Record of Trapping Experiment

Sampling of living *Nautilus* and other marine fauna using baited traps is one of the main subjects of our field research. It was carried out in the waters off Suva and off Ovalau island during August 22 - September 11, 1986 by the R/V Aphareus of the Institute of Marine Resources, the University of the South Pacific. Methods of trapping are essentially the same as those in our field research in 1983 (*see* TANABE in HAYASAKA, 1985). Details of the experiment are described in the following lines.

Trapping Locations

Trapping experiment was made at 17 locations about 6-7 km SEE from Suva Point, the southernmost point of Suva Peninsula (Kandavu Passage), Viti Levu, and at four locations about 8 km NNW from Ovalau Island (Fig. 3.) The locations in the Suva area are sited within the main habitat of a large population of *Nautilus*, where a large number of specimens have hitherto been collected by WARD *et al.* (1977) and ourselves (HAYASAKA and SHINOMIYA, 1982; HAYASAKA *et al.*,

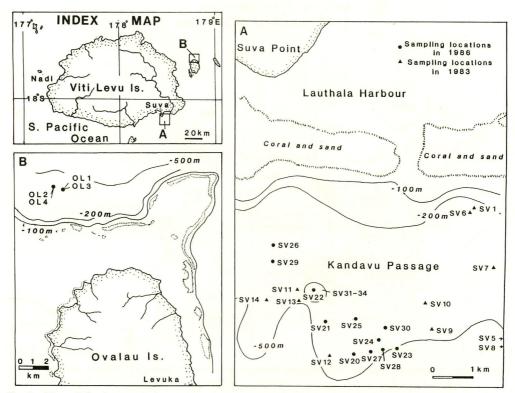


Fig. 3. Map of the Suva and the Ovalau areas, Fiji, showing the trapping locations of Nautilus pompilius.

1985).

In both the Suva and the Ovalau areas, trapping points are located in the outer margin of the coral reef, followed by an abruptly dropping scarf.

Catch Record

As a result of trapping, 222 individuals of *Nautilus* (180 from the Suva area and 44 from the Ovalau area) were captured from 20 locations ranging from 324

Table 1. Capture records of *Nautilus pompilius* from off Suva, Viti Levu Island and off Ovalau Island (localities with prefix SV and OL respectively), Fiji during August 22-September 11, 1986.

Locality no.		Water depth(m)	No. of hauls	Total number of traps	Number of Total	Nautilus captured N/trap
SV	31	293	1	4	0	0
SV	26	324	1	4	8	2.00
SV	29	324	1	4	11	2.75
SV	30	324	1	4	13	3.25
SV	28	387	1	4	4	1.00
SV	24	414	1	4	4	1.00
SV	25	414	1	4	6	1.50
SV	33	414	1	4	11	2.75
SV	21	432	1	4	11	2.75
SV	20	432	1	4	1	0.25
SV	22	432	1	4	6	1.50
SV	32	432	1	4	34	8.50
SV	34	432	1	12	60	5.00
SV	23	450	1	4	3	0.75
SV	27	450	1	4	7	1.75
OL	1	396	1	4	9	2.25
OL	3	414	1	4	5	1.25
OL	4	432	1	4	11	2.75
OL	2	450	1	4	19	4.75

Table 2. Sex ratios of trapped Nautilius pompilius from the Fiji Islands.

Area	Date of collection	Total	Numb Males	er of specim Females	nens Unknown	References		
Off Suva	Summer, 1975	48	30(62.5%)	6(12.5%)	4(9.5%)	WARD et al. (1977)		
	Jan. 1982	42	26(61.9%)	14(33.3%)	2(4.8%)	HAYASAKA & SHINOMIYA (1982)		
	AugSept. 1983	101	81(80.2%)	19(18.8%)	1(1.0%)	HAYASAKA et al. (1985)		
	AugSept. 1986	179	164(91.6%)	15(8.4%)	_	This paper		
Off Pacific Harbour	Sept. 1983	61	51(82.0%)	11(18.0%)	_	Hayasaka <i>et al.</i> (1985)		
Off Ovalau Islands	Sept. 1986	45	44(97.8%)	1(2.2%)	_	This paper		

m to 450 m in depth (Table 1). Although we tried trapping tests at the stations being close to each other within a limited period of time in the Suva area, the number of captured *Nautilus* per haul varies markedly from location to location. This fact as well as the whole year trapping records by R/V Aphareus (personal communication from Dr. U. RAJ) suggest a patchy distribution of the Suva population at least for the depth interval between 300 m and 500 m. Previous catch records of *Nautilus* in Fiji (WARD *et al.*, 1977; HAYASAKA and SHINOMIYA, 1982; TANABE in HAYASAKA, 1985) show that living animals are distributed in the depths between 75 m and 550 m and found most abundantly at the depths between 360-470 m.

