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Abstract

Theories of space-groupoids and of vector symmetry of Sadanaga & Ohsumi [Ada

Cryst. (1979), A35, 115-122] are analyzed by means of ordinary space-group theoretical

method. The space-groupoids by their representation are proved to be empty sets. The

three space-groupoid structures exempli丘ed by them are not space-groupoid structures

except one of them.　The space-groupoid theory is concluded to be not necessary for

crystallography.　The丘rst theorem of vector symmetry proposed by them is proved to

be tautology by analyzing the concept of selトhomometry, which is interpreted to be

synonymous with homometry.　The second theorem of vector symmetry is pointed out

to be wrongly formulated and groundless.

1. Introduction

Crystal structures giving rise extraordinary extinctions of diffracted spectra or diffuse

streaked spectra were called OD-structures by Dornberger-Schiff (1956).　In order to

describe symmetries of such structures, Dornberger-Schiff & GrelトNieman (1961) intro-

duced groupoids of Brandt (1927) and formulated space-groupoid theory. OD-structures

and space-groupoid theory were discussed by Dornberger-Schiff (1964) in detail.　Since

one of the subjects for the present authors study is calculation of X-ray diffracted

intensity by close-packed structures with stacking faults, the author have recognized

that OD-structure theory is useless for the calculation.　The extraordinary extinctions

can be interpreted by ordinary space-group theoretical method and the space-groupoid

theoretical interpretation is nothing but confusion,

Space-groupoid theory was assented by Sadanaga and his school in Japan.　They

applied the theory to enhancement of diffraction symmetry. The enhancement of diffrac-

tion symmetry means that the point group of a diffraction pattern is of higher order

than that generated by the point group of the crystal and an inversion operation. The

point group of a diffraction pattern agrees with the point group of the vector set, where

a vector set means the set of vectors directed from the positions of atoms to those of
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the other atoms in a crystal. Sadanaga & Ohsumi (1979) discussed symmetries of vector

sets as if they showed one of applications of space-groupoid theory, and formulated two

theorems for symmetries ･of vector sets, for which they insisted to be useful to interpret
●

the enhancement of diffraction symmetry.

The structures discussed by Sadanaga & Ohsumi(1979) have translation symmetry and

are more adequate than OD-structures for application of the groupoid theory. However,

we丘nd out at glance very strange facts in the examples given by them. In a structure

consisting of three substructures with the same lattice, any one of which is said to be

obtained by a space一groupoid operation on another substructure.　There are squares

with different lengths of sides which are said to be space-groupoid symmetric with each

other.　These space-groupoid operations are not compatible with the lattice translation

symmetry.　In another example, they insisted that there were operations bringing a

kind of atoms to another kind of atoms.　They described that a space group could be

transformed to another inequivalent one.　These space-groupoid operations contradict

the fundamentals of crystallography.　If introduction of these kinds of operations into

crystallography are allowed, crystallography will be destroyed.  In this paper, the

present author deduces many strange operations which can not be compatible with space

group theory.

We can discuss the symmetry of a vector set by using space group theoretical method.

The theory of symmetries of vector sets of Sadanaga　&　Ohsumi (1979) is based on

misunderstanding of homometry.　Their important concept ``selトhomometry" is shown

to be nothing but identity if we interpret literally the description of them. In order to

analyze their theory, the present author makes clear that selトhomometry should be

interpreted to be homometry.　Many imde丘ned terms used inconsistently by them are

de丘ned clearly. The丘rst theorem of vector symmetry of them is shown to be tautology.

A method to obtain counter-examples of the second theorem is described and a counter-

example is shown in this paper.　Theorems for necessary conditions become false if

counter-example is found. Hence, the second theorem is false.

Sadanaga & Ohsumi (1979) will be refered to S-O, hereafter.

2. Space-groupoids

Crystals are characterized to have translation symmetry, see Seitz (1935). Transla-

tion symmety means that a crystal is brought onto itself by translations which are

expressed by vectors nla+n2b+n3cf where a, h and c are the bases of the translations
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and for m any integers, see Appendix A.　When we express points in space by the

position vectors, the set of the points

T-{nxa+n2b-¥-nzc¥ for nt any integers} (1)

is called point-lattice, see Burckhardt (1966), and the set T as that of the translation

vectors is called lattice. Translation symmetry means as follows, if there is a atom at

r, there are the same kind of atoms at the positions, r′,

rf-r+nla-¥-n2b+n3c;　for nt any integers.

The set of the equivalent positions of the atom is expressed by
●

(r+ r)-{r+nla+w26+サ3c; for n* any integers}.

(2)

(3)

Symmetry operations defined by Brown, B也Iow, Neub也ser, Wondratschek and Zas･

senhaus (1978) are as follows.

:A symmetry operation of an object in space is mapping of the space onto itself
●

satisfying the following conditions:

1. It is a rigid motion; that is, it leaves all distances unchanged.

2. It maps the object as a whole onto itself; that is, the object after mapping is

indistinguishable from the original object.
●     ●

If the object is a crystal structure, its symmetry operations are called crystallographic

symmetry operations. "

Since we treat always crystals, crystallographic symmetry operations are called simply

symmetry operations.　It must be noted that the extension of the object should be

in丘nite and the mapping should be one-t0-one in the above de丘nition.
●

A rigid motion consists of a displacement followed by a rotation, where the rotation
●

means the rotation in wide sense, that is, it may be a reaection, an inversion or an

inversion rotation. A rigid motion g operated on a position vector r can be expressed by

●

gr-dr+α　　　　　　　　　　　　　　　　　　　　(4)

where A is a rotation which is represented by a matrix with determinant　士1 and α is

a vector. Seitz (1935) called A and a the rotation matrix and the translation vector,

respectively. The motion g is represented by an operator

tf-(A, α).

