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1 Introduction

In this note algebraic surfaces are assumed to be defined over the complex
number field C. In [6] the author proved that any nonsingular open algebraic
surface S with &(S) > 0 and §(S) > 1 satisfies P;5(S) > 1 and gave some
examples with g(S) = 1, P,(S) = 0 which are rational and have structures
of elliptic fiber spaces over C*, where &(S) is the logarithmic Kodaira
dimension of S, §(S) is the logarithmic irregularity of S and P,,(S) is the
logarithmic m-genus of S. In this note we give some results on the

classification of such surfaces using the theory of elliptic surfaces by Kodaira
([3]4][5])-

First we fix our notations:
S : anonsingular algebraic surface over C

S : a nonsingular complete algebraic surface which contains S
as a Zariski open subset and such that D = S\S is a reduced
simple normal crossing divisor on S

Kg : the canonical divisor of S
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py(S) the geometric genus of S

P,.(S) : the m-genusof S for a positive integer m
9,(S) . the logarithmic geometric genus of S
P,.(S) : the logarithmic m-genus of S

k(S) : the logarithmic Kodaira dimension of S
q(S) the irregularity of S

q(S) . the logarithmic irregularity of S

p.(S) : the arithmetic genus of S

We assume that S is a non-singular rational surface with an elliptic
fibration 7 : S — C* which is extended to an elliptic fibration 7 : § — P&
such that D = redF} + redF; where F;(i = 1,2) are fibres of 7@ and redF;
(i = 1,2) are reduced fibres.

Remark 1 Such a situation can arise from the quasi-Albanese mapping

when ¢(S) = 1. (litaka[2]).

Theorem 1 Let S be as above. Suppose that Py(S) = P3(S) = 0 and that
the fibration T : S — PL is free from multiple fibres. Then we have following
three cases:

Case 1: k(S) = 1 and P4(S) = 1 and the moduli of general fibres of the
ellipic fibration m are not constant and 7 : S — C* is isomorphic to a fized
one as a fibration over C*.

Case 2: kK(S) = 0 and P,(S) = 1 and the moduli of general fibres of m are
constant and w: S — C* is isomorphic to a fized one.

Case 3: k(S) = 0 and Ps(S) = 1 and the moduli of general fibres of T are

constant and w : S — C* is isomorphic to a fired one.

Remark 2 An explicit construction of case 1 was given in [6] p.357.
Since the argument in [6] p.354 neglected the case in which the moduli of

general fibres of 7 are constant, the conclusion of [6] Proposition 5 shoud be
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corrected to Py;(S) > 1 or Ps(S) > 1. But [6] Theorem 1 and Theorem 2
hold.
We will give explicit constructions of above three cases and some other
cases in section 4. We have also some results in the case of P;(S) = 0 and

P;(S) > 1 which are stated in section 3.

2 Preliminaries

For the fundamental results on elliptic surfaces we refer Kodaira’s original
papers [2][3][4] or the book [1]. Here we summarize them as far as we need
to state our results.

By an elliptic fibration of a complex analytic surface X we mean a proper
connected holomorphic map f : X — A, such that the general fibre X,

(w € A) is a non-singular elliptic curve. Unless otherwise stated we shall

always assume that f is minimal, i.e. all fibres are free of exceptional curves.

Fact 1 ([5|Theorem 6.2) The singular fibres of an elliptic fibration over the
unit disk are classified in following types: .1, IL IIL IV, I | IT* | III*, IV*, where
b is an integer > 0.
The type 11, is also denoted by 1.
A fibre of type Iy is a regular fibre i.e. a non-singular elliptic curve with
multiplicity 1.
A fibre of type 1, is a rational curve with one node with multiplicity 1.
A fibre of type I(b > 2) is a cycle of b non-singular rational curves with
multiplicity 1.
A fibre of type 1, (m > 2) is called a multiple fibre which is the m-ple of
a fibre of type 1.
A fibre of type 11 is a rational curve with one cusp with multiplicity 1.
A fibre of type 111 consists of two non-singular rational curves intersecting

one point with intersection multiplicity 2 and each component has
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‘multiplicity 1.

A fibre of type IV consists of three non-singular rational curves
intersecting one point and each component has multiplicity 1.

A fibre of all the other types is a tree of non-singular rational curves
in which some component has multiplicity > 2 and some component
has multiplicity 1.

Any non-singular rational curve which appears as an irreducible

component of a singular fibre has the self-intersection number —2.

