On examples of open algebraic surfaces with $\bar{q} = 1, \bar{P}_2 = 0$

Yoshiyuki KURAMOTO*

(Received 15 October, 1999)

1 Introduction

In this note algebraic surfaces are assumed to be defined over the complex number field \mathbb{C} . In [6] the author proved that any nonsingular open algebraic surface S with $\bar{\kappa}(S) \geq 0$ and $\bar{q}(S) \geq 1$ satisfies $\bar{P}_{12}(S) \geq 1$ and gave some examples with $\bar{q}(S) = 1$, $\bar{P}_2(S) = 0$ which are rational and have structures of elliptic fiber spaces over \mathbb{C}^* , where $\bar{\kappa}(S)$ is the *logarithmic Kodaira* dimension of S, $\bar{q}(S)$ is the *logarithmic irregularity* of S and $\bar{P}_m(S)$ is the *logarithmic m-genus* of S. In this note we give some results on the classification of such surfaces using the theory of elliptic surfaces by Kodaira ([3][4][5]).

First we fix our notations:

- S : a nonsingular algebraic surface over $\mathbb C$
- \overline{S} : a nonsingular complete algebraic surface which contains Sas a Zariski open subset and such that $D = \overline{S} \setminus S$ is a reduced simple normal crossing divisor on \overline{S}
- $K_{\bar{S}}$: the canonical divisor of \bar{S}

^{*}Department of Mathemaics Education, Faculty of Education, Kagoshima University, Kagoshima 890-0065, Japan

$p_g(ar{S})$:	the geometric genus of \bar{S}
$P_m(\bar{S})$:	the <i>m</i> -genus of \overline{S} for a positive integer m
$\bar{p}_g(S)$:	the logarithmic geometric genus of S
$\bar{P}_m(S)$:	the logarithmic m -genus of S
$ar\kappa(S)$:	the logarithmic Kodaira dimension of S
$q(ar{S})$:	the <i>irregularity</i> of \bar{S}
$ar{q}(S)$:	the logarithmic irregularity of S
$p_a(\bar{S})$:	the arithmetic genus of \bar{S}

We assume that S is a non-singular rational surface with an elliptic fibration $\pi: S \to \mathbb{C}^*$ which is extended to an elliptic fibration $\overline{\pi}: \overline{S} \to \mathbb{P}^1_{\mathbb{C}}$ such that $D = redF_1 + redF_2$ where $F_i(i = 1, 2)$ are fibres of $\overline{\pi}$ and $redF_i$ (i = 1, 2) are reduced fibres.

Remark 1 Such a situation can arise from the quasi-Albanese mapping when $\bar{q}(S) = 1$. (Iitaka[2]).

Theorem 1 Let S be as above. Suppose that $\bar{P}_2(S) = \bar{P}_3(S) = 0$ and that the fibration $\bar{\pi} : \bar{S} \to \mathbb{P}^1_{\mathbb{C}}$ is free from multiple fibres. Then we have following three cases:

Case 1: $\bar{\kappa}(S) = 1$ and $\bar{P}_4(S) = 1$ and the moduli of general fibres of the elliptic fibration π are not constant and $\pi : S \to \mathbb{C}^*$ is isomorphic to a fixed one as a fibration over \mathbb{C}^* .

Case 2: $\bar{\kappa}(S) = 0$ and $\bar{P}_4(S) = 1$ and the moduli of general fibres of π are constant and $\pi: S \to \mathbb{C}^*$ is isomorphic to a fixed one.

Case 3: $\bar{\kappa}(S) = 0$ and $\bar{P}_6(S) = 1$ and the moduli of general fibres of π are constant and $\pi: S \to \mathbb{C}^*$ is isomorphic to a fixed one.

Remark 2 An explicit construction of case 1 was given in [6] p.357. Since the argument in [6] p.354 neglected the case in which the moduli of general fibres of π are constant, the conclusion of [6] Proposition 5 should be KURAMOTO: On examples of open algebraic surfaces with $\bar{q}=1$, $\bar{P}_2=0$

3

corrected to $\bar{P}_4(S) \ge 1$ or $\bar{P}_6(S) \ge 1$. But [6] Theorem 1 and Theorem 2 hold.

We will give explicit constructions of above three cases and some other cases in section 4. We have also some results in the case of $\bar{P}_2(S) = 0$ and $\bar{P}_3(S) \ge 1$ which are stated in section 3.