After capture, every animal was labeled, weighed, sexed and measured. Sex identification was made by the methods described in HAYASAKA et al. (1982). During the period of investigation, females never occurred abundantly, comprising only 8% of the catch for the Suva area and 2% for the Ovalau area (Table 2). This matches well with the previous catch records in Fiji Islands, suggesting the smaller female/male ratio in summer than in winter. Similar seasonal fluctuation of the sex ratio was reported in the trapped Nautilus from the Philippines (HAVEN, 1977).

Notes on Nautilus Captured

Measurements data of *Nautilus* captured are listed in Tables 3-4. Except for selected individuals used for laboratory work, most animals captured from off Suva were tagged and released at various points near the trapping sites for a long-term growth analysis. During our field research, one specimen (SV 24-2-1; captured at SV 24 on August 24 and released on August 25 at almost the same location) was recaptured on August 29 at the point about 3 km west from Suva point by the vessel of the Fijian Fisheries Agency. Therefore, the animal has traveled for 5 km or more in five days. Forty-four animals from off Ovalau Island were killed for laboratory research.

Biometric data show that the males from off Ovalau Island are generally smaller but slightly heavier than the males from off Suva (Figs. 4-5) The difference in mean shell size probably owes to paucity of mature specimens in the Ovalau sample (only six specimens with a blacked shell aperture; 14% to the total males), because mature males occupy about 30% of the total males in the Suva sample. The Suva and Ovalau samples are similar in their basic shell form ratios (Fig. 6) and growth pattern of gonad (Fig. 7).

Discovery of Nautilus Jaws in a Shark's Stomach

On September 4, we captured one cat shark (Cephaloscyllium isabella BONNETERRE) in the trap no. 4 at the Station OL 3 off Ovalau Island (see Fig. 2),

Table 3. Biological data for *Nautilus pompilius* specimens trapped from off Suva Harbour, Viti Levu, Fiji in 1986.

