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1. Introduction

Let S" be the n-dimensional unit sphere. On it we consider n + 1 spheres S; (i =1, 2,....n + 1)
which are of dimension (n - 1) and which contact each other. Then there are two spheres
which are tangent to all of these n + 1 spheres, one of which is surrounded by all of them and
the other of which surrounds all of them. We denote these two spheres by the same notation
So. Let denote the radii of S; by r; for i =0, 1, 2,..., n + 1. In case of the n-dimensional
Euclidean space R", there are a lot of studies on Sy (for example, see [1], [2], [3], [4], and [5]),

and it is known that the radii of n + 2 mutually tangent spheres enjoy the formula

n+l 1 2 n+l 1 2
o )20

In this paper we investigate a problem of finding an analogous formula to (1) which
holds between these n + 2 radii of mutually tangent spheres on S”. As a result of our investi-

gation, we obtain the following result.

Main Theorem.

2
n+l n+l
) [Zcotri] =n (Zcot2 rl~+2j
i=0 i=0
As far as the author has searched previous studies on this problem, it seems that this formula
was first obtained in [4]. In [4] the formula (2) was proved by a direct computation. In this
paper we present an alternative proof which reduces the problem on S" to a corresponding
one in R” by a stereographic projection. In course of such a reduction, we find a somewhat
interesting property about the stereographic projection which will be stated in Proposition 1

of section 4.
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2. Preliminary lemmas
In this section we prepare several elementary lemmas, which will be used in later sec-

tions.

Lemma 1. Assume that an (n + 1) (n + 1)- symmetric matrix A = (a;j) is non-negative
definite. Then there exist (n + 1)-dimensional vectors a; (i =1, 2,...,n+ 1) such that a;; = a;* a;
for all i, j, where the notation "* " denotes for the inner product of two vectors. Furthermore,
if A is singular, then there exist n-dimensional vectors a; (i = 1, 2,...,n + 1) which satisfy the

same relation.

Proof.. Since we can prove the first part of the lemma in a similar way to the second part of
it, we present only a proof for the second part. Since A is a singular non-negative matrix, there

exists an orthogonal matrix P and non-negative numbers o; (i = 1, 2,..., n) such that

PTAP = diag(oy, ..., 01, 0) ,

where diag(o;, 0,..., Oy, 0) denotes a diagonal matrix with its diagonal entries being o, 0...,
o, and 0, and P’ denotes the transpose of P. Now we consider the following multiplication of

two matrices:

P diag(+/ot1 /2 ..., 0)

Since the (n + 1) -th column vector of this matrix equals zero, there exist n-dimensional row

vectors a; (i=1, 2,..., n + 1) such that

a] 0

) a 0

P ding(\ou @z ..far0)=|

Ap+1 0

Accordingly we have
ai 0
Aol 2 0|fal a .. al,, ’
. : 0 0~ 0

An+ 0

which implies that a;; = a;- a; for all i, j. Thus the proof is completed.
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In the following sections we use two (2 + 1) X (n + 1) -matrices A = (&) and A(u) = (aii(u))

where
2 .
3) G — 1+ fori=j
—1+4t;  fori#j
@ a5 () 1+ 2t —u® fori=j
ij(u) =

—-1+(t,‘+tj)u—u2 fori#j

Then, putting

n+l n+l
(5) =Yt and T,=31t,
i=1

i=l1

we can express the characteristic polynomials of these matrices as follows.

Lemma 2.

6)  det(A-wly) = 2-0)"" [w2 ~o{f -(n-3)}
HI? — (=T, - 2n - 1)}]
(7 det(A(n)) - @ly41)
= -0’ -o{2uTi-(1-3)- (1+ 1w’}

[+ DT + 200+ 1) = T?) = 4uTi +2(n - 1)}] .

Proof.  As is easily seen, these characteristic polynomials are symmetric functions of vari-
ables #; (i =1, 2,...,n + 1) and also they are quadratic polynomials of #;. Acoordingly we can
expresse them as

T +c B +csl+cs
where ¢, ¢;, ¢3 and ¢4 are constants. Note that, in case of (7), these constants may depend on
u. Then, setting appropriate particular values to variables #; (i = 1, 2,...,n + 1) several times, we

can easily determine these constants. Thus the proof is completed.
Lemma 2 implies the following property about A.

Lemma 3. In order that the matrix A is non-negative definite, it is necessary and sufficient

that the condition
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(®) T2 2(n-1)D +2(n-1).
holds.

Proof. Because of Lemma 2, the matrix A has eigenvalues 2 with multiplicity » - 1 and
moreover, eigenvalues which are equal to two (possibly identical) roots of the following
quadratic equation of ,

9 0® —o(Ty - (n=3) + (I - (1= 1T - 2(n-1)) = 0.