2 Preliminaries

For the fundamental results on elliptic surfaces we refer Kodaira's original papers [2][3][4] or the book [1]. Here we summarize them as far as we need to state our results.

By an elliptic fibration of a complex analytic surface X we mean a proper connected holomorphic map $f: X \to \Delta$, such that the general fibre X_w $(w \in \Delta)$ is a non-singular elliptic curve. Unless otherwise stated we shall always assume that f is minimal, i.e. all fibres are free of exceptional curves.

Fact 1 ([5]Theorem 6.2) The singular fibres of an elliptic fibration over the unit disk are classified in following types: ${}_{m}I_{b}$, II, III, IV, I_{b}^{*} , II^{*} , III^{*} , IV^{*} , where b is an integer ≥ 0 .

The type $_{1}I_{b}$ is also denoted by I_{b} .

A fibre of type I_0 is a regular fibre i.e. a non-singular elliptic curve with multiplicity 1.

A fibre of type I_1 is a rational curve with one node with multiplicity 1. A fibre of type $I_b(b \ge 2)$ is a cycle of b non-singular rational curves with multiplicity 1.

A fibre of type ${}_{m}I_{b}$ $(m \geq 2)$ is called a multiple fibre which is the m-ple of a fibre of type I_{b} .

A fibre of type II is a rational curve with one cusp with multiplicity 1. A fibre of type III consists of two non-singular rational curves intersecting one point with intersection multiplicity 2 and each component has multiplicity 1.

4

A fibre of type IV consists of three non-singular rational curves intersecting one point and each component has multiplicity 1. A fibre of all the other types is a tree of non-singular rational curves in which some component has multiplicity ≥ 2 and some component has multiplicity 1.

Any non-singular rational curve which appears as an irreducible component of a singular fibre has the self-intersection number -2.

Let $f: X \to \Delta$ be an elliptic fibration over an algebraic curve Δ without multiple fibres. Let $\{a_{\rho}\}$ be a finite subset of Δ such that for $u \in \Delta' = \Delta \setminus \{a_{\rho}\}, f^{-1}(u)$ is a regular fibre. Kodaira defined the *functional invariant* $\mathcal{J} = \mathcal{J}(u)$ of f which is a meromorphic function on Δ and the *homological invariant* G belonging to \mathcal{J} which is a sheaf on Δ extended from a localy constant sheaf on Δ' . We denote by $\mathcal{F}(\mathcal{J}, G)$ the set of all elliptic fibrations over Δ free from multiple fibres whose functional and homological invariants are \mathcal{J} and G.

Fact 2 ([4]) Any elliptic fibration over Δ free from multiple fibres belongs to some $\mathcal{F}(\mathcal{J}, G)$.

Fact 3 ([5]) If a meromorphic function \mathcal{J} on Δ is given, there exist a finite number of homological invariants belonging to \mathcal{J} .

Fact 4 ([5]Theorem 10.2) For a meromorphic function \mathcal{J} on Δ and the homological invariant G belonging to \mathcal{J} , there is a unique member B in $\mathcal{F}(\mathcal{J},G)$ which possesses a global holomorphic section. B is called the basic member of $\mathcal{F}(\mathcal{J},G)$.

For $a_{\rho} \in \Delta$ we denote by $C_{a_{\rho}}$ the fibre over a_{ρ} .

Kuramoto: On examples of open algebraic surfaces with $\bar{q}{=}\,1\,,\ \bar{P}_{2}{=}\,0$

Fact 5 ([5]Theorem 9.1 or [1]p.159 Table 6) The behaviour of the functional invariant $\mathcal{J}(s)$ is as follows:

- If J(a_ρ) ≠ 0, 1, ∞ or J(s) has a zero of order h ≡ 0(3) at a_ρ or
 J(s) 1 has a zero of order h ≡ 0(2) at a_ρ, then the type of C_{a_ρ} is I₀ or I₀^{*}.
- 2. If $\mathcal{J}(s)$ has a pole of order b at a_{ρ} , then the type of $C_{a_{\rho}}$ is I_b or $I_b^*(b \geq 1)$.
- 3. If $\mathcal{J}(s)$ has a zero of order $h \equiv 1(3)$ at a_{ρ} , then the type of $C_{a_{\rho}}$ is II or IV^{*}.
- 4. If $\mathcal{J}(s)$ has a zero of order $h \equiv 2(3)$ at a_{ρ} , then the type of $C_{a_{\rho}}$ is II* or IV.
- 5. If $\mathcal{J}(s) 1$ has a zero of order $h \equiv 1(2)$ at a_{ρ} , then the type of $C_{a_{\rho}}$ is III or III^{*}.

