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ON THE WEAK CONVERGENCE OF MEASURES (1])

By TAKUMA KINOSHITA

Kagoshima Univer sity

§1. Introduction. In this paper we shall investigate the weak convergence of meas-

ures. Yu. V. Prohorov, and Robert Bartoszynski have shown many conditions for the weak
convergence of measures in separable and complete metric spaces, which are expressed in

terms of convergence of measures generated in finite dimentional Euclidean spaces. In what
follows R will denote a complete separable metric space and C(R) the totality of functionals

f(x) which are continuous and bounded on R. Denote by M (R) the space of all finite
measures defined on the Borel o-field of subsets of R. A sequence x#. of element of M (R)
will be called weakly convergent to # © M (R) if for every bounded and continuous function
f(x) on R

(1,1) hm jf(x),a,,(dx) j £ udx) .

Weak convergence of x#. to # is denoted by the symbol u#.>x. Let F be any closed set.
Denote by F¢ the open szt S(F,e). Define the numbers &,z , €5,; as the greatest lower bound

of those ¢ for which, for all clesed set FCR, u; (F)=<pus(Fe¢)+e
respectively us (F)<u1(F¢)+e. Let

max
(1.2)  L(u1,2) =\E02,821).
The following Theorem can be found in [17,[2].

THEOREM. The function L, defined by (1.2), is a metric in the space M (R), and the
conditions #» >u, and L (u#.,ue)—0 are equivalent. Moreover, M (R) with the metric L is a
complete ssparable space.

‘We shall first introduce some elementary facts.

§2. Somc elementary facts

THEOREM 1. Let /. € M(R) (k=1,2,-, m; n=0,1,2, ). If lim L(pen,/f;) =0

and{ci,Ca, "+ ,Cu} IS a finite set of positive real numbers,

then ,lim L(zckﬂn,z‘.ckﬂo“’*o

(2) (2)
PROOF. Let max (L(Az,,, ﬂo) L(tn, ),

) (m)
, L(u,, 1to))=e, then, for all closed set FCR

n (k) n (k) ” (k) m m m
(33 €t} (F) =33C, 12 (F) SZCx (g (F9) +8) = 31Ca g (F) +& 3IC and (ICs/t0) (F) SCs

(FC) +e k2—§k’
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on the other hand we have (X} Ck/i?(F)é(éck/f‘}:)))(FE/) +e’=ECk/itk0) (Fe) +¢
k=1 k=1 ‘ k=1

and (33 Castg)(F) SXCastn (F) +¢'"
=1 k=1

If we write s;:the greatest lower bound of those ¢,

e S

and e’ =the greatest lower bound of those ¢”, |
then, L EjEIC,,,u(:,) kgm.lckp(z’;)):max (s(’)’ s;’)gmax(a, eéick),
hence lim L(élepé:ikéCkéé?)ZO.l
COROLLARY. If £i?wL(ﬂn,ﬂo) =0 and }Lrg L(v.,v,) =0,
then lim L(u,+v., to+ve) =0. (That is to say pn+v.> Uo-+Vo).

n_yo

THEOREM 2. If §11 L(stn, 1ty) <oo, then u,>u,.

PROOF. If 3 L(ua, 1o)<<co, then L(u,,0)—0;
the desired result follows from Theorem of § 1.1

THEOREM 3. If 2; L(tn, 1) <oo and %Lwn,u)@o then n=y.

To prove this Theorem we need the following lemma. [1].
LEMMA. Let x#1, #: and x5 be elements of M (R). Then
@ L(u1, p2)=0, L(u1, #1) =0, and L(u1, u2)=L(ps, u1).
®) L(u1, ws)= L(u1, pn2)+L (nz, 1s).
(© If L(u1, n2)=0, then uq=us.
PROOF of THEOREM 3. If 33 L(u,,n)<lco, and 3 L(u.,v)<co, then L(u., #)—0 and
L(u, v)—0, respectively. ‘
By Lemma L (u#,v)< L(u, pts)+L(tn, v),
hence L{x, v)<X lim L(u, #»)+lim L(u,, v)=0,

L(u, v)=0, u=v.|
THEOREM 4. If% L, n)<loo and L(u, v)=0, then é L{y,,v)<oo.
PROOF. Since, for every positive integers n,
L(un, v) = L(uw, ) +L(u, v)= L(ttn,1),
therefore ) L(u»,v) < 3% L, u)<oo. |

From Theorem2, we may investigate the convergence of > L(u.,u,) instead of u.>u,.
n=1

We shall describe some theorems below and the proofs of these theorems are omitted, since

they can be found in hooks of series, for instance [5].