Date of collection	Specimen	Sex	Total	Weight (g) Shell	Shel D	l size B	(mm) H		m rati H/D		Remarks
Aug. 22-23	SV 20-2-1 SV 21-1-1 SV 21-1-2 SV 21-1-3 SV 21-1-5 SV 21-1-6 SV 21-1-6 SV 21-1-7 SV 21-1-8 SV 21-2-1 SV 21-3-1 SV 21-4-1	F M M M M F M M M M F F	390.7 576.7 521.0 201.2 538.5 630.0 400.0 490.4 570.2 525.5 238.2 351.4	130.8	70.4	129.6 147.3 147.4 105.6 152.5 152.3 128.1 143.9 148.3 143.2 110.2	74.8 71.6 57.1 71.8 75.8 69.3 74.2 73.8 69.8 58.8	86.0 96.5 95.5 66.7 94.6 98.0 81.2 88.8 94.7 88.3 73.1 78.6	.514 .508 .486 .541 .471 .498 .541 .516 .498 .487 .534 .503	.663 .655 .648 .632 .620 .643 .634 .617 .639 .617	.775 .750 .856 .759 .773 .853 .836 .779	Released (Aug. 24) ditto ditto Killed (Sept. 11) Released (Aug. 24) ditto ditto ditto ditto ditto ditto Killed (Sept. 11) Released (Aug. 24)
	SV 22-2-1 SV 22-2-2 SV 22-3-1 SV 22-3-2 SV 22-4-1 SV 22-4-2	M M M M M M	497.4 514.0 600.8 419.0 584.2 497.5	 		139.8 142.9 150.8 134.6 150.7 146.5	71.7 72.8 74.8 72.2 73.5 70.5	93.9 93.9 95.1 83.3 95.5 91.8	.513 .509 .496 .536 .488 .481	.672 .657 .631 .619 .634	.764 .775 .787 .867 .770 .768	ditto ditto ditto ditto ditto ditto
Aug. 23-24	SV 23-1-1 SV 23-2-1 SV 23-4-1	м м м	181.6 357.4 368.5	118.1	63.5	101.6 138.4 125.3	72.3 70.0	92.9	.524 .522 .559	.612 .671 .620	.778 .901	Killed (Sept. 11) Released (Aug. 25) ditto
	SV 24-1-1 SV 24-2-1 SV 24-3-1 SV 24-3-2	F M M M	393.7 520.3 598.7 519.0	394.2 	126.1 	131.1 145.8 153.5 146.6	64.3 70.1 75.0	91.5 101.1	.490 .481 .489	.640 .628 .659 .621	.766 .766 .742	ditto ditto ditto ditto
	SV 25-1-1 SV 25-2-1 SV 25-3-1 SV 25-3-2 SV 25-4-1 SV 25-4-2	M M M F F	499.2 505.0 487.2 595.8 465.6 466.4			138.4 140.6 136.9 152.1 144.1 146.3	72.4 76.5 74.3 66.7	91.2 89.5 97.8 92.8	.522 .515 .559 .488 .463 .474	.671 .649 .654 .643 .644	.778 .794 .855 .760 .719 .733	ditto ditto ditto ditto ditto ditto
Aug. 24-25	SV 26-1-1 SV 26-2-1 SV 26-2-2 SV 26-2-3 SV 26-2-4 SV 26-2-5 SV 26-2-6 SV 26-4-1	**************************************	580.0 499.5 494.6 359.6 357.0 256.2 497.0 578.7	380.6	116.4	148.8 147.2 140.6 128.3 127.3 113.2 140.0 153.6	79.4 71.9 64.9 68.5 62.5 71.8	101.3 95.9 91.3 76.3 80.5 74.5 93.1 102.5	.513 .539 .511 .506 .538 .552 .513 .485	.681 .651 .649 .595 .632 .658 .665	.754 .828 .788 .844 .851 .839 .771	Released (Aug. 26) Killed (Aug. 26) Released (Aug. 26) ditto ditto Killed (Aug. 26) Died (Aug. 25-26) Released (Aug. 26)
	SV 27-2-1 SV 27-2-2 SV 27-3-1 SV 27-3-2 SV 27-3-3 SV 27-4-1 SV 27-4-2	F M M M M	420.9 627.6 561.7 573.8 557.0 507.3 555.8	294.0 481.9 445.1 	126.9 145.7 128.7 	135.2 153.9 168.4 145.8 147.1 144.5 147.3		86.1 99.6 95.3 91.4 92.5 94.2 93.6	.493 .485 .445 .499 .504 .535 .489	.637 .647 .566 .627 .629 .652	.432 .750 .787 .795 .801 .821 .770	Died (Aug. 25-26) ditto Released (Aug. 26) Died (Aug. 25-26) Released (Aug. 26) ditto ditto
	SV 28-3-1 SV 28-3-2 SV 28-4-1 SV 28-4-2	M M M	594.1 559.3 477.8 528.8	373.0 353.4	123.6 186.3 124.4 133.6	146.9 144.8 139.8	70.1 69.3 69.8 72.4		.477 .479 .499 .497	.609 .655 .652	.783 .731 .766 .752	Died (Aug. 25-26) Released (Aug. 26) Died (Aug. 25-26) ditto
Aug. 25-26	SV 29-1-1 SV 29-1-2 SV 29-1-3 SV 29-1-5 SV 29-2-1 SV 29-2-2 SV 29-2-3 SV 29-2-4 SV 29-2-5 SV 29-4-1	M M M M M M M M M M M M M M M M M M M	576.5 581.0 548.5 574.9 513.3 518.2 440.4 680.1 540.8 490.0 539.6			137.5 149.9 145.0 154.9 142.0 145.3 134.5 158.3 141.8 139.2 147.9	71.8 69.2 71.7 76.5 76.2 75.5	97.1 96.5 93.9 100.0 93.6 96.5 87.9 104.5 94.3 91.8 97.5	.537 .486 .494 .479 .506 .476 .533 .483 .537 .542 .485	.706 .644 .648 .646 .659 .664 .653 .660 .665	. 760 . 754 . 764 . 742 . 767 . 717 . 816 . 732 . 808 . 822 . 736	

Table 3. Continued.