A space group G is represented by the following form,
●

(5)
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G-T(Al, 0)+T(A2,a2)+-

T-{(E,n); n∈TI

(6)

(7)

and A^-E is a unit operation.

Rotations of a space group G leave the translation group T of G invariant and form

one of thirty-two rotation-groups, see Seitz (1935).　The set of points obtained by

operating all the elements of G on a point at a general position forms a regular point

system, see Burckhardt (1966). The set of the position vectors of the points equivalent

with a point at r is expressed by

X(r)-{gr; g∈Gi

-22(04,, cOr+ D-
も

(8)

If the point is at a general position, the set X(r) becomes a representation of the regular

point system and corresponds to G one-t0-one. When the space group G is symmorphic,

the set X(0), the set of the position vectors of the equivalent points with the origin of

the lattice, agrees with T.　If we regard the atoms as points, a crystal structure

becomes the direct sum of the set X(r,), where r^ is ith atom's position,

X- ∑X(rO
i

-∑∑ォAj, a/)rt+ T).
i　3

(9)

Since crystal structures can be characterized by the sets Xs of the position vectors, the

sets are called also the crystal structures, and a point P of which the position vector is

r is called simply the point r, hereafter.

Dornberger-Schiff (1956) proposed that structures consisting of a set of equal trans-

latable layers, with successive layers related by one of several stacking vectors sif which

are derived from one another or from the inverse of the other by symmetry elements

of single layer should be denoted by the term OD-structures of type A Dornberger-

Schiff　&　GrelトNieman (1961) called operations transforming any layer into itself as

A-POs and those transforming a layer into adjacent layer as o-POs.　According to

Dornberger-Schiff (1964), the both kinds of operations form a Brandt's groupoid.

S-0 applied the groupoid theory to quite a different kind of structures from OD-

structures.　Their crystal structures are composed of several substructures with the
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same lattice.　We can not divide such structures into de丘nite domains as done in OD-

structures, since any small domain in the structures consists of the domains with the

same size of each substructures. According to S-O, such structures have two classes of

operations, the one is composed of operations bringing each of the substructures onto
●

itself, and the other is composed of operations bringing each of substructures onto another
●

one. The former class of the operations form a group and the set of operations is called

the kernel of the groupoid and is denoted by Ko.　The set of the operations belonging

to the latter class is called the hull of the groupoid and is denotedbyH. The groupoid

is expressed by the direct sum of h√ K｡hj,

M- ∑ ∑ h√'Kohj,
i-0.7-0

(10)

where h<∈H.  In Eq. (10), hj brings the jth substructure Xj onto the substructure Xo

representing the kernel K｡.　From the de丘nition of the kernel, the space groups of all

the substructures must be the same as Ko.

Let us investigate the nature of the elements of the hull H.　The elements must

absolutely not be sets of operations.  If the elements are the sets of operations, the

space-groupoid 〟 becomes an empty set, since the product of two sets is the mtersec-

tion of the sets, see Iyanaga and Kawada (1977). The de丘nition that h* brings the z'th

substructure X牀onto the kOth substructure Xo means that h, is a one-to-one mapping of

X*onto Xo,

X,-{h,r′; r'∈X,}. (ll)

When we assume that Xo consists of an atom at r and its equivalent ones, Xo can be

expressed by

X｡-{gr; g∈Gi,

where G is the space group of Xo. The substructure Xt is rewritten by

Xt-{h√'gr; g∈G).

(12)

(13)

The both substructures have the same lattice. The lattice of which origin at the origin

of X｡, T, is brought by the operation h√　to that of X.　The origin of the lattice of

Xt should be at the origin of Xt which is apart from that of Xo by bi9　That is to say,

h* lT becomes
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h√ T-{hi 1(nla+n2b+nzc); for n^ any integers}

-{6i4-nla+n26+n3c; for nt any integers}

-(fii+ T). (14)

Since the operation ht 1 leaves the distances between the lattice points unchanged, the

operation /^ x must be a rigid motion, which can be represented by the form of

hr^ (Blt b.).

The rotation Bi must transform T invariant

BiT- T.

(15

(16)

The rotation /?* should be an element of the holohedry. Therefore, the elements of hull

should be:

An operation ht l of hull is a rigid motion; therotation of Bt ofht
●

is an element of the holohedry and the translation 6* is the vector

from the origin of Xo to that of Xit
●     ●

The reverse element ht of h√l is

*<- (Bf¥ -B√蝣ftォ). (17

We can verify that the elements of hull represented by Eqs. (15) and (17) satisfy

groupoid's definitions.　When r∈Io, the element r′ equivalent with r in Xt is (2?*6<)r.

When an element of h√ Mh,, represented by

(BMKBr^ -Bfib,),

is operated on r′　we have

(A, &ォ)*(｣.√　-A-16ォ)(S<, 6<)r-(A> 6<)*r∈Xi,

and when an element of hi lMhi is operated on r, we have

(BMKBt~1, -Bi-%) (Bi, bi)r- (BJ, bJ)kr∈Xj.

18

(19)

(20)

We can conclude that the space-groupoids are represented by our representations.