Remark 3 In the case of $\mathcal{J}(s) = c = constant$, if $c \neq 0, 1$ then the basic member has no singular fibres. But if c = 0 any of types II, IV^{*}, II^{*} or IV can occur, and if c = 1 then type III or III^{*} can occur. (cf. Examples in section 4.)

For the compact analytic surface X with the elliptic fibration $f: X \to \Delta$, we denote by $\nu(T)$ the number of singular fibres of f of type T.

Fact 6 ([5]Theorem 12.2) The arithmetic genus p_a of X is given by the formula

$$12(p_a + 1) = \sum_{b} b\nu(\mathbf{I}_b) + \sum_{b} (b+6)\nu(\mathbf{I}_b^*) + 2\nu(\mathbf{II}) + 3\nu(\mathbf{III}) + 4\nu(\mathbf{IV}) + 10\nu(\mathbf{II}^*) + 9\nu(\mathbf{III}^*) + 8\nu(\mathbf{IV}^*).$$
(1)

Remark 4 If X is isomorphic to the basic member B of $\mathcal{F}(\mathcal{J}, G)$, then $\sum_{b} b(\nu(\mathbf{I}_{b}) + \nu(\mathbf{I}_{b}^{*}))$ is equal to the total multiplicity of the poles of the meromorphic function \mathcal{J} which we denote by j.

3 Proof of Theorem 1 and some results

We assume that S is a non-singular rational surface with an elliptic fibration $\pi: S \to \mathbb{C}^*$ which is extended to an elliptic fibration $\bar{\pi}: \bar{S} \to \mathbb{P}^1_{\mathbb{C}}$ such that $D = redF_1 + redF_2$ where $F_i(i = 1, 2)$ are fibres of $\bar{\pi}$ and $redF_i$ are reduced fibres. Since we assume that D is a simple normal crossing divisor, $F_i(i = 1, 2)$ may contain some exceptional curves. By contracting them, we have a minimal elliptic fibration $\hat{\pi}: \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ and a proper birational morphism $\mu: \bar{S} \to \hat{S}$ such that $\bar{\pi} = \hat{\pi} \circ \mu$ and $\mu|_S$ is an isomorphism. We denote $\mu_*F_i = \hat{F}_i$ (i = 1, 2).

Remark 5 Under the above assumption there exists an exceptional curve on \hat{S} which is not contained in a fibre of $\hat{\pi}$, because there is no irreducible irrational curve C with $C^2 \leq 0$ on $\mathbb{P}^2_{\mathbb{C}}$ or Hirzebruch surfaces Σ_n .

Lemma 1 Under the above condition, the elliptic fibration $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ has at most one multiple fibre.

Proof: We refer [6]p.353. Anyway it is an immediate consequence of the canonical bundle formula [3]. \Box

Lemma 2 Under the above condition, if the elliptic fibration $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ has no multiple fibres, then it possesses a global section.

Proof: Since there exists an exceptional curve E on \hat{S} , if $\hat{\pi}$ has no multiple fibres we have

$$-1 = E \cdot K_{\hat{s}} = -E \cdot \hat{F}$$

where \hat{F} is a general fibre of $\hat{\pi}$. Thus E is a global section.

Lemma 3 Under the above condition, if $\overline{P}_2(S) = 0$ then {type of $\hat{F}_i \mid i = 1, 2$ } is {III*, II} or {III*, III} or {II*, II} or {IV*, III} or {IV*, II} or {IV*, IV}.

6

KURAMOTO: On examples of open algebraic surfaces with $\bar{q}=1$, $\bar{P}_2=0$

7

Proof: From [6]p.353 Lemma 4, we infer that one of $\hat{F}_i(i = 1, 2)$ is of type II^{*} or III^{*} or IV^{*}. Since $\bar{p}_g(S) = 0$ we infer from [6]p.345 Lemma 2 that D contains no fibres of type I_b or I_b^* , and from the assumption that \hat{S} is rational we have $p_a(\hat{S}) = 0$. Combining these with the formula (1) we can easily deduce the conclusion.