Table 3.	Continued											
	SV 30-1-1 SV 30-1-2 SV 30-1-3 SV 30-1-4 SV 30-2-1 SV 30-2-2 SV 30-3-1 SV 30-3-2 SV 30-3-3 SV 30-3-4 SV 30-4-1 SV 30-4-2 SV 30-4-3	M M M M M M M M M M M M M M M M M M M	435.4 604.7 353.2 569.6 559.6 519.5 528.2 461.2 320.7 362.3 510.0 427.8 341.6			131.2 150.7 124.2 148.4 147.8 145.6 148.6 138.0 120.9 127.2 145.8 134.0 125.6	73.8 74.8 67.1 73.4 73.6 70.3 70.2 72.8 68.0 67.0 75.7 67.1 69.0	85.6 98.2 84.2 96.8 98.6 94.0 97.5 91.1 82.5 83.3 93.1 85.5 83.6	.563 .496 .540 .495 .483 .472 .528 .562 .527 .519 .501	.652 .652 .678 .652 .667 .646 .656 .660 .682 .655 .639	.862 .762 .797 .758 .746 .748 .720 .799 .824 .804 .813 .785	Released (Aug. 26) ditto
Sept. 9-10	SV 32-1-1 SV 32-1-2 SV 32-1-3 SV 32-1-5 SV 32-1-5 SV 32-1-5 SV 32-1-7 SV 32-1-8 SV 32-1-1 SV 32-1-1 SV 32-1-1 SV 32-1-1 SV 32-2-1 SV 32-2-2 SV 32-2-5 SV 32-2-5 SV 32-2-5 SV 32-2-5 SV 32-2-5 SV 32-2-7 SV 32-3-1 SV 32-3-1 SV 32-3-1 SV 32-3-3 SV 32-3-5 SV 32-3-5 SV 32-3-7 SV 32-3-8 SV 32-3-9		476.1 394.2 378.3 483.2 561.5 567.3 460.3 223.9 604.7 575.8 477.0 331.6 425.8 513.1 535.0 540.0 311.5 348.3 594.0 540.0 583.1 653.0 540.0 583.1	344.0	132.1 73.1 150.6	143.4 129.6 129.2 145.2 150.6 152.2 140.9 134.4 144.5 143.4 150.6 148.7 140.0 124.2 131.6 144.1 144.9 117.0 122.8 151.9 18.8 153.5 153.5 153.5 154.3 144.9 144.9 144.9	73.3 74.7 73.4 71.6 58.5 73.6 68.0 71.3 70.9 74.6 63.5 66.2 76.8 66.4 73.4	91.5 86.0 82.3 92.8 98.2 102.4 95.4 97.9 97.9 97.9 83.6 97.9 85.7 98.7 98.7 98.7 98.7 98.7 98.7 98.5 94.8 102.4 103.8 102.4 103.8 102.4 103.8 103.8 103.8 104.9 105.7 95.3 95.3 95.3 95.3 85.7 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3	.463 .517 .537 .495 .488 .501 .520 .556 .508 .499 .527 .548 .515 .543 .539 .549 .549 .559 .478 .488 .511 .498 .489 .559	.638 .664 .640 .639 .652 .673 .656 .663 .665 .655 .663 .671 .658 .658 .658 .654 .654 .654 .656 .658 .654 .656 .658 .656 .657 .657	. 726 . 779 . 843 . 775 . 748 . 745 . 793 . 814 . 740 . 758 . 819 . 720 . 743 . 849 . 836 . 750 . 834 . 849 . 750 . 836 . 750 . 750 . 751 . 751 . 752 . 753 . 753 . 754 . 754 . 755 . 755	Killed (Sept. 11) Released (Sept. 11) ditto
	SV 32-4-1 SV 32-4-2 SV 32-4-3 SV 32-4-4 	F M M M M M M M F	353.0 298.5 312.9 549.8 	246.6	106.4	127.6 115.8 119.9 144.5 144.3 144.2 143.3 124.8 142.6 147.6 128.9	67.2 64.1 66.8 73.7 70.3 69.0 73.7 66.8 73.6 69.7 62.2	80.9 75.2 88.8 92.8 96.3 96.4 98.2 79.8 93.5 97.3 84.2	.527 .554 .557 .510 .487 .479 .514 .535 .516 .472 .483	.634 .649 .741 .642 .667 .669 .685 .639 .656	.831 .852 .752 .794 .730 .716 .751 .837 .787 .716 .739	Killed (Sept. 11) Released (Sept. 11) ditto Killed (Sept. 11)
Sept. 10-11	SV 33-3-1 SV 33-3-2 SV 33-3-3 SV 33-3-4 SV 34- 1 SV 34- 2	M M M M	242.9 679.3 453.7 400.8 436.5 584.3	164.5	78.4	110.5 153.0 135.8 128.3 137.0 147.4	59.9 73.2 70.5 69.6 73.2 76.0	70.8 96.0 84.5 83.0 91.1 92.8	.542 .478 .519 .542 .534 .516	.641 .627 .622 .650	.846 .763 .834 .839 .804 .819	ditto Released (Sept. 11) ditto ditto ditto Released (Sept. 12) ditto
	SV 34- 3 SV 34- 5 SV 34- 5 SV 34- 6 SV 34- 7 SV 34- 9 SV 34-10 SV 34-11 SV 34-11 SV 34-13 SV 34-14 SV 34-15	M	522.0 433.7 566.0 397.2 590.3 617.2 505.3 328.6 361.8 278.3 442.4 314.3 601.0			142.3 134.1 160.9 131.8 150.5 152.8 143.5 125.2 127.8 113.8 133.4 120.4 150.4	71.8 74.4 72.3 72.9 76.1 69.6 66.5 69.7 71.0 63.1	88.6 103.5 85.8 102.0 100.5 93.6 79.5 83.3 75.6 80.9 73.2	.499 .535 .462 .549 .484 .498 .485 .531 .545 .542 .532 .524 .497	.660 .661 .643 .651 .678 .658 .583 .635 .652 .664 .606	.756 .810 .719 .843 .715 .757 .744 .836 .837 .816 .878 .862 .792	ditto Died (Sept. 12) Released (Sept. 12) ditto