Two operations α and ∂ belonging to a space group G are said to be identical if the

●

results of the both operations on any points in a crystal space D agree with one another,

thatis,
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αr=∂r

α=み.

for any points inか, then

(21)

(22

If the results are different from one another at one point at least in D, the operation a

is said to be not identical with the operation ∂　If a point does not satisfy Eq. (21)

for any two operations belonging to G, the point is said to be at a general position, if
●

仙e point is not a general position, the point is said to be at a special position.　The

number of equivalent points with a point at the special position becomes smaller than

that of the points at general positions, but the symmetry between the points does not

change, see Appendix A.

In the cases of groupoids, eventhough a point rp satisfies

hoksrp-hi~1ktrpi (23)

the set Xitjp) does not agree with Xo(rp), since Ko is not a normal subgroup of M, Ko

^ht lKohi. In this case, there is one element belonging to Xo(rp) and not belonging to

Xi(rp) at least, say rsi

Xo(rp) -X｡(rp) n X^rp) ⊇ {rs}. (24)

The two points rs and rp are at equivalent positions with respect to Ko, the situation
●

of surroundings about the point rp in the crystal space must be the same as that about
●

rs in ordinary structures.　Hence, the coincidence of rp with ks xh√ ktrp should be

regarded as an accidental coincidence. This interpretation is supported by the fact that

the one-t0-one correspondence between X and ∑ h* xKq is lost, if there is a common
i

element in the both sets and the element is not counted doubly.

Structures composed of substructures were discussed by the present author (1977)

about the enhancements of diffraction symmetries, the extraordinary extinctions of dif-

fracted spectra, and the conditions for the set SB-{(Bi9bi)} and the space group of the

substructures generating a space group.　Although the objects of studies are quite the

same, the methods explicitly described and the understandings of the structures are

quite different from each other. The difference is shown in the following section.
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3. Analysises of examples

The examples of space-groupoid structures given by S-0 are shown in Figs. 1, 2

and 3. In Fig. 1, the Oth substructure Xo consists of two white circles and one black

one, of which coordinates are;

rl-(x, 0, z), r2-(虎, 0,乏)　for white circles,

r3- (0,jy, 0),　　　　　　　for black circle.

The vectors bx and b2 are drawn in Fig. 1. The space group of the substructures isP2

and the symmetry between substructures is

SB-{(E, 0), (E, bl), (E, b2)}.

Fig. 1. Fig. 6 of S-O.　This structure is only one example of

space-groupoid structures, but does not satisfy the second

theorem of vector summetry of S-0.

2′

■1′

1

7

9

5′

6

3

■1

8

2

4′■■

■5

Fig. 2. Fig. 7 of S-O.　This structure is not a space-groupoid

structure and does not satisfy the second theorem of

vector symmetry of S-O.
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Fig. 3. Fig. 8 of S-O. Thisstructure isalso notaspace-groupoid

structure. This structure is not suitable for the example

of the second theorem since the diffraction enhancement

occurs owing to the product of the structure factors of the

substructures is zero.

The set SB must agree with {h^hl~1ih2 x}.　In this example, we can not define the

subspace where "the local symmetry operations are effective", since the space group P2

is effective everywhere for the Oth substructure in the crystal space.　This example

seems to satisfy the postulations of space-groupoids interpreted by the present author,

but the readers should aware that the space一groupoid theory can not deduce any crystal-

lographically useful informations for this structure.　We can discuss enhancement of

diffraction symmetry very easily from ordinary space group theoretical treatment, see

Takahashi (1977).

In Fig. 2, the points are numbered by the present author. The points with dashed

numbers are translatively equivalent to those with the undashed same numbers.　We

denote by {a, b, c, d) a square formed by points a, b, c and dand by {a, b, c, d}　the

substructure formed by the translatively equivalent squares with (a, b, c, d).

We can judge at a glance that there is no rigid motion which maps the square (1,

2,3,4) onto the other square, say (1,5,6,7). The operation hl l mapping (1,2,3,4) onto

(1,5,6, 7) is represented by

*.-'- (<?!?, 6,)

where R is the rotation bringing (1,2,3,4) parallel to (1,5,6,7), b, is the vector from

the center of (1,2,3,4) to that of (1,5,6,7), c- i^-fti / rj and rx is the vector from

center of (1,2,3,4) to the point 1. Since c # 1, the operation hfl changes the distances
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between any two points in (1,2,3,4) by the mapping. The rotation R rotates the lattice

of {1, 2, 3, 4} by the same angle with which (1, 2, 3, 4) is rotated, and does not make

coincidence the substructure {1,2, 3, 4} with {1,5,6, 7}.　The rotation varies with the

position r,.

According to S-O, the element of the hull transforming the iih substructure Xi to
●

X｡ in Fig. 2 is given by the product of the three factors Ri9 ｣/*　and ti9　k^U^R^U.

The factor tt is "a partial translation which brings the plane lattice Z^ composed of the

centers of the squares in Xt to superpose upon the corresponding lattice Lo in Xo". The

factor Rt is "a set" and expressed by "ll/Ty^T/ ¥　where r* is a partial rotation opera-

ting on the squares in Xo, Tj is a lattice translation from the origin of Lt to the jth
●                                                                                                                ●    ●

lattice point in Li9　and the union ranges over all the lattice points in Li9".　Since Ri

is a set, Tjr.T√　must be a subset of -Rt.　The factor C/^ is "a set" and expressed by

'Ui- yjjTjUiTj ¥　where ut is a similarity transformation operating on the above square

to make it the same size as the square in Xo."　Similarly to the case of Ri9　Tju{Tj-i

must be a subset of a*.

The present author revises the above S-O's descriptions in accordance with the set

theory. The factor tt can be represented by

*ォ-(｣, -&ォ)�"

The factor Rt should not be UyT^iy"1, but

Rt-iTsrtTfl; Tj∈Tf.