The determinant of the quadratic equation (9) is equal to (T3 +n+1)> —4T2. Since Ti°< (n+ DT>
by the Cauchy-Schwarz inequality, this determinant is always non-negative. Now, if the qua-

dratic equation (9) has two non-negative roots, then the condition (8) obviously holds. Con-
versely, if the condition (8) holds, then (n+1)7; 2 le > (n—-1)(T; +2), from which follows

T, 2 n— 1. Accordingly, the quadratic equation (9) has two non-negative roots. Thus the proof

is completed.
For the matrix A(u) defined by (4), we have the following lemma.

Lemma 4. Assume that the condition (8) holds and u satisfies a quadratic equation

(10) uz((n+1)T2+2(n+1)—T|2)—4uT1 +2(n-1)=0.

Then, the matrix A(u) is singular and non-negative definite.

Proof. Because of Lemma 2 the matrix A(u) has eigenvalues 2 with multiplicity n» - 1 and
moreover, eigenvalues which are equal to two (possibly identical) roots of the following

quadratic equation of :
(11) a)z—a){ZuTl—(n—3)——(n+1)u2}
—{u2((n + DT +2(n+1) = T2) — 4uTy + 2(n— 1)} =0
Since u satisfies the quadratic equation (10), the quadratic equation (11) reduces to

w> —a){QuTl —(n—3)—(n+1)u2}=0

and thus it has two roots O and 2uT; —(n—3)—(n+ 1)u2. Consequently, in order to prove the

lemma, it suffices to show that
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(12) 2uTy —(n=3)—(n+1u* 20.
By the way, the determinant of the quadratic equation (10) is equal to
2(n+ 1T - (n= DT - 2(n~1)),

which is non-negative by the assumption (8). Accordingly the quadratic equation (10) has
two (possibly identical) positive roots. Denote the smaller root of it by #;. Then, solving (10)

explicitly, we have

2T,
2T, + AT = 2(n—1)(s +2(n+1)

2y = 2(n-1)

1
> 2(n-1)+—
(n )2

(13) > I’l—3,
where s = (n+ 17T, — T12. Now we return to (12). Then, using (10), we get

2uTi —(n-3)—(n+Duf = QuTi —(n=3))s+4(n+1) ,
s+2(n+1)

which is positive by (13). Thus we have completed the proof.

3. Condition for the existence of n+1 mutually tangent spheres

Since S” has a finite volume, if radii of n + 1 mutually tangent spheres are too large, then it
is impossible for these spheres to exist on S”. In this section we shall state a necessary and suffi-
cient condition for the existence of them. Denote the centers of spheres Si by (ai, bi) (i=1, 2,...,n + 1),
where a; ’s are n-dimensional vectors and b; ’s are real numbers such that |a,A|2 + b,-2 = 1. Fur-

thermore, letting t; = cot r;, we introduce 7| and 7, which are defined by (5).

Theorem 1. In order that there exist n + I mutually tangent spheres on S", it is necessary

and sufficient that the following condition holds:
(14) T:>(n-Dh +2(n-1).

Proof. First suppose that n+1 mutually tangent spheres S; (i = 1,..., n + 1) exist. Since they

are tangent each other,

b = 1 fori=j
(15) ai-aj+bib = cos(r;+r;) fori#j
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Now we introduce the matrix A defined by (3). Since the condition (15) is obviously equiva-
lent to
. @& aj b bj
T e — + —_—,

(16) W= Sj o Si 8
where s; = sin r;, A is non-negative definite. So that, from Lemma 3, the condition (14)
follows.

Conversely, we assume the condition (14). Then, by Lemma 3, Ais non-negative definite.
Accordingly, because of Lemma 1, there exist (n + 1) -dimensional vectors (a;, b;) (i=1,...,n+ 1)
for which (16), or equivalently, (15) holds. Therefore the assertion of Theorem 1 is estab-

lished.

Remark 1. It may happen that in the condition (14) the equality holds. For example, it
happens when, on S,, centers of 3 circles S}, S; and S;3 lie on an equator and their radii are all

equal to %

4. Relation between the radii of n+2 mutually tangent spheres
Returning to our problem stated in the section 1, we shall solve it by reducing it to a
corresponding problem in R”. For this purpose, we introduce the stereographic projection f
from S” to R". It can be defined explicitly by
&= f(x,y)= lf—y ,
where & denotes a point in R” and (x, y) denotes a point on S”, in other words, X is a n-

dimensional vector and y is a real number for which Ix|*+y?=1 holds. Then we can see the

following lemma easily.