Remark 6 If we assume that $\hat{\pi}$ has no multiple fibres and that the moduli of general fibres of $\hat{\pi}$ are not constant i.e. the functional invariant \mathcal{J} is not constant, then $j \geq 1$ and therefore only {III^{*}, II}, {IV^{*}, III} and {IV^{*}, II} are the cases. If {type of $\hat{F}_i \mid i = 1, 2$ } is {II^{*}, II} or {IV^{*}, IV} then $\mathcal{J} = 0$, and if {type of $\hat{F}_i \mid i = 1, 2$ } is {III^{*}, III} then $\mathcal{J} = 1$.

Lemma 4 Under the above condition, if $\overline{P}_2(S) = \overline{P}_3(S) = 0$ then {type of $\hat{F}_i \mid i = 1, 2$ } is {III^{*}, II} or {III^{*}, III} or {III^{*}, II}.

Proof: If {type of $\hat{F}_i \mid i = 1, 2$ } is {IV^{*}, III} or {IV^{*}, II} or {IV^{*}, IV}, then we infer that $\bar{P}_3(S) \ge 1$ by the argument in [6]p.355-356.

Proof of Theorem 1: If the assumption of Theorem 1 holds, we infer from Lemma 2 and Fact 2 and Fact 4 that \hat{S} is the basic member of some $\mathcal{F}(\mathcal{J}, G)$ where \mathcal{J} is a meromorphic function on $\mathbb{P}^1_{\mathbb{C}}$. First we assume that \mathcal{J} is not constant. Then we infer from Remark 6 and Lemma 4 that {type of $\hat{F}_i \mid i = 1, 2$ } is {III^{*}, II}. Then by the argument of [6]p.354 Case 1, we infer that $\bar{P}_4(S) = 1$, $\bar{P}_{12}(S) = 2$ and $\bar{\kappa}(S) = 1$. On the other hand from the formula (1) we infer that $\hat{\pi}$ has only one singular fibre except for $\hat{F}_i(i = 1, 2)$ which is of type I₁. Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}^1_{\mathbb{C}}$, we may assume that C_0 is of type II and C_1 is of type III^{*} and C_{∞} is of type I₁. Denoting this inhomogeneous coordinate by s we infer from Fact 5 that $\mathcal{J}(s)$ has only one pole with multiplicity 1 at $s = \infty$ and has a zero of order $h \equiv 1(3)$ at s = 0 and that $\mathcal{J}(s) - 1$ has a zero of order $h \equiv 1(2)$ at s = 1. It is obvious that a meromorphic function $\mathcal{J}(s)$ on $\mathbb{P}^1_{\mathbb{C}}$ satisfying such conditions is only $\mathcal{J}(s) = s$. Since the homological invariant G belonging to $\mathcal{J}(s) = s$ which induces the above set of singular fibres is unique, $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ is isomorphic to the basic member of $\mathcal{F}(\mathcal{J}, G)$ which is uniquely determined up to isomorphisms induced by automorphisms of $\mathbb{P}^1_{\mathbb{C}}$. Thus we have the conclusion in case 1.

Next we assume that {type of $\hat{F}_i | i = 1, 2$ } is {III^{*}, III}. Then the functional invariant \mathcal{J} is constant 1 and there are no singular fibres except for $\hat{F}_i(i = 1, 2)$. The elliptic fibre space $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ satisfying these conditions is uniquely determined up to isomorphisms induced by automorphisms of $\mathbb{P}^1_{\mathbb{C}}$ and therefore $\pi : S \to \mathbb{C}^*$ is isomorphic to fixed one. In this case by the similar argument as in [6]p.354 Case 1 we have an effective divisor which belongs to the linear system $|4(K_{\bar{S}} + D)|$ and whose intersection form is negative definite. Hence $\bar{P}_4(S) = 1$ and $\bar{\kappa}(S) = 0$. Thus we have the conclusion in case 2.