THEOREM 5. If > L(u., u,) is convergent series,then so is i & L(tn,tty), if the
n=1 n=1
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factors «, satisfy the inequalities 0<a.<k for every n.
THEOREM 6. Let > L(un, o) and 33 L(v,,v,) be two series. 1f S L(un, uo) and >
n=1 . n=1 n=1 n=1

L., v,) satisfy, for every n> a number m,
(@) the condition L(pn, (o)< L., vy),

(b) and speaking generally L(su., tty) = ¢ L(v,, vy)(c; positive constant) then, the series

S L(ua, o) is convergent, when the series > L(v,, v,) is convergent,
n=1 n=1
THEOREM 7. The two series S\ L(yta, to) and >\ L(v., v,) are either both convergent
n=1 n=1

or both diver gent provided lim 7—-—"——5 0,00 exists.
n—>0 L(V,;, DO)

THEOREM 8. X L(u,, uo) is convergent when lims/ L(u., uo) or EHA(ﬁﬂlﬂ_@l<1
"1 " e L (fn, o)

§ 3. Equivalence relations and continuous mappings

In order to cotinue our study, we introduce the follwing definition.
DEFINITION 1. Two sequences {u.} and {v.,} of point of M(R) are equivalent

if;éé-L(ﬂn, v,)<oo.

THEOREM 9. Let M (R) be a metric space with the metric L, then
(1) Any sequence of M (R) is equivalent to itself.
(2) If Luny and {v.} are sequences of M (R), then {yu.} is equivalent to {v,} if and only if
{v.} is eqivalent to {u.}.
(8) Let {un}y, {v.}, {A.} be sequences of M (R). If {u.} is equivalent to {v,} and {v,} is
equivalent to {2,}, then {u,} is equivalent to {1,}.
PROOF. From the definition L(z., v,) = max (e,

ny, Yn, sV"! :a")

where ¢, , = the greatest lower bound cf ¢, that for all closed ¥ CR, we have
My (F) = v, (F*) +e,
and ¢, ty = the greatest lower bound of e, that for all closed FCR, we have

YV (F> gﬂn (Fi)'i_s’
hence (1) L(#s, #») =0 (n=1,2,), therefore il Lsta; 112)=0.

(2 If 3 L(uw, va)<loco, then > L(v,, #,) = > L(u,, v,)<co, and conversely.
3) If X L(un, va)<loo and 33 L(v., 2,)<oo, then, by the triangle
property L(u», A)= L(#., v.)+ L(v,, 2,) we have
SN L(tny 2)S 3 L(ftny va)+ 2L, A )<oo.]
THEOREM 10. Let M (R) be a metric space with the metric L and 1 & M (R).

If 33 L, u)<co, then S) L(v,, u)<<oo if and only if"ﬁl L, v,)<oo.
n=1 n=1 n=

PROOF. If 3 L(u., )< oo and 3} L(v,, u)<oo, then
2 L(ay va) = D L(w, )+ X Lwa, n)<co,
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conversely, if 30 L(un, v.)<loo, 30 L(ptn,u)<oco,
then 23 L(v,, 1)< 33 L(v,, #.) + 3 L(u,,p) <oo.|
THEOREM 11. Let M(R) be a metric space with the metric L and u © M(R). If {u.}
is equivalent to {v,}, then u,>y if and ouly if v,>u.
PROOF. If 1,24, then, by Theorem of §1 L(u,, ©)—0.
From hypothesis, >} L(u#., v,)<lco, therefore,
L(v,, )<< L(v., #.)+ L(u., n), |
lim L(yv,, ©) <lim L(v,, #,) + lim L(x,, #) = 0,
hence v,> 4.
conversely, if v,> u, then
Ln, )= L(tta, v2) + L(v,, 1)
lim L(u,, #) <lim L(#,, v,) + lim L(v,,x) = 0,
hence u#,>u. |
Let R* be a complete separable metric space and let # & M(R). If f is a continuous
function mapping R into R*, then, the condition #/(4)=u {/ 1(A4)} for the x —-measurable
f-1(A) defines the measure #f & M (R*). PROHOROV has introduced the following
theorem.[1]. (We shall write BARTOSZYNSKI’ s form [2]).

THEOREM. The condition #,>#, holds if and only if for every real x -almcst everywhere
continuous function f on R we have uf::} u{.

We shall introduce the notion of a continuity in the sense of the weak convergence of
measures.