Table 3. Continued.

Table 3.	Continue	a.										
	SV 34-16	М	566.0			144.3		95.6	.502	.663	.757	ditto
	SV 34-17	M	542.8			146.8	70.4	93.4	.480	.636	.754	Died (Sept. 12)
	SV 34-18	M	571.0			144.9	73.9	96.5	.510	.666	.766	Released (Sept. 12)
	SV 34-19	M	600.5			147.1	73.6	94.3	.500	.641	.780	ditto
	SV 34-20	M	637.8			152.9		101.5	.490	.664	.738	ditto
	SV 34-21	M	507.3			145.5	73.7	96.8	.507	.665	.761	ditto
	SV 34-22	M	540.0			147.4	74.4	97.5	.505	.661	.763	ditto
	SV 34-23	M	517.2			142.2	71.1	95.2	.500	.669	.747	ditto
	SV 34-24	M	541.0			145.6	71.7	95.0	.492	.652	.755	ditto
	SV 34-25	M	538.2			141.1	73.0	96.5	.517	.684	.756	ditto
	SV 34-26	M	209.5	144.8	64.7	105.2	58.0	70.2	.551	.667	.826	Killed (Sept. 12)
	SV 34-27	M	528.9			155.2	71.7	97.2	.462	.626	.738	Released (Sept. 12
	SV 34-28	M	558.1			145.9	73.8	95.2	.506	.653	.775	ditto
	SV 34-29	M	574.7			150.8		100.1	.481	.664	.725	ditto
	SV 34-30	M	593.1			146.0	73.1	94.5	.501	.647	.774	ditto
	SV 34-31	M	632.8			156.3		100.4	.461	.642	.718	ditto
ept. 10-11	SV 34-32	M	428.4			135.7	69.3	88.4	.511	.651	.784	ditto
	SV 34-33	M	583.1			149.3	70.4	97.0	.472	.650	.726	ditto
	SV 34-34	M	517.1			147.1	72.5	95.6	.493	.650	.758	ditto
	SV 34-35	M	465.8			138.8	70.7	92.9	.509	.761	.761	ditto
	SV 34-36	M	270.3			112.7	62.9	73.0	.558	.648	.862	ditto
	SV 34-37	M	445.1			133.9	72.4	90.6	.541	.677	.799	ditto
	SV 34-38	M	493.1			140.8	69.9	89.6	.496	.636	.780	ditto
	SV 34-39	M	619.3			150.2	73.5	98.3	.489	.654	.748	ditto
	SV 34-40	M	580.4			153.3	73.4	98.6	.479	.643	.744	ditto
	SV 34-41	M	494.9			145.2	73.3	90.9	.505	.626	.806	ditto
	SV 34-42	M	438.8			149.3	75.5	99.0	.506	.663	.763	ditto
	SV 34-43	M	516.1			142.5	71.5	95.6	.502	.671	.748	ditto
	SV 34-44	M	441.4			130.8	71.0	84.3	.543	.644	.842	ditto
	SV 34-45	M	425.3			136.5	70.8	91.2	.519	.668	.776	ditto
	SV 34-46	M	454.2			141.1	69.9	91.8	.495	.651	.761	ditto
	SV 34-47	M	356.7			123.6	67.2	81.9	.544	.663	.821	ditto
	SV 34-48	M	611.8	463.6	148.2	152.0		102.2	.507	.672	.754	Killed (Sept. 12)
	SV 34-49	M	542			146.9	76.0	98.9	.517	.673	.768	Kept in IMR
	SV 34-50	M	539			149.9	73.6	98.9	.491	.660	.744	ditto
	SV 34-51	M	596			149.5	73.6	98.1	.492	.656	.750	ditto
	SV 34-52	M	400			131.2	70.6	84.0	.538	.640	.840	ditto
	SV 34-53	M	542			149.0	69.5	93.2	.466	.626	.746	ditto
	SV 34-54	M	476			149.0	68.9	91.9	.462	.617	.750	ditto
	SV 34-55	M	535			143.4	74.1	92.4	.517	.644	.802	ditto
	SV 34-56	M	624			154.6		104.2	.491	.674	.728	ditto
	SV 34-57	M	567			149.3	73.8	97.6	.494	.654	.756	ditto
	SV 34-58	M	469			136.2	71.4	87.8	.524	.644	.813	ditto
	SV 34-59	M	487			142.8	72.7	91.3	.509	.639	.796	ditto
	SV 34-60	M	315			119.5	63.0	79.8	.527	.668	.789	ditto