Now we assume that {type of $\hat{F}_i \mid i = 1, 2$ } is {II^{*}, II}. Then $\mathcal{J} = 0$ and there are no singular fibres except for $\hat{F}_i (i = 1, 2)$ and we infer that $\pi : S \to \mathbb{C}^*$ is isomorphic to a fixed one. In this case we have $\bar{P}_6(S) = 1$ and $\bar{\kappa}(S) = 0$. Thus we have the conclusion in case 3. Q. E. D.

Proposition 2 If {type of $\hat{F}_i | i = 1, 2$ } is {IV^{*}, III} and $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ has no multiple fibres, then $\pi : S \to \mathbb{C}^*$ is isomorphic to a fixed one as a fibration over \mathbb{C}^* and $\bar{P}_4(S) = 1$ and $\bar{\kappa}(S) = 0$.

Proof: By the same argument in the proof of Theorem 1, we can apply the formula (1) to \hat{S} . Since $p_a(\hat{S}) = 0$ and $\nu(IV^*) \ge 1$, $\nu(III) \ge 1$, we infer that $\hat{\pi}$ has only one singular fibre except for $\hat{F}_i(i = 1, 2)$ which is of type I₁. Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}^1_{\mathbb{C}}$, we may assume that C_0 is of type IV^{*} and C_1 is of type III and C_{∞} is of type I₁. Denoting this inhomogeneous coordinate by s we infer that $\mathcal{J}(s) = s$ in the same way as in the proof of Theorem 1. Hence $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ is isomorphic to Kuramoto: On examples of open algebraic surfaces with $\bar{q}=1$, $\bar{P}_2=0$

the basic member of $\mathcal{F}(\mathcal{J}, G)$ where G is the homological invariant determined by the singular fibres. On the other hand by the similar argument as in [6]p.354 Case 1, we have an effective divisor which belongs to the linear system $|4(K_{\bar{S}} + D)|$ and whose intersection form is negative definite. Hence $\bar{P}_4(S) = 1$ and $\bar{\kappa}(S) = 0$. Q. E. D.

Remark 7 The functional invariant in Proposition 2 is the same as in Theorem 1 but the homological invariant is different.

Remark 8 If $\hat{\pi}$ has a multiple fibre we have $\bar{P}_4(S) \ge 1$ and $\bar{\kappa}(S) = 1$.

Proposition 3 If {type of $\hat{F}_i | i = 1, 2$ } is {IV^{*}, II} then $\bar{P}_3(S) \ge 1$ and $\bar{\kappa}(S) = 1$. Moreover if we assume that $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ has no multiple fibres, we have following three cases:

Case 1: The functional invariant \mathcal{J} is not constant and $\pi: S \to \mathbb{C}^*$ is isomorphic to a fixed one as a fibration over \mathbb{C}^* .

Case 2: The functional invariant \mathcal{J} is not constant and $\pi : S \to \mathbb{C}^*$ is isomorphic to a member of a family of elliptic fibrations over \mathbb{C}^* parametrized by $\mathbb{C} \setminus \{0, 1, -1\}$.

Case 3: $\mathcal{J} = 0$ and $\pi : S \to \mathbb{C}^*$ is isomorphic to a fixed one as a fibration over \mathbb{C}^* .

Proof: $\overline{P}_3(S) \ge 1$ was already stated in the proof of Lemma 4. By the argument in [6]p.355-356 we infer immediately that $\overline{P}_6(S) \ge 2$. Thus we have $\overline{\kappa}(S) = 1$.

First we assume that \mathcal{J} is not constant. Then $j \geq 1$ and we infer from formula (1) that $\nu(IV^*) = \nu(II) = 1$ and j = 2. Thus we have two cases one of which is $\nu(I_2) = 1$, $\nu(I_1) = 0$ and the other is $\nu(I_2) = 0$, $\nu(I_1) = 2$ and there is no singular fibres except for above 3 or 4 fibres.

Case 1: Suppose that $\nu(I_2) = 1$. Then there is three singular fibres whose types are II and IV^{*} and I_2 respectively. Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}^1_{\mathbb{C}}$, we may assume that C_0 is of type IV^{*} and C_1 is of type II and C_{∞} is of type I₂. Denoting this inhomogeneous coordinate by s we infer from Fact 5 that $\mathcal{J}(s)$ is a quadratic polynomial in s such that $\mathcal{J}(0) = \mathcal{J}(1) = 0$. Thus we have $\mathcal{J}(s) = cs(s-1)$ where c is a nonzero constant. Since \hat{S} has no singular fibres of type III or III^{*}, $\mathcal{J}(s) - 1$ has no simple zeros. Hence the quadratic equation cs(s-1) = 1 has a multiple root and therefore we have c = -4. Thus $\mathcal{J}(s) = -4s(s-1)$ and $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ is isomorphic to the basic member of $\mathcal{F}(\mathcal{J}, G)$ where $\mathcal{J}(s) = -4s(s-1)$ and Gis the uniquely determined homological invariant by the set of singular fibres.