Since rt is represented by (7*0), /?* should be represented by

Ri-{(E,n)(ri,O)(E, -n);(E,n)∈Tl.

The factor Ut should be

U^iTjUiTfl; T,∈TI.

Since ui-CiE, where c* is a scaling factor, ｣/* should be

Ut-((E,n)(c.E,0)(E, -n); (E,n)^T}.

Of course, the product U^R^t^ is an empty set.

According to Loewy (1927), there is no common element between Koh牀and Kohj if

hi # hjy then there is also no common element between Ai ^ and ^y lKQ.　Since the

points 1 and 3 are equivalent to one another with respect to Ko, if the point 1 is at a
●
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general position, so is the point 3.　The points 1 and 6 are equivalent to one another,

the point 6 is also at a general position. Since we can put the point 1 everywhere in the

unit cell, the position can not belong to two substructures except an accidental comci-
●

dence. Since the correspondence between K｡ and h√1Ko is one-t0-one, the point belonging

to one of substructures must correspond uniquely to those of the other substructures,

that is, all the substructures must have the same number of points. If there are common

points in two substructure, the points must be doubled. According to S-O, all the points

in Fig. 2 are of equal weight, and all the squares and translationally equivalent ones

form the substructures.　This contradicts one-to-one correspondence between Xt and

･A/, since all the points have equal weight.  If we allow the existence of the common

points of equal weight with the other points, we must introduce anihilation and creation

operations of atoms into crystallography.

The structure in Fig. 3 is composed of two substructures, one with the symmetry

of P42cm consisting of small circles, and the other with PA2mc consisting of large circles.

The small and large circles have different weight, that is, they are different kinds of

atoms to each other. If we can make map one of the substructures onto the other one,

we must be required to introduce the following two kinds of operations;
●                                                                                          ●

a. operations changing the distances between two points,
●

b. rotation by nlL

The former kind of operations are not rigid motions and the latter kind of rotation does

change the direction of the lattice. In addition, in order that one of the substructures

is mapped by the other one, we must introduce operations changing the kinds of atoms.
●

If these operations are allowed, we could make all atoms equivalent in a crystal structure
●

regardless the kinds of atoms.　Since one of the substructures can not be mapped onto

the other one, the structure does not have the kernel of groupoid, and is not a space-

groupoid structure, see Appendix A.

The above examinations show the space-grpoupoid theory of S-0 is not necessary

for crystallography and should be disregarded by Occam's razor.

4. Self-homometry

A set V of vectors which are directed from atoms to the other atoms m a crystal

structure X is called the vector set of X, that is, if

X-{ri; i≦Nf, (25)
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V-{ri-サV; ritr<∈X). (26

The ordinary definition of homometry is as follows.　When the two sets of position

vectors are denoted by XA and XB and the vector sets by VA and Vs, respectively, for

two structures A and β if the two structures satisfy the following two conditions

XA*XB and XA*XR

vA- vB,

and

(27)

(28)

the two structures are said to be homometric with one another, where XB is the inver-

sion of XB. In this paper, the author modifies slightly the above definition as follows:

If Xa^fXb and VA-VB, A is homometric with B.

If the structure A is homometric with B, we denote by

B
Fig. 4. Fig. 4of S-O.　The point group of the structure (α)

is 1 and the diffraction symmetry is 4.
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(29)

According to S-O, self-homometry is denned as follows.　　　　　-

'Let us assume that the structure X is homometric with itself in such a way that

both A and B, which are homometric with each other, come to coincide with each other

with X. The structure X will then be said to be self-homometric. "

In the above description, we can not know how the two structures A and β relate with

X. By Consulting the example given in Fig.4, X might be the convolutionof A and B,
●

X= A*B. (30)

If so, 《selトhomometry" of S-0 may be as follows:

5When a structure Xis the convolution of A and B, and A is changed to B by a

homometric operation P and B is done to A by P, the operation P is called a selレ

homometric operation if PX-PA*PB is homometric with X,

px=pA*PB=B*A空x. "　　　　　　(31)

Here the operations changing structures to the other homometric structures are called
●

homometric operations.　According to Hosemann & Bagchi (1954), A*B is identical to

B*A,

A*B=B*A. (32)

Hence, the self-homometry of S-0 is nothing but identity. The author shows that self-

homometry of S-0 must be homometry by analyzing the example given in Fig.4. That

is, the self-homometry of S-O is based on misunderstanding of homometry.

Although homometric operations can not be found in general, we can丘nd the opera-

tions for special cases.　For example, when we number the points of A in Fig. 4(b)

and form a column matrix of which ith element is ri-ri+u then we can find a matrix

transforming the column matrix to that of B rotated by -n/2.　The transformation

matrix P is a representation of the homometric operation.　We can examine easily the
●

following relations,

P2=e

P(A*B) -PA*PB,

and

(33)

(34)



32　　　　　　　　　　　　　　Examination of Space-Groupoid Theory

where e is a unit operation.　The product of a rotation R and a homometric operation

P is commutative,

PR = RP. (35)

The structure in Fig. 4(a) is obtained by the convolution of A and B-RPA, where

R is a rotation by n/2 and P is a homometric operation on A.　The operation trans-

forming A to B is not a homometric operationon on A but a homometric operation followed

by the rotation R.　If we operate RP on A*B, A*B is transformed to a homometric

structure with A*B, that is,

RP(A*B) -RP(A*RPA)

= RPA*A

= A*RPA

=A*B. 36

Hence, we recognize that that the de丘nition of S-0 for selトhomometry is quite mean-
●

●

mgless.