Let f : X — A be an elliptic fibration over an algebraic curve A without
multiple fibres. Let {a,} be a finite subset of A such that for
ue A= A\{a,}, f~'(u) is a regular fibre. Kodaira defined ‘the functional
invariant J = J(u) of f which is a meromorphic function on A and the
homological invariant G belonging to J which is a sheaf on A extended from
a localy constant sheaf on A’. We denote by F(J,G) the set of all elliptic
fibrations over A free from multiple fibres whose functional and homological

invariants are J and G.

Fact 2 ([4]) Any elliptic fibration over A free from multiple fibres belongs to
some F(J, Q).

Fact 3 ([5]) If a meromorphic function J on A is given, there exist a finite

number of homological invariants belonging to J .

Fact 4 ([5]Theorem 10.2) For a meromorphic function J on A and the
homological invariant G belonging to J, there is a unique member B in

F(T,G) which possesses a global holomorphic section. B is called the basic
member of F(J,G).

For a, € A we denote by C,, the fibre over a,.
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Fact 5 ([5]Theorem 9.1 or [1]p.159 Table 6) The behaviour of the functional
invariant J(s) is as follows:
1. If J(a,) # 0,1,00 or J(s) has a zero of order h = 0(3) at a, or
J(s) — 1 has a zero of order h = 0(2) at a,, then the type of Ca,
is Iy or I§. |

2. If J(s) has a pole of orderb at dp, then the type of Co, is Iy or I;(b > 1).

3. If J(s) has a zero of order h = 1(3) at a,, then the type of C,, is 11
or IV*.

4. If J(s) has a zero of order h = 2(3) at a,, then the type of C,, is II*
or IV.

5. If J(s) — 1 has a zero of order h = 1(2) at a,, then the type of C,, is
III or IIT*.

Remark 3 In the case of J(s) = ¢ = constant, if ¢ # 0,1 then the basic
member has no singular fibres. But if ¢ = 0 any of types II, IV*, II* or IV
can occur, and if ¢ = 1 then type III or III* can occur. (cf. Examples in

section 4.)

For the compact analytic surface X with the elliptic fibration f : X — A,
we denote by v(T) the number of singular fibres of f of type T.

Fact 6 ([5]Theorem 12.2) The arithmetic genus p, of X is given by the
formula
12(pa +1) = Y bv(L)+ > (b+6)v(l;) + 2v(II) + 3u(III) + 4v(IV)
b b
+ 10v(11*) + 9v(I11*) + 8 (IV*). (1)

Remark 4 If X is isomorphic to the basic member B of F(J,G), then
Yy b(v(Iy) + v(I})) is equal to the total multiplicity of the poles of the

meromorphic function J which we denote by j.
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3 Proof of Theorem 1 and some results

We assume that S is a non—singular} rational surface with an elliptic
fibration 7 : S — C* which is extended to an elliptic fibration 7 : S — P&
such that D = redF; + redF; where F;(i = 1,2) are fibres of & and redF; are
reduced fibres. Since we assume that D is a simple normal crossing divisor,
F;(i = 1,2) may contain some exceptional curves. By contracting them,
we have a minimal elliptic fibration 7 : S — P¢ and a proper birational
morphism p : S — S such that # = # o y and p|s is an isomorphism. We

denote u,F; = F; (i=1,2).

Remark 5 Under the above assumption there exists an exceptional curve
on S which is not contained in a fibre of #, because there is no irreducible

irrational curve C with C? < 0 on PZ or Hirzebruch surfaces %,,.

Lemma 1 Under the above condition, the elliptic fibration 7 : S = Pt has

at most one multiple fibre.

Proof. We refer [6]p.353. Anyway it is an immediate consequence of the

canonical bundle formula [3]. O

Lemma 2 Under the above condition, if the elliptic fibration 7 : S — P

has no multiple fibres, then it possesses a global section.

Proof. Since there exists an exceptional curve £ on S, if # has no multiple
fibres we have
—1=E-K¢=-E-F

where F' is a general fibre of #. Thus E is a global section. O

Lemma 3 Under the above condition, if P5(S) = 0 then
{type of F} |i = 1,2} is {III*, 11} or {III*,II1} or {II*,II} or {IV* III}
or {IV*,11} or {IV*,1V}.
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Proof: From [6]p.353 Lemma 4, we infer that one of F;(i = 1,2) is of type
IT* or IIT* or IV*. Since p,(S) = 0 we infer from [6]p.345 Lemma 2 that D

contains no fibres of type I, or I}, and from the assumption that S is

rational we have p,(S) = 0. Combining these with the formula (1) we can

easily deduce the conclusion. \ O

Remark 6 If we assume that 7 has no multiple fibres and that the moduli
of general fibres of 7 are not constant i.e. the functional invariant 7 is not
constant, then j > 1 and therefore only {III*,II}, {IV*, III} and {IV*,II}
are the cases. If {type of F} |i = 1,2} is {II*,II} or {IV*,IV} then J = 0,
and if {type of F} |i = 1,2} is {III*,III} then J = 1.