Case 2: Suppose that $\nu(I_1) = 2$. In this case there are four singular fibres and we can prescribe the positions of any three singular fibres by a suitable automorphism of $\mathbb{P}^1_{\mathbb{C}}$. Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}^1_{\mathbb{C}}$ we may assume that C_0 is of type IV^{*} and C_1 is of type II and C_{∞} is of type I₁. If we denote this inhomogeneous coordinate by s, the remaining singular fibre which is of type I₁ is defined by $s = \alpha$ where $\alpha \neq 0, 1, \infty$. Then we infer from Fact 5 that $\mathcal{J}(0) = \mathcal{J}(1) = 0$ and that $\lim_{s\to\alpha}(s-\alpha)\mathcal{J}(s)$ and $\lim_{s\to\infty}s^{-1}\mathcal{J}(s)$ are nonzero constants. Hence we have $\mathcal{J}(s) = cs(s-1)(s-\alpha)^{-1}$ where c is a nonzero constant. Since $\mathcal{J}(s) - 1$ has no simple zeros, the quadratic equation $cs(s-1) = s - \alpha$ has a multiple root. Thus we have $(c+1)^2 = 4c\alpha$ and

$$\mathcal{J}(s) = \frac{4c^2 s(s-1)}{4cs - (c+1)^2} \tag{2}$$

Since $\alpha \neq 0, 1, \infty$ we have $c \neq 0, 1 - 1$. For $c \in \mathbb{C} \setminus \{0, 1, -1\}$ we denote by \overline{B}_c the basic member of $\mathcal{F}(\mathcal{J}, G)$ where $\mathcal{J}(s)$ is given by (2) and G is the homological invariant determined by the singular fibres. We denote by $\overline{\mathcal{B}}$ the family $\{\overline{B}_c | c \in \mathbb{C} \setminus \{0, 1, -1\}\}$. Since every member \overline{B}_c of $\overline{\mathcal{B}}$ has fixed fibres C_0 of type IV^{*} and C_1 of type II, we put $\overline{B}_c \setminus C_0 \cup C_1 = B_c$ and denote by \mathcal{B} the family $\{B_c | c \in \mathbb{C} \setminus \{0, 1, -1\}\}$. Then $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ is isomorphic to a member of the family $\overline{\mathcal{B}}$ and $\pi : S \to \mathbb{C}^*$ is isomorphic to a member of the family $\overline{\mathcal{B}}$.

Case 3: Finally we assume that \mathcal{J} is constant. Then $\mathcal{J} = 0$ since there are singular fibres of type IV^{*} and II. Then we infer from formula (1) that $\nu(\mathrm{IV}^*) = 1$ and $\nu(\mathrm{II}) = 2$ and there are no other singular fibres. Since we can prescribe the positions of these three singular fibres by an automorphism of $\mathbb{P}^1_{\mathbb{C}}$, we infer that $\pi: S \to \mathbb{C}^*$ is isomorphic to a fixed one.

Q.E.D.

Proposition 4 If {type of $\hat{F}_i | i = 1, 2$ } is {IV^{*}, IV} and $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ has no multiple fibres, then $\bar{P}_3(S) = 1$ and $\bar{\kappa}(S) = 0$ and $\pi : S \to \mathbb{C}^*$ is isomorphic to a fixed one as a fibration over \mathbb{C}^* .

Proof: From the assumption we have $\mathcal{J} = 0$ and there are no singular fibres except for $\hat{F}_i(i = 1, 2)$. Thus we infer that $\pi : S \to \mathbb{C}^*$ is isomorphic to a fixed one. On the other hand by the similar argument as in [6]p.354 Case 1, we have an effective divisor which belongs to the linear system $|3(K_{\bar{S}} + D)|$ and whose intersection form is negative definite. Hence $\bar{P}_3(S) = 1$ and $\bar{\kappa}(S) = 0.$ Q.E.D.