We can prove directly that the vector set of A*B has 4-fold rotation symmetry.

The structure A*B is transformed by R to a homometric structure,

R(A*B) -R(A*RPA)
.~こ-

= RA*PA

= RPA*A

=A*B.

The vector set VA*B is invariant by the rotation R. Since

R¥A*B) -R(A*B)

-R(A*B)

the vector set VA*n has 4-fold rotation symmetry, see Appendix B.

(37)

(38)

5. Two theorems of vector symmetry

The concept of selトhomometry turns out to be meaningless in the preceding section.
●

The two theorems of vector symmetry of S-0 are formulated on the meaningless concept,
●

so that they are evidently valueless.　However, in order to show that S-0 formulated
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them arbitrarily and independently of space-groupoid theory, they are analyzed in this

section.

The first theorem of vector symmetry given by S-0 is as follows:
●

The necessary and su用icient condition for a structure X to be n-fold vector sym-

metric is that X is n-iold self-homometric* "

We can not know what mean "X to be w-fold vector symmetric" and "X is w-fold self-

homometric" in the丘rst theorem, since S-0 did not de丘ne n-iold vector symmetry and

n-fold self-homometry. In this section, the terms used by S-0 are rede丘ned along the

contexts of their usage, regardless the analyses in the preceding section.

The term n-fold selトhomometry and its related terms are revealed by analyzing the
●

following sentences.　"Conversely, when V is n-iold symmetric, it will be superposed

upon itself by a rotation of 2n-ln around its TZ-fold rotation axis N. This means that X

consists of vectors which correspond one-t0-one in both equality in length and parallelism
●

in direction to the vectors in X after a rotation by 2n/n around an axis parallel to Nin

V, that is, X is n-fold selトhomometric."　At first, it must be noted that the both

axes pass through the origin of the lattice, since all the proper or improper rotations in
●     ●

space groups have the origins of the lattices as the丘xed points.　The former sentence

in the quatation means that V is n-iold rotation symmetric. In the latter sentence, it

means that V is also n-iold rotation symmetric, since the vectors m X mean the vectors

between atoms in X Consequently, ^-fold selトhomometry of X is synonymous with

n-fold rotation symmetry of V.

From the above analysis, we can de丘ne the terms relating with selトhomometry as
●

follows. When we denote by Xf the set of position vectors obtained by a rotationR on

the set X, X′-RX, where the rotation angle is 2n/n, and by V and V′ the vector sets

of X and X′, respectively, we de丘ne:

(a)サーfold self-homometry

lf V=V' X is ^-fold self-homometnc.

(b) n-fold vector-symmetry

If V-V′　X is n-fold vector-symmetric.

●

By taking account of the description of S-0 that selトhomometry includes global symmetry,

n-iold self-homometry does not concern with either X-X'or not, so that our definition

(α) is ascertained. Vector symmetry of S-O is symmetry in vector set. Symmetry in
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vector set also does not concern with either X-Xl or not, so that our definition (b) is

ascertained.　The definitions (a) and (b) accord with the usage of S-O.　When global

and local symmetries are excluded from selトhomometry, the remainder is called proper

selトhomometry by S-O. That their understanding of homometry is quite wrong is also

shown easily if we refer to an ordinary structure having the space group P3.　This

structure can be divided into three substructure which are equivalent with one another,
●

but the vector sets of the substructures are not equal to one another.　That is to say,

global symmetry is not necessarily self-symmetry in the sense of S-O. Of course, X-

X'and V=V in this case.

The above de丘nitions conclude that the丘rst theorem is tautology.　The origin of

this tautology is the extension of the wrong concept of selトhomometry to ordinary sym-
●

metry. Selトhomometry is de丘ned for the structures obtained by the convolution of two

structures and not de丘ned for the other kinds of structures. Neverthless, S-0 extended

the concept to even ordinary symmetry which governs ordinary structures.　Then, for

instance, the homometric operation RP reduces to the rotation R and the condition of

the selトhomometry reduces to the agreement of the vector sets in the structure in Fig.

4(<z). Consequently, the both de丘nitions, the selトhomometry and the vector set sym･

metry, become the same.

We can not expect to derive any other useful and effective theorems from this

wrongly formulated trivial丘rst theorem. However, let us examine the second theorem

of vector symmetry by itself. The second theorem reads:

"When a structure X is not properly self-homometnc, the necessary condition for X

to be vector-symmetric is that each of the points in X belongs to an orbit of such a

space group KL as with a point group isomorphic with the point group of the vector

symmetry of X. "

In the second theorem, it is not clear what means "X to be vector-symmetric".

X is always Gv or Gv/Gj-vector symmetric by the description of S-O. That this phrase

is contentless is easily seen if we recall `a man to be a mammal". If we interpret the

phrase that the diffraction symmet.ry is different from the point group generated by an
●

inversion and the point group of the crystal, we can proceed in our discussion. Accord-

ing to S-O, an orbit of vector r with respect to a group G is the set of the equivalent
●

vectors with r with respect to G, then the orbit should be expressed by
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0∂(r, G)-{gr; g∈G). (39)

The denniton (39) of orbit agrees with that of Brown, B也Iow, Neub也ser, Wondratschek

and Zassenhaus (1978).　When the point r is at a general position and the group G is

the space group of a crystal, the orbit agrees with a regular point system. Since "Xis

not proper self-homometric" means that X is either an ordinary structure or composite

one consisting of substructures of which symmetries are called local symmetries, the

second theorem can be rewritten by:

'When a structure consists of substructures, if diffraction symmetry of X is different

from the point group generated by an inversion and the point group of X, the set of the

position vectors of X should be expressed by

X-∑∑Ob(rit Kt)f
i 3

where the point group of the space group Kt is the vector-symmetry of X. "

40)

If we apply our theorem to the structures shown in Figs. 1, 2　and　3, the only

structure expressed by Eq. (40) is the one in Fig. 3. The validity of this theorem is

lost if only a counter-example is found.　The counter-examples of this theorem can be

obtained systematically by the method of Takahashi (1977).　We choose a space group

G of which normal subgroup GN has different diffraction symmetry from that of G.