Lemma 5. Let K be a sphere on S" with center at (a, b) and radius r, and assume that cos r =+ b.
a sinr

Then the image f(K) is a sphere in R" with center at and radius

cosr—b cosr—b

LetS;(i=1,2,..., n + 1) be mutually tangent spheres, and denote centers and radii of the

spheres f(S;) (i=1, 2,...,n+ 1) by v; and p; Assuming cos r; # b; for all i, we have, by Lemma 5,

_ a; and o. = sin r;
17) v cosr; — b; P cosri—b

The following proposotion will play a crucial role in solving our problem.
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Proposition 1. By moving the n + 1 spheres S; (i =1, 2,..., n + 1) appropriately on S" while
preserving their relative positions, we can make all p; (i = 1, 2,..., n + 1) to have a common

value independent of i.

Proof. First, assuming the consequence of the proposition to be true, and denoting the com-
mon value of p; (i = 1, 2,..., n + 1) simply by p, we shall determine this common value p. From

(17), we have

(18) i

(19) aj =

Because of (15) and (18), the formula (19) is rewritten as

1+%_p_12 fori=j
(20) 4 = L+t 1
-1+ L fori#j

p?

Thus the matrix A coinsides with A(u) with u = 1 / p, which was defined by (4) in the section
2. Since a; ’s are n-dimensional vectors, A is a degenerate matrix, and so, det A = 0. Accord-

ingly, Lemma 2 implies that p must satisfy a quadratic equation

Q1) 2n=Dp’=4Tip+((n+ DT +2(n+1)-T7)=0.

By the way, from Theorem 1, it follows that the determinant of the quadratic equation (21) is
nonnegative. Thus we see that the quadratic equation(21) has two positive roots.

Now, let p have the value which is equal to one of the positive roots of (21). If we
consider a matrix A(1/p), then Lemma 4 shows that A(1/p) is singular and non-negative defi-
nite. Accordingly, by Lemma 1, there exist n-dimensional vectors a; ’s for which (19) hold.
Setting b; (i = 1, 2,..., n + 1) by (18), we can derive (15). Thus the assertion of the proposition

is established.

Now, turning our attention to the sphere Sp, we denote its center by (ag,bp),where ag is an
. . ) 2
n-dimensional vector and bg is a real number such that |30| + bg =1. Moreover, denote the

center of the sphere f(So) by Yo and its radius po. By Lemma 5, we have
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a sin 7
0 and p, = 0

22 = >0
(22) cosry — by 0 cos 1y — by

Then, from Proposition 1, we can deduce the following lemma.

Lemma 6. Suppose that the n+1 spheres S; (i = 1, 2,..., n + 1) have the configuration such

that all p; have a commom value p. Then

L__ (n+)x.\2n(n+1) l
Po n-1 p

(23)

2 1= —(n-
24) ol +1=—= QT - (n-1p)

Proof. Note that, since spheres S; (i =0, 1, 2,..., n + 1) are mutually tangent, spheres f(S;)
(i=0,1,2,..,n+1) are also mutually tangent. Accordingly, using the formula (1), we obtain
(23) immediately. Now we shall prove (24). Under the assumption of the lemma, y; (i= 1, 2,...,n+ 1)

’s form a system of vertices of a n-dimensional regular simplex. Accordingly we have

n+1

}5%

Note that y; = pa;/s; begause of (17). Then, using (19) and (20), we can proceed as follows:

2 B n-+-1n+1a aj
’70| - (n+1)2 ;E{s, s;
2 n+l 2t1 1
= a+=-— 1+ )
DO RS

1 2
= ——(-(n-Dp~+2pT1 —(n+1
——(~(1=1p* +2pT; ~(n+1))
Hence (24) follows immediately.
Now we prove our main theorem.

Proof of Main Theorem. Using (22), we have

2
1
(25) 2o L+
Po
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Then, substituting (23) and (24) into (25), we get

2% t_]’l1+\/2n¢\/2n
(26) 0 n—-1{  \n+l p n+1

Now, solving the quadratic equation (21) explicitly, we have as its smaller positive root

_ 1 _ n+1 2 _ _ _
(27) P—n_l{Tl \/2 (Ii" —(n=DT, - 2(n 1))}-

Then, substituting (27) into (26), we obtain

1

n—

(28) to = ——{Ti £ {n(T? (1= DT -2~ 1)}

From this last expression (28), we can easily derive the formula (2) of Main Theorem.

Remark 2. In the proof of Main Theorem, if we use the larger positive root of the quadratic

equation (21) instead of the smaller one (27), then we obtain

to=——{Ti 1 ~ (=112 20~ 1)}

This means that by the streographic projection f corresponding to the larger positive root, the
smaller sphere Sy is projected to the larger one f(Sp), while by f corresponding to the smaller

positive root, the smaller sphere is projected to the smaller one.

Remark 3. For mutually tangent n + 1 spheres on the n-dimensional sphere with radius R,

the formula (2) stated in Main Theorem needs to be modified as
2
n+l : n+l )
{Zcot i] = n[zcot2 1 + 2] .
i-o R i=0 R
Obviously, when R tends to infinity, this formula reduces to (1).
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