Remark 9 If $\hat{\pi}$ has a multiple fibre we have $\bar{P}_3(S) \ge 1$ and $\bar{\kappa}(S) = 1$.

By Theorem 1 and Proposition 2-4 we have classified ellipic fibre spaces $\pi : S \to \mathbb{C}^*$ which are extended to fibre spaces $\bar{\pi} : \bar{S} \to \mathbb{P}^1_{\mathbb{C}}$ with no multiple fibres such that \bar{S} are rational and $\bar{P}_2(S) = 0$. In the next section we give explicit constructions of examples of each cases.

4 Constructions of examples

In this section we denote by (X : Y : Z) a homogeneous coordinate for $\mathbb{P}^2_{\mathbb{C}}$. **Example 1** Let C be a rational curve of degree 3 with one cusp in $\mathbb{P}^2_{\mathbb{C}}$ and L be a line which is tangent to C at one non-singular point and intersects simply with C at one another point. Removing the base points of the linear system generated by 3L and C, we have an elliptic fibre space $\hat{\pi}: \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ with singular fibres of type III^{*} and II which correspond to 3L and C respectively. For example we put $C = \{Y^2Z - X^3 = 0\}$ and $L = \{-3X + 2Y + Z = 0\}$. Then a fibre which does not correspond to 3L is defined by $\{Y^2Z - X^3 - w(-3X + 2Y + Z)^3 = 0\}$ where $w \in \mathbb{C}$. We infer that when $w = 108^{-1}$ the fibre has one node at (X : Y : Z) = (-1 : 1 : 1). Thus this is the case we treated in Theorem 1 Case 1.

Remark 10 The above construction is different from the one in [6]p.357.

Example 2 Let C be a conic in $\mathbb{P}^2_{\mathbb{C}}$ and L_1 and L_2 be two different tangent lines of C. Then by the linear system generated by $3L_1$ and $C + L_2$ we have an elliptic fibre space $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ with singular fibres of type III* and III which correspond to $3L_1$ and $C + L_2$ respectively. For example we put $C = \{YZ - X^2 = 0\}$ and $L_1 = \{Z = 0\}$ and $L_2 = \{Y = 0\}$. Then a fibre which does not correspond to $3L_1$ is defined by $\{(YZ - X^2)Y - wZ^3 = 0\}$ where $w \in \mathbb{C}$. For $w \neq 0$ they are all nonsingular and isomorphic to each other. Thus this is the case in Theorem 1 Case 2.

Example 3 Let C be a rational curve of degree 3 with one cusp in $\mathbb{P}^2_{\mathbb{C}}$ and L be the tangent line of C at the nonsingular inflection point. Then by the linear system generated by 3L and C we have an elliptic fibre space $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ with singular fibres of type II^{*} and II which correspond to 3L and C respectively. For example we put $C = \{YZ^2 - X^3 = 0\}$ and $L = \{Y = 0\}$. Then a fibre which does not correspond to 3L is defined by $\{YZ^2 - X^3 - wY^3 = 0\}$ where $w \in \mathbb{C}$. For $w \neq 0$ they are all nonsingular and isomorphic to each other. Thus this is the case in Theorem 1 Case 3.

Example 4 Let C be a conic in $\mathbb{P}^2_{\mathbb{C}}$ and L_1 be a line intersecting with C simply at two point p, q and L_2 a tangent line of C at a point different from p and q. Then by the linear system generated by $3L_1$ and $C + L_2$ we have an elliptic fibre space $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ with singular fibres of type IV^{*} and

III which correspond to $3L_1$ and $C + L_2$ respectively. For example we put $C = \{YZ - X^2 = 0\}$ and $L_1 = \{Y - Z = 0\}$ and $L_2 = \{Y = 0\}$. Then a fibre which does not correspond to $3L_1$ is defined by $\{(YZ - X^2)Y - w(Y - Z)^3 = 0\}$ where $w \in \mathbb{C}$. We infer that when w = -4/27 the fibre has a node at (X : Y : Z) = (0 : -2 : 1). Thus this is the case in Proposition 2.