Let us denote G by

G-GN+ (B, b)GN.

We construct a structure Xx of which space group is GN and another structure X2 which
●

is obtained from Xx by operating B on Xx.　Then, we compose a structure X by Xx

and X2 0f which origin is displaced by bt from that of Xx.  If bt-b, the structure X

becomes ordinary one and the space group of X becomes G. If b古寺6, there is posibihty

that diffraction enhancement of symmetry occurs.　For example, when G is PA/mmm

and GN is P4/m, (B,b) becomes a mirror operation. If the space group of Xx is PA/m

and X2 is the mirror image of Xl and bt-(Q o与), the diffraction symmetry of X be-

comes ilmmm, although the space group of X is P4, see Appendix C.

The present author concludes that the second theorem is stated without any theore-

tical ground and expresses formally our expectation that the diffraction symmetries of
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the structures composed of several substructures should have the rotations of the space

group operations of the substructures as their elements｡

6.　Remarks

a) Union of sets

Union of two disjoint sets A and β, dUβ is expressed by direct sumA+且　Since

each subsets h.L IKohj in M are disjoint, M can be expressed by Eq. (8) instead of Eq.

(1)of S-0.

b) Equivalent operation with hi

An operation belonging to hull /&4 is equivalent with (E,n)h.L,

(E, n)h,-(B√1, -Bi~%+n)

where (E,n) is an element of the translation group T.

c ) Partial operations

A very important term used by S-0 is 《partial operation", which is not discussed in

the preceding sections.　According to S-O, qIt operates only on a subspace A of a

crystal space to bring it to superposition upon another β and is accordingly not a sym-

metry operation. " The partial operations can be de丘ned if we can de丘ne the subspaces

on which the operations operate.　On the contrary to S-O, the symmetry operations

between substructures, (Bi9 b牀)9　which shoud belong to the hull of a groupoid, operate

over all the crystal space for the structures consisting of substructures. The operations

are not partial operations by the de丘nition of S-0.

Another kind of partial operations was introduced by S-O.　According to S-O, a

structure A can be brought onto another homometric structure β by the set of the partial

Fig. 5.　Fig. 4(b) of S-0. The points are numbered by the

present author.
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operations which bring the inter-point vectors in A onto those m B.　Figure 5 is an

enlarged copy of Fig.4(6).　The points in A and B are numbered. In order to bring

an inter-point vector r4-rj in A onto r/-rt′ in B, we must rotate r*-rj by 7t/2 and

translate parallel the vector so as to make agree rj with r占′. Hence, a partial operation

Sk operates on the element of V and that of X that is,

Sk(ri-rj, rj) - (rs′-rc′, 1㌔′).

For example, the丘ve partial operations operating on the inter-point vectors directed from

the lst point to the 2nd, 3rd, 4th, 5th and 6th points in A can be expressed by

Si(r2-rl9 rj- (r6'-r/, r/),

S2(r3-サ"i. rO - fo′-r2′, r2′),

S3(r4-rl, rl) - (r5'-r3', rs'),

54(r5-**i, rj - (r6′-r3′, r3′),

53(r6-ru rj -(r2′-rl′, ㍗l′).

When A has n points, the number of the inter-point vectors from the ith point to

the other point in A is n-1. The n-1 vectors are brought by n-1 partial operations

to n-1 vectors in B.　The n-¥ vectors in B do not have a common point which cor-

responds to the ith point in A. If there is a common point, the operations become an

ondmary rotation. The subspaces in A on which the 〟-1 partial operations operate do

not contain the ith point.　Since there is no point corresponding to the ith point in B,

the subspaces in A which are brought to those of β by all the partial operations do not

contain the 〟 points of A, that is, there are no partions which bring A to β.

Appendix A

According to Burckhardt (1966), an element (Ai9a牀) of a space group G can be

represented by another equivalent form (Bif bt) satisfying

(U,s)~ (Abat)(U,s)≡(｣ &,) (mod T). (A-1)

In the theory of Burckhardt, the bases of representations of space groups are primitive

reduced, and the translation groups for any space groups are represented by

T-{(E,ri); the elements of n are any integers}. (A-2

It must be noticed that there are different but equivalent representations for a space
●
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group eventhough the bases of the representation are the same.　In general, two

equivalent representations Gx and G2 for a space group G,
●

Gl- Tl(E, 0)+Tl(A2, a2)+-

and

G2-T2(E, 0)+T2(B2, b2)+-

must satisfy

(U, syiTl(U, s) - T2,

m addition to (A-1), where

(U,syiTl(U,s)-{(U,s)-H(U,s); teTJ.

If a space group G has a normal subgroup H,

G- H+gH,

points in a structure X satisfying

r=gr

(A-3)

(A-4

(A-5)

(A-6)

(A-7)

(A-8

form a subset Xs of X, the subset including X. and its equivalent subsets with respect

to H is transformed onto itself by the elementsof G. We can form two sets XH(r) and

Xqh(?) from a point r belonging to Xsi

XH(r)-{hr; heH}

and

XgH(r)-{ghr; h^H}.

