
Theorem. If $\varphi \in A(\boldsymbol{R})$, then $\varphi_{n} \in A(\boldsymbol{R})$ for all n and $\left\|\varphi_{n}-\varphi\right\|_{A(R)} \rightarrow 0(n \rightarrow \infty)$.
Proof. Let V_{m} be de la Vallée Poussin's kernel; that is,

$$
\widehat{V}_{m}(\xi)= \begin{cases}1 & (|\xi| \leq m) \\ 2-|\xi| / m & (m \leq|\xi| \leq 2 m) \quad(\xi \in \boldsymbol{R}) . \\ 0 & (2 m \leq|\xi|)\end{cases}
$$

By Lemma, we have $\left(\varphi \hat{V_{m}}\right)_{n} \in B(\boldsymbol{R})$. Since each $\left(\varphi \hat{V_{m}}\right)_{n}$ has compact support, this means that $\left(\varphi \hat{V_{m}}\right)_{n} \in A(\boldsymbol{R})$. Since $\left\|\varphi-\varphi \hat{V_{m}}\right\|_{A(R)} \rightarrow 0(m \rightarrow \infty)$, Lemma shows that $\left\{\left(\varphi \hat{V_{m}}\right)_{n}\right\}_{m}$ is a Cauchy sequence in $A(\boldsymbol{R})$. Let g denote the limit of $\left(\varphi \widehat{V_{m}}\right)_{n}$ in $A(\boldsymbol{R})$. The value $\varphi_{n}(x)$ is equal to $g(x)$ since it is the limit of $\left(\varphi \hat{V_{m}}\right)_{n}(x)$ for each $x \in \boldsymbol{R}$. Thus we have $\varphi_{n} \in A(\boldsymbol{R})$. To prove that $\left\|\varphi_{n}-\varphi\right\|_{A(R)} \rightarrow 0(n \rightarrow \infty)$, assume first that φ has compact support. Let E be the subset of $A(\boldsymbol{R})$ consisting of all functions h with compact support contained in $(-3 \pi / 4,3 \pi / 4)$. Then there exists a linear mapping S of E into $A(\boldsymbol{T})$ and constant C such that $S h=h$ on $(-\pi, \pi)$ and $\|h\|_{A(R)} \leq C\|S h\|_{A(T)}$ for all $h \in E$ (See Rudin [5, p.56]). It follows that $\left\|h_{n}-h\right\|_{A(R)} \leq C\left\|S h_{n}-S h\right\|_{A(T)}$ for all $n \geq 8$ and all $h \in A(\boldsymbol{R})$ with compact support contained in $(-\pi / 2, \pi / 2)$. To show that $\left\|\varphi_{n}-\varphi\right\|_{A(R)} \rightarrow 0(n \rightarrow \infty)$, let $\varepsilon>0$ and p be a positive integer such that the support of φ is contained in $(-\pi p / 2, \pi p / 2)$. Let T be a mapping defined by $T f(\xi)=f(p \xi)$ for $f \in A(\boldsymbol{R})$ and $\xi \in \boldsymbol{R}$. Since $T \varphi \in A(\boldsymbol{R})$ and the support of $T \varphi$ is contained in $(-\pi / 2, \pi / 2)$, it follows that $S T \varphi \in A(\boldsymbol{T})$. Therefore there is a positive integer N such that $\left\|(S T \varphi)_{p n}-S T \varphi\right\|_{A(T)}<\varepsilon / C$ for every $n \geq N$ (See Benedetto [1, p.168]). For $n>\max (8 / p, N)$, we have

$$
\begin{aligned}
\left\|\varphi_{n}-\varphi\right\|_{A(R)} & =\left\|T \varphi_{n}-T \varphi\right\|_{A(R)}=\left\|(T \varphi)_{p n}-T \varphi\right\|_{A(R)} \leq C\left\|S(T \varphi)_{p n}-S T \varphi\right\|_{A(T)} \\
& =C\left\|(S T \varphi)_{p n}-S T \varphi\right\|_{A(T)}<\varepsilon .
\end{aligned}
$$

In the general case, we may use the fact that the functions with compact supports are dense in $A(\boldsymbol{R})$. Let $\varepsilon>0$, and let ψ be a function with compact support such that $\|\varphi-\psi\|_{A(R)}<\varepsilon / 3$. By Lemma, we have $\left\|\varphi_{n}-\psi_{n}\right\|_{A(R)} \leq\|\varphi-\psi\|_{A(R)}$. Since ψ has compact support, there is a positive integer N such that $\left\|\psi_{n}-\psi\right\|_{A(R)}<\varepsilon / 3$ for all $n>N$. It follows that

$$
\left\|\varphi_{n}-\varphi\right\|_{A(R)} \leq\left\|\varphi_{n}-\psi_{n}\right\|_{A(R)}+\left\|\psi_{n}-\psi\right\|_{A(R)}+\|\psi-\varphi\|_{A(R)}<\varepsilon .
$$

This completes the proof of the theorem.

References

[1] J.J. Benedetto, Spectral Synthesis, Academic Press, 1975.
[2] C.S. Herz, Spectral synthesis for the Cantor set, Proc. Nat. Acad. Sci. USA, 42 (1956), 42-43.
[3] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer-Verlag, 1970.
[4] J.-P. Kahane and R. Salem, Ensembles Parfaits et Séries Trigonométriques, Hermann, 1963.
[5] W. Rudin, Fourier Analysis on Groups, Interscience, 1962.

[^0]: 1) Department of Mathematics, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890, Japan