Lemma 4 Under the above condition, if P,(S) = P3(S) = 0 then
{type of F; |i = 1,2} is {III*, 11} or {III* III} or {II*,II}.

Proof: If {type of F; |i = 1,2} is {IV*,III} or {IV*,1I} or {IV* IV}, then
we infer that P3(S) > 1 by the argument in [6]p.355-356. O

Proof of Theorem 1: If the assumption of Theorem 1 holds, we infer from
Lemma 2 and Fact 2 and Fact 4 that S is the basic member of some F(J, G)
where J is a meromorphic function on IP’}C. First we assume that J is not
constant. Then we infer from Remark 6 and Lemma 4 that
{type of F; |i = 1,2} is {IIT*, II}. Then by the argument of [6]p.354 Case 1,
we infer that Py(S) =1, Pj5(S) = 2 and &(S) = 1. On the other hand
from the formula (1) we infer that # has only one singular fibre except for
E(z = 1,2) which is of type I;. Hence by choosing a suitable inhomogeneous
coordinate for P§, we may assume that Cj is of type II and C is of type III*
and C is of type I;. Denoting this inhomogeneous coordinate by s we infer
from Fact 5 that J(s) has only one pole with multiplicity 1 at s = co and
has a zero of order h = 1(3) at s = 0 and that J(s) — 1 has a zero of order

h =1(2) at s = 1. It is obvious that a meromorphic function J(s) on P¢
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satisfying such conditions is only J(s) = s. Since the homological invariant
G belonging to J(s) = s which induces the above set of singular fibres is
unique, # : § — PL is isomorphic to the basic member of F(J,G) which is
uniquely determined upto isomorphisms induced by automorphisms of P¢.
Thus we have the conclusion in case 1.

Next we assume that {type of F} |i = 1,2} is {IIT* III}. Then the
functional invariant J is constant 1 and there are no singular fibres except
for F, (i = 1,2).The elliptic fibre space # : S — P¢ satisfying these conditions
is uniquely determined upto isomorphisms induced by automorphisms
of P{. and therefore 7 : S — C* is isomorphic to fixed one. In this case by
the similar argument as in [6]p.354 Case 1 we have an effective divisor
which belongs to the linear system |4(K5 + D)| and whose intersection
form is negative definite. Hence P;(S) = 1 and &(S) = 0. Thus we have
the conclusion in case 2.

Now we assume that {type of F} |i = 1,2} is {II*,II}. Then J =0
and there are no singular fibres except for F;(i = 1,2) and we infer that
7 : S — C* is isomorphic to a fixed one. In this case we have Ps(S) = 1 and

&(S) = 0. Thus we have the conclusion in case 3. Q. E. D.

Proposition 2 If {type of E|i = 1,2} is {IV*,III} and 7 : S — PL has no
multiple fibres,then w : S — C* is isomorphic to a fized one as a fibration
over C* and P,;(S) = 1 and R(S) = 0.

Proof. By the same argument in the proof of Theorem 1, we can apply the
formula (1) to S. Since po(3) = 0 and v(IV*) > 1, »(III) > 1, we infer that
7 has only one singular fibre except for F;(z = 1,2) which is of type I;.
Hence by choosing a suitable inhomogeneous coordinate for P¢, we may
assume that Cj is of type IV* and C; is of type III and C, is of type I;.
Denoting this inhomogeneous coordinate by s we infer that J(s)= s in the

same way as in the proof of Theorem 1. Hence 7 : S — P¢ is isomorphic to
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the basic member of F(J,G) where G is the homological invariant
determined by the singular fibres. On the other hand by the similar argument
as in [6]p.354 Case 1, we have an effective divisor which belongs to the linear
system |4(K5 + D)| and whose intersection form is negative definite.

Hence P4(S) =1 and &(S) = 0. Q. E. D.

Remark 7 The functional invariant in Proposition 2 is the same as in

Theorem 1 but the homological invariant is different.

Remark 8 If 7 has a multiple fibre we have P;(S) > 1 and &(S) = 1.

Proposition 3 If {type of Fj|i = 1,2} is {IV* 11} then P5(S) > 1 and
%(S) = 1.Moreover if we assume that 7t : S — PL has no multiple fibres, we
have following three cases:

Case 1: The functional invariant J is not constant and  : S —C*is
isomorphic to a fixed one as a fibration over C*.