Since g2-e and H-g lHg, the set XgH(r) agrees with XH(j),

XgH(r)-{ghr; h∈H)

-{ghgr; h∈Hy

-{hr¥ h∈HI

-XB(r).

Hence,

(A-9

(A-10)

(A-ll)
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X(f) -Xa(r) U XgB(r)

-XH(r). (A-12)

When two inequivalent space groups Gx and G2, which are generated from the same
●

point group, have a common normal subgroup H,

G^H+g.H and G2-H+g2H,

if

iri -r.　and g2r2-r2i

the sets of the position vectors Xi(rx) and X2(r2),

(A-13)

(A-14)

Xl(rl)-{grl; g∈Gj}　　and X2(r2)-{gr2; g∈G2},　　　(A-15)

are invariant by the operations belonging to H, but Xl(rl) and X2(r2) are changed by

g2 and gu respectively. There is no transformation changing Xx(j^) to A2(r2).

Appendix B

The set X of the position vectors of a structure A can be expressed by the sum of

delta functions,

ⅣA

DA-冒 ♂(r-r/).
ち

The convolution of DA and DB results

NA NB

Da*b一写写∂(r-rf-r,*).
もJ

Hence, the set XA*B of the position vectors of the structure A*B becomes

XMB-{rt*+rf　≦NA,j≦NB},

●

and VA*n is

VAttB-{rtA+r/B-rkA-rm i, k≦Na,J, in≦NB}.

We have the following very useful relations for homometry. ``If

Ate and bld,

then

(B-1)

(B-2)

(B-3)

(B-4)

(B-5)
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h

A*B皇C*B=A*D皇C*D. "

The proof of the丘rst homometry is as follows.

satisfying

7-iA - rkA- ri,a- rk,a

in VA and Vc, hence

(B-6)

h
SinceA-C,therearealwaysvectors

(B-7

VA*B-{rA+r}B-rk -　*m i k≦NA,J,*n≦NB)

-{rt′-+rjB-rk′ -r.′B; i′, k′≦Nc,j, m<NB}

-v,C*B*

The other homometries in (B-6) can be proved similarly.

Appendix C

When a vset X of position vectors is given by direct sum of the subsets Xit
●

X-∑Xi,
i

if a function f(X) of the elements of X is additive with respect to the subsets,

/(*)-写KXd,
令

the symmetry G of f(X) satis丘es

G⊇niGi,

where G^ is the symmetry of /{X^.

Structure factor F(h, X) is additive,

F(h, X) -.一2F(h, Xd,

i

(B-8

(C-1)

(C-2)

(C-3)

(C-4)

the symmetry of the structure factor satis丘es (C-3). Vector set V(X) is not additive,

V(X)キヨvm,　　　　　　　　　　　(C-5)
ち

the symmetry of V(X) does not satisfy (C-3).　Although the absolute value of the

structure factor F(h,X) is not additive in general,

¥F(h,X)匡写¥F(h,Xt)¥,
も

(C-6)
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if the arguments of F(h,Xt) are equal to each other, the absolute value of the structure

factor F(h,X) becomes additive, the symmetry of the absolute value satis丘es (C-3)･

This case is type 1 of Iwasaki (1972), see Takahashi (1977).  If the number of the

subsets in X.is two and

F(h, X,)-F(h, X2) -0 for h#K (C-7)

where ho is the origin of the reciprocal lattice, the reciprocal lattice space can be divided
●   ●                                                                              ●

into two subspaces Hx and H2 satisfying

F(h,Xl)-O for h∈Hx and hキh｡,

F(h,X2)-0 for h∈H｡ and hキh｡,

HMH^m.

and

(C-10)

If diffraction symmetry of F(h,Xx) and F(h,X2) are the same, the diffraction enhance-

ment of symmetry of type 3 of Iwasaki (1972) occurs.

Let us assume that a structure consists of two substructures of which space groups

are PA/m. The symmetry between substructures (B, b占) is assumed by

B-r喜…… andb,--00
The set of the position vectors of atoms in the unit cell is direct sum of the sets of the

position vectors in each of substructures,

X-Xi-¥-X2,

where

Xl-写{grt; g∈P4/m}
も

～

and

X2-写{mgri+h,; g∈P4/m}
ち

-冒(bt+ {tngrt; g∈PAIm})
ち

- (bt+tnXl)

●

The trigometric part of the structure factor of an atom at r and its equivalent atoms

with respect to P4/m is given by
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f(h, r) -4cos(2nlz) (cos(2n(hx+ky)) +cos(2n(hy+kx))).

The structure factor F(h, X) of the structure X is obtained by summing /(*, rt) multi-

plied by scattering factor /< over all the elements in Xu

F(h, X) -F(h, X) +exp(与niDFCh mX,)

where

F(h, Xl) -冒 fifth, r,)
t.

and

F(1tt mXd -ll ftf(ht mrt).
ち

If m is operated on F(h,X), F(h,X) is transformed to

1

mFCh, X) -F(h, mXl) +exp(一首打iom z)

1

-exp (一首nil) (F(h, XJ +expijTtiDFih, ml,)).

The absolute value of rnF(h, X) is equal to F(h, X).　The operation m becomes an

element of the diffraction symmetry of the structure. The diffraction symmetry becomes

4/mmm.

Postscript

●

This paper was submitted to Acta Crystallographica and rejected丘nally by the editor

S.C. Abrahams.　The editor's letter and his referee's comment are shown in Fig. 5.