Example 5 Let C be a rational curve of degree 3 with one cusp in $\mathbb{P}^2_{\mathbb{C}}$ and L be a line which intersects simply with C at three points. Then by the linear system generated by C and 3L we have an elliptic fibre space $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ with singular fibres of type IV^{*} and II which correspond to 3L and C respectively. If we put $C = \{Y^2Z - X^3 = 0\}$ and $L = \{X - Z = 0\}$, then a fibre which does not correspond to 3L is defined by $\{Y^2Z - X^3 - w(X - Z)^3 = 0\}$ where $w \in \mathbb{C}$. Then by calculation we infer that for w = -1 the corresponding fibre is of type I₂, and for $w \neq 0, -1$ the corresponding fibre is regular. Thus this is the case in Proposition 3 Case 1.

Example 6 In the above example if we put $C = \{Y^2Z - X^3 = 0\}$ and $L = \{3a^2X + uY - Z = 0\}$, where $u, a \in \mathbb{C}$ such that $au(u + 2a^3)(u - 2a^3) \neq 0$, then a fibre which does not correspond to 3L is defined by $\{Y^2Z - X^3 - w(3a^2X + uY - Z)^3 = 0\}$ where $w \in \mathbb{C}$. Then by calculation we infer that for two different nonzero values of w the fibre has one node. In fact for $w = w_1 = -(4/27)(u + 2a^3)^{-2}$ the corresponding fibre has a node at (X : Y : Z) = (a : 1 : (-1/2)u), and for $w = w_2 = -(4/27)(u - 2a^3)^{-2}$ the corresponding fibre has a node at (X : Y : Z) = (-a : 1 : (-1/2)u). Thus this is the case in Proposition 3 Case 2.

Example 7 In the above example if we put $C = \{Y^2Z - X^3 = 0\}$ and $L = \{Y - Z = 0\}$, then a fibre which does not correspond to 3L is defined by $\{Y^2Z - X^3 - w(Y - Z)^3 = 0\}$ where $w \in \mathbb{C}$. Then we infer that for w = -4/27 the fibre has one cusp at (X : Y : Z) = (0 : -2 : 1) and for

 $w \neq 0, -4/27$ the fibres are all non-singular and isomorphic to each other. Thus this is the case in Proposition 3 Case 3.

Example 8 Let L_i (i = 1, 2, 3) be three different lines in $\mathbb{P}^2_{\mathbb{C}}$ intersecting one point p and L_0 be a line which does not contain p. Then by the linear system generated by $3L_0$ and $L_1 + L_2 + L_3$ we can construct an elliptic fibre space $\hat{\pi} : \hat{S} \to \mathbb{P}^1_{\mathbb{C}}$ with singular fibres of type IV^{*} and IV which correspond to $3L_0$ and $L_1 + L_2 + L_3$ respectively. For example we put $L_0 = \{Z = 0\}$, $L_1 = \{X = 0\}, L_2 = \{Y = 0\}$ and $L_3 = \{X + Y = 0\}$. Then a fibre which does not correspond to $3L_0$ is defined by $\{XY(X + Y) - wZ^3 = 0\}$ where $w \in \mathbb{C}$. Then for $w \neq 0$ all fibres are non-singular and isomorphic to each other. Thus this is the case in Proposition 4.

Acknowledgement The author used the computer algebraic system Asir([7]) to calculate above examples.

References

- BARTH, W., PETERS, C., VEN, A. VAN DE: Compact complex surfaces, Erg. Math. 3.Folge, Bd.4, Springer, Heidelberg (1984)
- [2] IITAKA, S.: Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo, 23,(1976)525-544.
- [3] KODAIRA, K.: On compact complex analytic surfaces I. Ann. of Math., 71(1960)111-152.
- [4] KODAIRA, K.: On the structure of compact complex analytic surfaces
 I. Amer. J. of Math., 86(1964)751-798.
- [5] KODAIRA, K.: On compact analytic surfaces II, III. Ann. of Math., 77, 563-626, 78(1963)1-40.

[6] KURAMOTO, Y.: On the logarithmic plurigenera of algebraic surfaces. *Compositio Mathematica, Vol. 43, Fasc. 3*, (1981)343-364.

[7] NORO, M. ET AL: Risa/Asir, ftp://endeavor.fujitsu.co.jp/pub/isis/asir

Yoshiyuki Kuramoto Department of Mathematics Education Faculty of Education Kagoshima University Kagoshima, Japan kuramoto@edu.kagoshima-u.ac.jp