Case 2: The functional invariant J s not constant and w: S — C* is
isomorphic to a member of a family of elliptic fibrations over C* parametrized
by C\{0,1,—1}.

Case 8: J =0 and 7 : S — C* is isomorphic to a fixed one as a fibration

over C*.

Proof P;(S) > 1 was already stated in the proof of Lemma 4. By the
argument in [6]p.355-356 we infer immediately that Ps(S) > 2. Thus we
have &(S) = 1.

First we assume that J is not constant. Then j > 1 and we infer from
formula (1) that v(IV*) = v(II) = 1 and j = 2. Thus we have two cases one
of which is v(I) = 1, v(I;) = 0 and the other is v(I;) = 0, v(I;) = 2 and
there is no singular fibres except for above 3 or 4 fibres.

Case 1: Suppose that v(I3) = 1. Then there is three singular fibres
whose types are II and IV* and I, respectively. Hence by choosing a suitable

inhomogeneous coordinate for P§, we may assume that C; is of type IV*and
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C is of type II and C is of type I,. Denoting this inhomogeneous coordinate
by s we infer from Fact 5 that J(s) is a quadratic polynomial in s such that
J(0) = J(1) = 0. Thus we have J(s) = cs(s — 1) where c is a nonzero
constant. Since S has no singular fibres of type III or III*, J(s) — 1 has no
simple zeros. Hence the quadratic equation cs(s — 1) = 1 has a multiple root
and therefore we have ¢ = —4. Thus J(s) = —4s(s — 1) and 7 : § — PL is
isomorphic to the basic member of F(J, G) where J(s) = —4s(s—1) and G
is the uniquely determined homological invariant by the set of singular fibres.
Case 2: Suppose that v(I;) = 2. In this case there are four singular
fibres and we can prescribe the positions of any three singular fibres by a
suitable automorphism of Pg. Hence by choosing a suitable inhomogeneous
coordinate for Pt we may assume that Cj is of type IV* and C is of type
IT and C is of type I;. If we denote this inhomogeneous coordinate by s,
the remaining singular fibre which is of type I; is defined by s = a where
a # 0,1,00. Then we infer from Fact 5 that J(0) = J(1) = 0 and that
lim, ,o(s — @) J(s) and lim,_,, s71J(s) are nonzero constants. Hence we
have J(s) = cs(s—1)(s—a)~! where c is a nonzero constant. Since J(s)—1
has no simple zeros, the quadratic equation cs(s — 1) = s — a has a multiple
root. Thus we have (c+ 1)? = 4ca and

4c’s(s — 1)

" dos— (c+1)2 2)

J(s)

Since o # 0,1, 00 we have ¢ # 0,1 — 1. For ¢ € C\{0, 1, —1} we denote by
B, the basic member of F(J,G) where J(s) is given by (2) and G is the
homological invariant determined by the singular fibres. We denote by B the
family {B,|c € C\{0,1, —1}}. Since every member B, of B has fixed fibres
Co of type IV* and C; of type II, we put B,\Cy U C; = B, and denote by
B the family {B,|c € C\{0,1,—1}}. Then # : § — PL is isomorphic to a
member of the family B and 7 : § — C* is isomorphic to a member of the

family B.
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Case 3: Finally we assume that J is constant. Then J = 0 since there
are singular fibres of type IV* and II. Then we infer from formula (1) that
v(IV*) =1 and v(II) = 2 and there are no other singular fibres. Since we
can prescribe the positions of these three singular fibres by an automorphism

of P¢, we infer that 7 : S — C* is isomorphic to a fixed one.
Q.E.D.

Proposition 4 If {type of Fj|i = 1,2} is {IV*,IV} and # : S Pt has no
multiple fibres, then P5(S) =1 and K(S) =0 and w: S — C* is isomorphic

to a fized one as a fibration over C*.

Proof: From the assumption we have J = 0 and there are no singular fibres
except for F(i = 1,2). Thus we infer that 7 : S — C* is isomorphic to a

fixed one. On the other hand by the similar argument as in [6]p.354 Case 1,
we have an effective divisor which belongs to the linear system |3(Kg + D)|

and whose intersection form is negative definite. Hence P;(S) = 1 and
k(S) =0. Q.E.D.
Remark 9 If 7 has a multiple fibre we have P;(S) > 1 and &(S) = 1.

By Theorem 1 and Proposition 2-4 we have classified ellipic fibre spaces
7 : S — C* which are extended to fibre spaces 7 : § — P& with no multiple

fibres such that S are rational and P,(S) = 0. In the next section we give

explicit constructions of examples of each cases.