Notes. Specimen SV 24-2-1 was recaptured near the station SV-20 on Aug. 29.

Specimens SV 26-2-1 and SV 26-2-5 were used for oxygen isotope analysis.

12 specimens from SV 34-49 to 34-60 were kept in IMR and used for experiments on visual behaviours by Prof. Muntz, W. R. A.

Table 4. Biological data for *Nautilus pompilius* specimens trapped from off Ovalau Island, Fiji in 1986.

Date of collection	Specimen	Sex		Weight (g) Tissue S		Shel D	l size B	(mm) H	From B/D	rati H/D	os B/H	Remarks	
Sept. 2-3	OL 1-1-1	М	488.3	350.2 1		144.0				.652	.743	Killed (Sept.	3)
	OL 1-2-1	M	631.1		30.4	150.4		93.9		.624	.792	ditto	
	OL 1-2-2	M	559.3	431.4 1		148.7	72.6	96.7	.488	.650	.751	ditto	
	OL 1-3-1	М	633.5	471.1 1		147.9	71.9	94.5	.486		.761	ditto	
	OL 1-3-2	M	546.3 476.2	424.0 1	13.5	145.4	71.5	96.6	.492	.664	.740 .750	ditto	
	OL 1-4-1 OL 1-4-2	M	561.9	362.7 1 417.2 1	44.7	141.0 151.4	69.2 74.9	92.3 96.9	.491 .495	.655 .640	.773	ditto ditto	
	OL 1-4-2 OL 1-4-3	M M	578.3	450.0 1		150.7	74.7		.496	.646	.767	ditto	
	OL 1-4-4	M	565.7	419.2	46.5	151.2	74.9	97.0	.495	.642	.772	ditto	
	OL 2-1-1	М	547.2	418.2 1		145.8			.499	.644	.774	ditto	
	OL 2-1-2	М	619.5		37.7	150.8	69.5		.461	.655	.704	ditto	
	OL 2-1-3	М	568.5		33.1	143.4	73.5	95.5	.513	.666	.770	ditto	
	OL 2-1-4	M	567.7		35.1	147.5	71.4	95.3	.484	.646	.749	ditto	
	OL 2-2-1	М	563.0		34.4	147.8	70.2	89.9	.475	.608	.781	ditto	
	OL 2-2-2 OL 2-2-3	M	523.5 504.8	402.4 1 379.5 1	22.1	140.0 141.7	71.9 71.5	93.2 93.5	.514 .505	.666 .660	.771 .765	ditto	
	OL 2-2-3 OL 2-2-4	M M	499.0		20.3	138.4	71.9	86.4	.520	.624	.832	ditto ditto	
	OL 2-2-5	M	518.0		17.5	143.4	69.9	94.4	.487	.658	.740	ditto	
	OL 2-2-6	M	608.1		36.7	151.6	74.2	94.3	.489	.622	.787	ditto	
	OL 2-3-1	M	599.4	465.2 1	34.2	147.7	74.5	95.6	.504	.647	.779	ditto	
	OL 2-3-2	M	526.9	389.7 1	37.2	149.1	73.0	96.2	.490	.645	.759	ditto	
	OL 2-3-3	М	543.9		10.7	144.5	74.2	93.1	.513	.644	.797	ditto	
	OL 2-3-4	М	607.3		31.3	150.3	71.7	97.6	.477	.649	.735	ditto	
	OL 2-3-5	M	542.4		13.8	144.0	71.5	91.7	.497	.637	.780	ditto	
	OL 2-3-6	М	564.7		34.2	147.3	75.0	95.7	.509	.650	.784	ditto	
	OL 2-3-7	M	262.2	190.4	71.8	112.6	61.4	72.2	.545	.641	.850	ditto	
	OL 2-4-1	М	507.8		41.1	138.3	71.9		.520	.646	.805	ditto	
	OL 2-4-2	M	618.0	470.2 1	47.2	150.8	74.4	97.4	.493	.646	.764	ditto	
Sept. 3-4	OL 3-1-1 OL 3-1-2	М	551.2 561.1	435.5 1		144.3			.497	.633 .655	.785	Killed (Sept.	4)
	OL 3-1-2 OL 3-1-3	M F	386.4	428.5 1 269.3 1	17.1	143.9 134.1	73.4	94.3 85.3	.510 .490	.636	.778 .770	ditto	
	OL 3-1-3	M	552.6		28.6	147.3	71.6	95.2	.486	.646	.752	ditto ditto	
	OL 3-2-1	M	545.8	420.6 1		143.0	69.8		.488	.617	.791	ditto	
	OL 3-4-1	M	585.0	450.7 1		148.4		94.8	.501	.639	.785	ditto	
	OL 4-3-1	М	578.0	431.5 1			76.6	99.0	.508	.656	.774	ditto	
	OL 4-3-2	М	496.5		29.3	138.6		89.5	.519	.646	.804	ditto	
	OL 4-3-3	М	374.3		10.4	124.2	68.1	79.0	.548	.636	.862	ditto	
	OL 4-3-4	М	442.5		.20.8	136.3	71.6	91.2	.525	.669	.785	ditto	
	OL 4-3-5	М	522.6		36.6	138.5	69.1	89.3	.499	.645	.774	ditto	
	OL 4-3-6	М	605.0	467.3 1	.37.7	152.3	74.5	97.6	.489	.641	.763	ditto	
	OL 4-3-7	M	448.6		26.6	134.7	70.7	83.5	.525	.620	.847	ditto	
	OL 4-3-8	M	370.8	270.8 1	.00.0	126.1	68.7	82.6	.545	.655	.832	ditto	
	OL 4-3-9	M	470.2		35.1	142.5	75.2	89.9	.528	.631	.836	ditto	
	OL 4-3-10 OL 4-4-1	M M	418.6 519.2	310.1 1 383.6 1	.08.5	134.2 139.3	71.5	84.9	.533 .567	.633 .642	.842	ditto	
	OF 4-4-1		J17.Z	JUJ.U 1		137.3	77.0	07.3	• 507	.042	.883	ditto	