DEFINITION 2. Let f: R—R* be a continuous mapping, and u, a point of M(R). Then

f is continuous (type 1) in the sense of the weak convergence of mcasures at the point u, if

and only if given any sequence {u,} of points of M (R) satisfying >3 L(u,, pe) <oo, the
11=1

sequence {ﬂf} satisfies >, L(/z{, /zof)<<>0. The mapping fis continuous in the sense of the weak
n=1

conver gence of measures if and only if f is continuousat at the point y for every uin M(R).
Form the definition of metric L, for f iz continuous in the sense of the weak convergence
of measures, it is sufficient that, for all closed set ACR*, (f71(A))°C f1(4).
Example. The mapping f: R—R defined by f(x) = x for every x & R is clearly continu-
ous (type 1) in the sense of the weak convergence of measures.

THEOREM 12. Let f: R—>R* be a continuous mapping (type 1) in the sense of the weak
convergence. If 0.2 L(u,, uy)<oco, and i L(v,, #y)<oco, then {,a,{} and {vnf} are equivalent.
n=1 n=1
PROOF. If 33 L(u,, #o)<<loo, 33 L(v,, #o)<oo and f is a continuous (type 1) in the

sense of the weak convergence of measures; then >} L( /,zf , ,u({) oo and>) L (vf R ,u{) oo,
An application of Theorem 10 completes the proof. |

DEFINITION 3. Let f: R—R* be a continuous mapping, and u, a point of M(R). Then
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f is continuous (type 2) in the sense of the weak convergence of measures at point u, if and

only if, given any sequence {u,} of points of M(R) satisfying lim L(u,, u#,) = 0, the

n—>co

sequence {ﬂj:} satisfies > L(,uf, ﬂ{) oo, The mapping f is continuous (type 2) in the sense
n=1

of the weak convergence of measures if and only if f is continuous at the point u for every
s in M(R).

THEOREM 13. Let f: R—R* be a continuous mapping (type 2) in the sense of the weak

conver gence of measures and u, a point of M(R). Then, if L(u,, to)—0, ,u’: > ,u{;.

PROOF. If L(u., 1,)—0, then by hypothesis, >} L(x., #})< oo, and therefore,

L(ub, 10, by Theorem of §1, ﬂf?/z{.l

THEOREM 14. If f is a continuous mapping (type 2), then f is a continuous mapping
(type 1).

PROOF. If 3 L(#,, #o)<<co then lim L(x., #o)=0, by hypothesiis, lim L(x,, #,)=0

implies >} L(A/,: . u{) =(0. This implies that f is a continuous mapping (type 1).]
DEFINITION 4. Two continuous mappings f and g are called equivalent in the sense of the

weak convergence of measures if > L(uj,:, ©%)<co for any sequence {4, ).
n=1

THEOREM 15. Let f, g and h are continuous mappings, then

(1) f is equivalent to itself.

(2) f is equivalent to g if and only if g is equivalent to f.

(3) It f is equivalent to g and g is equivalent to h, then f is equivalent to h.
PROOF. (1) and (2) are obious. To prove (3), we denote that

Lidt, i< LGl 5 +LE, 1)), From the definition

LA, 15 = max(ery, ¢g,7) , Where

er,g = the greatest lower bound of those e, that for all closed sest FC R, we have

WP H5(F) + ¢,
and ez r= the greatest lower bound of those e, that for all closed set FCR, we have

KSR wh(F) + e
Similarly, L(x%, /zf) = max (eg,4, €h,g), where, &t and er,e denote the greatest lower
h
bound of these e, that for every closed set FC R we have L)< 4, (F6) + & and ,a},i (F)

_ . h
< A(F) + ¢ respectively, and moreover L(ﬂf, 4,) = max (&f, », e, 5),where ef,» and

en, s denote the greatest lower bound of thcse e, that for every closed set FCR we have
LY (F) + ¢ and 4 (F) < u4/(F) + ¢ respectively.

. — n o Cat
Hence ﬂ{(F) < UE(F°18) + ep g < 1E(F8) ver g <p,(FFe)  tefgtegn
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e
< uy(FTIT R s ke,
ef,h = &f,gF&g,h,
similarly en,f < eg,r + €h,g,
From those equations, we have

max (ef n, ek, f) = max(erg, &g, ) + max (egk, €h,g)
h h
namely, L(x., ') <L, 15 + LA, o)

and hence 30 L(s), #') <3 L(dh, 45 + 30 LGE, i) <oo.)
THEOREM 16. If f and g are continuous (type 1 or type 2) at ny EM(R), and

equivalent, then /z{) /,e"(’;.

PROOF. By hypothesis, if 33 L(z,, #o)<oo (or lim L(s.,4,) = 0 ),
then 33 L(z), ) < oo, 3V L(4, 18 <oo, and 32 L(ul, 1) <oo;

f -
hence L(sh, ) < L(ul, w)+L(ul, 1) + LG5, 15)— 0
L(/z{;, ,a%):O, we have /zg == /4’3.1
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