The referee's comment is only repetition of Sadanaga and Ohsumi. The author wonders

if the editor, co-editors and referees of Acta Crystallographica believe truely that space一

groupoid theory of Sadanaga and Ohsumi can be compatible with space group theory.

If so, they lack incredibly the knowledge of set theory which is a foundation of group

theory. If not, they lack sincerity for science.　This postscript is for the evidence of

the author's struggle for nearly two decades against space-groupoid theory in the future.
●　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　●
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8oH Lt蝣boralori●S

仙　⊃yH日.NewJersey
U. S. A.　　　　　07974

March　3, 1983

AIRMAIL

Dr. H. Takahashi

Faculty of Education

Kagoshima University

Xa90shima
JAPAN

Dear Dr. Takahashi:

The referee for your revised manuscript, number SA043, ha阜

ipleted his report which is enclosed herewith. The referee

does not recommend publication in Acta Crystallographica.

view of this recommendation, which confirms that made by

the five pre'　　referees, it is regretfully concluded that

this paper is　　:eptable for Acta Crystallographica.

basic misunderstanding identified in the paper leaves no

doubt that further revisions will continue to be unaccept-
ible, hence it should not be resubmitted.

'he original copy of your manuscript is returned together

ith the report.　Your interest in Acta Cystallographica is
indeed appreciated.

Sincerely yours,

冒.ぐ.⊂_山｡mt叫
5. C. Abraham;

which C-y or &¥j/Gj is a common point group,

v/here Gv and Gv/Gj in (2) correspond respectively to Gy

and Oy/Gj in (2a) and (2b).

If Figs. 6, 7 and 8 in Sadanaga and Ohsumi-s paper are looked

upon, not as the unit-cell content of a crystal structure, but

as a finite pattern - a molecule, these come under (2b) in the

above classification.

Next, let us take Fig.7 and regard it as a molecule consisting

of sixteen equal atoms. As simple geometric consideration reveals,

the vector set of this molecule is tetragonal. Though the molecule

as a whole is not tetragonal, each atom belongs to a tetragonal

orbit, and its point group, 4, constitutes the kernel of this

groupoid. Every element of the hull involves a similarity

transformation.エn order to visualize this point,let usユook

at Fig.2 in Takahashi'8 manuscript. Turn the square denoted as

(12うk) around the point markedうso as for 2 to be in line with

3 and 21 and forヰinline with 3 and k-　Next, dilate the square

in this new position, by keeping its square shape and with point

3 fixed, untiユ2 and 4 coincide 21 and斗�"　respectiveユy, (1234)

will now be transformed into (112-うV). In this way, we shall

recogniae that an element of the hull is a combination of either

a rotation and a dilatation or a rotation, a translation and a

dilatation. However, we need not stick to these operations; we

can si叩Iy define this element of the huユ1 as one of one-t0-one

appings:ユ　ウ1', 2*2-, 5すう, Llす仁一', 1す2-　2◆5, 5すL1-,

4　�">1'; and so on.

Re. No.SAOi+3, "Examination of Space-Groupoid Theory, I. Theory

of Sadanaga and Ohsumi'-　by Hidewo Takahashi

In general, a trigonal crystaユ　gives a trigonal diffraction

pattern. In ‡温rticular, however, the trigonal 10王壬polytype of

SiC produces a hexagonal diffraction pattern (Ramsdell, L. S.

and Kohn, J. A. (1951) Acta Cryst.生, 111-113). Hence, we know

that the diffraction symmetry of a crystal can be higher than

its Laue　弓　Ietry.　Then, with what kind of symmetric feature

of a crystal is its diffraction symmetry is related ?　This is

the question which prompted Sadanaga and Ohsumi to their study

of vector symmetry.

The referee thinks that we had better deaユirith finite patterns

because these offer a clearer view of Sadanaga and Ohsumils

conclusion than that deduced from infinite patterns like crystal

structures, and let us call our finite patterns lmolecules一･

The diffraction symmetry of a molecule is the same as the symmetry

of the vector set of the moユecuユ　　Sadanaga and Ohsumi treated

the symmetry G^ of of a structure X with their

concept of self-homoraetry of X and related Gv with symmetric

features of X.' In terms of molecule X, we can reiterate Sadanaga

and Ohsumi's result as follows, where Gx is the point group of

X and Gj an inversion group;

(1) If there is in X a point which belongs to neither an orbit

of Gv ;　　　, of G^Gj, Gv is due to the 'proper self-
homometry-　of X (Fig.ヰin Sadanaga and Ohsumi-s paper).

(2) If each point in X belongs to an orbit of Gv or Gy/G-r

two cases are possible as follows:

(2a) If G^ is siomorphic with Gy or Gy/Gj, X is an ordinary

point-group moleculeJ

(2b) If Gx is not isomorphic with Gv or Gy/Gp

groupoid molecule consisting of sub-molecules for

l

relating arbitrarily chosen two substructures with each other

can be defined quite freely, even as a one-t0-one mapping of

one onto the other.　No one is entitled to suppress this freedom

in the name of crystallography.

In conclusion, because the present manuscript is based upon

Takahashils misunderstanding of Sadanaga and Ohsumi's paper,

the referee regrets to say that he is not in favor of its

publication in Acta Crystaユユographica.

Introduction of non-crystallographic operations as elements

of the hull of a groupoid as done by Sadanaga and Ohsumi is by

no means a violation of the theory of space groups, the space

group being conserved in their space groupoid in the form of

its kernel. In general, as long as all the substructures

istructing a structure bear the sa:　symmetry, an operation

2

Fig. 6.　The letter of S.C. Abrahams, Editor of Acta Crystallographica, and the

referee's comment.
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