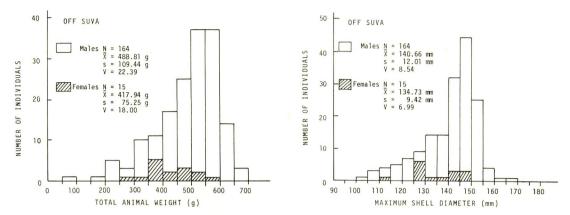


Fig. 4. Weight and maximum shell size distributions in the sample of *Nautilus pompilius* from the water off Suva, Viti Levu Island. \bar{X} : arithmetic mean, s: standard deviation, V: coefficient of variation.

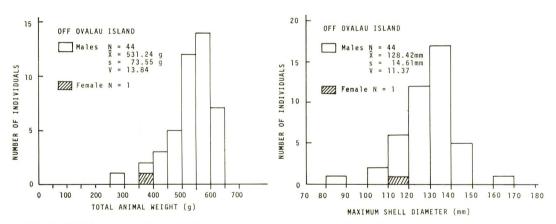


Fig. 5. Weight and maximum shell size distributions in the sample of *Nautilus pompilius* from the water off Ovalau Island. \bar{X} : arithmetic mean, s: standard deviation, V: coefficient of variation.

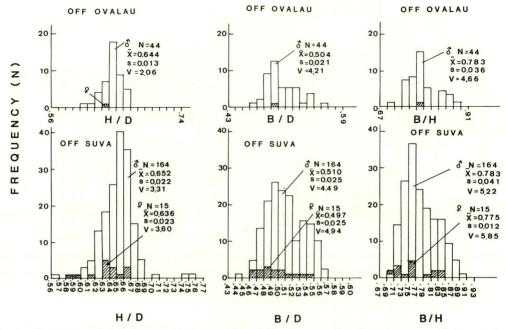
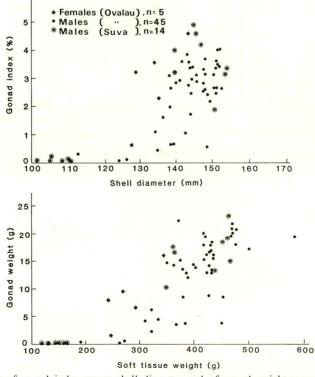
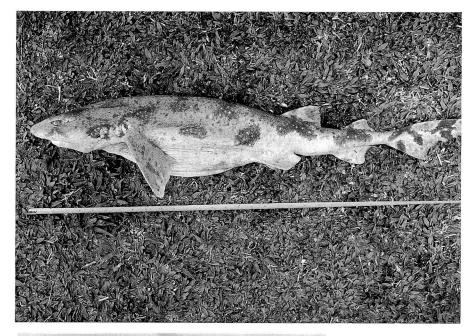
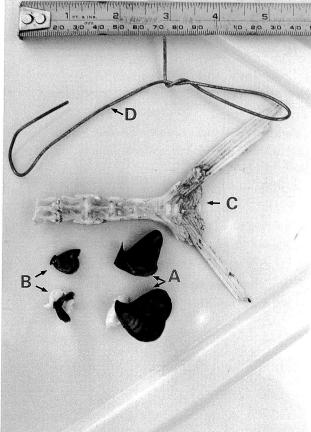


Fig. 6. Histograms of shell form ratios for samples of *Nautilus pompilius* from the water off Suva and off Ovalau Island. D: shell diameter, B: whorl breadth, H: whorl height, \bar{X} : arithmetic mean, s: standard deviation, V: coefficient of variation.




Fig. 7. Scatter plots of gonad index versus shell diameter and of gonad weight versus soft tissue weight for *Nautilus pompilius* from the water off Suva and off Ovalau Island.


together with one *Nautilus* and many shrimps. After having dissected the shark, we found two cephalopod mandibles in the stomach. Based on their characteristic features, the larger and smaller ones can be identified as *Nautilus pompilius* and an unknown coleoid (possibly *Octopus* judging from the relatively short hood in the upper jaw) respectively (Fig. 8). The anterior calcified portion of the nautilus jaws has been dissolved away by the reaction with the acidic gastric juice. As no empty shell of *Nautilus* was found within the same trap, the shark evidently fed on the nautilus and coleoid before entering it. It remains uncertain whether the shark ate the healthy *Nautilus* or not. Finding the jaws of a nautilus in a shark was also documented briefly by WARD (1983) in New Caledonia. These lines of evidence strongly suggest that the deep sea shark is one of the predators of *Nautilus*.

References

- HAVEN, N., 1977: The reproductive biology of *Nautilus pompilius* in the Philippines. *Mar. Biol.*, 42, 177-184.
- HAYASAKA, S. and SHINOMIYA, A., 1982: Marine ecological study on the habitat of *Nautilus* in the environs of Viti Levu Island, Fiji. Sci. Res. Rep. Oceania, (NAV '81) Kagoshima Univ. Res. Center S. Pac. 1, 69-73
- HAYASAKA, S. and others, 1982: Field study on the habitat of *Nautilus* in the environs of Cebu and Negros Islands, the Philippines. *Mem. Kagoshima Univ. Res. Center S. Pac.*, 3(1), 67-115.
- HAYASAKA, S. (ed.), 1985: Marine ecological studies on the habitat of Nautilus pompilius in the environs of Viti Levu, Fiji. Kagoshima Univ. Res. Center S. Pac., Occasional Papers, 4, 1-96.
- TANABE, K. 1985: Record of trapping experiments (In HAYASAKA, S., ed., 1985). Kagoshima Univ. Res. Center S. Pac., Occasional Papers, 4, 10-17.
- WARD, P., 1983: *Nautilus macromphalus* (*In* BOYLE, P., *ed.*). Cephalopod Life Cycle, Vol. 1, 11-28. Academic Press.
- WARD, P., STONE, R., WESTERMANN, G. and MARTIN, A., 1977: Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the cephalopod *Nautilus pompilius* in the Fiji Islands. *Paleobiology*, 3, 377-388.

(Kazushige TANABE)

A: Nautilus jaws B: Coleoid

jaws

C: backbone of tuna (bait)

D: wire used for hanging the bait

Fig. 8. Cat shark (*Cephaloscyllium isabella* Bonneterre, ca. 95 cm in length) (above) and its stomach contents (below). Station OL 3 (414 m in depth).