4 Constructions of examples

In this section we denote by (X : Y : Z) a homogeneous coodinate for PZ.

Example 1 Let C be a rational curve of degree 3 with one cusp in
PZ and L be a line which is tangent to C at one non-singular point and

intersects simply with C at one another point. Removing the base points
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of the linear system generated by 3L and C, we have an elliptic fibre space
7:8 > PL with singular fibres of type III* and II which correspond to

3L and C respectively. For example we put C = {Y2Z — X3 = 0} and

L ={-3X+2Y + Z = 0}. Then a fibre which does not correspond to 3L is
defined by {Y2Z — X3 — w(—3X +2Y + Z)3 = 0} where w € C. We infer
that when w = 108! the fibre has one node at (X : Y : Z) =(—1:1:1).

Thus this is the case we treated in Theorem 1 Case 1.
Remark 10 The above construction is different from the one in [6]p.357.

Example 2 Let C be a conic in P2 and L; and L, be two different tangent
lines of C'. Then by the linear system generated by 3L; and C + L, we
have an elliptic fibre space 7 : S Pt with singular fibres of type III* and
IIT which correspond to 3L; and C + L, respectively. For example we put
C={YZ—-X?>=0}and L, ={Z =0} and L, = {Y = 0}. Then a fibre
which does not correspond to 3L; is defined by {(YZ — X?)Y — wZ? = 0}
where w € C. For w # 0 they are all nonsingular and isomorphic to each

other. Thus this is the case in Theorem 1 Case 2.

Example 3 Let C be a rational curve of degree 3 with one cusp in P2
and L be the tangent line of C' at the nonsingular inflection point. Then
by the linear system generated by 3L and C we have an elliptic fibre space
#:8 > PL with singular fibres of type II* and II which correspond to

3L and C respectively. For example we put C = {YZ2? — X3 = 0} and

L = {Y = 0}. Then a fibre which does not correspond to 3L is defined by
{YZ? — X3 — wY3 =0} where w € C. For w # 0 they are all nonsingular

and isomorphic to each other. Thus this is the case in Theorem 1 Case 3.

Example 4 Let C be a conic in P4 and L, be a line intersecting with C
simply at two point p, ¢ and L, a tangent line of C' at a point different
from p and ¢q. Then by the linear system generated by 3L; and C' + L, we
have an elliptic fibre space 7 : S - Pt with singular fibres of type IV* and
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IIT which correspond to 3L; and C + L, respectively. For example we put
C={YZ-X?=0}and L; ={Y —Z =0} and L, = {Y = 0}. Then a
fibre which does not correspond to 3L, is defined by
{(YZ-X?)Y —w(Y —2Z)® = 0} where w € C. We infer that when w = —4/27
the fibre has anode at (X : Y : Z) = (0: —2: 1). Thus this is the case

in Proposition 2.

'Example 5 Let C be a rational curve of degree 3 with one cusp in PZ and
L be a line which intersects simply with C' at three points. Then by the
linear system generated by C' and 3L we have an elliptic fibre space

7:8 > PL with singular fibres of type IV* and II which correspond to 3L
and C respectively. If we put C = {Y2Z — X3 =0} and L = {X — Z = 0},
then a fibre which does not correspond to 3L is defined by

{Y?Z — X3 —w(X — Z)® = 0} where w € C. Then by calculation we infer
that for w = —1 the corresponding fibre is of type I, and for w # 0, —1 the

corresponding fibre is regular. Thus this is the case in Proposition 3 Case 1.

Example 6 In the above example if we put C = {Y?Z — X*® = 0} and

L ={3a’X+uY —Z = 0}, where u,a € C such that au(u+2a3)(u—2a®) # 0,
then a fibre which does not correspond to 3L is defined by

{Y2Z — X3 —w(3a®’X +uY — Z)® = 0} where w € C. Then by calculation
we infer that for two different nonzero values of w the fibre has one node. In
fact for w = wy; = —(4/27)(u + 2a®)~2 the corresponding fibre has a node at
(X:Y:Z)=(a:1:(-1/2)u), and for w = wy = —(4/27)(u — 2a3)~2 the
corresponding fibre has anode at (X :Y : Z) = (—a:1:(—1/2)u). Thus

this is the case in Proposition 3 Case 2.

Example 7 In the above example if we put C = {Y2Z — X3 = 0} and
L ={Y — Z = 0}, then a fibre which does not correspond to 3L is defined
by {Y2Z — X3 — w(Y — Z)® = 0} where w € C. Then we infer that for
w = —4/27 the fibre has one cusp at (X :Y : Z) =(0: —2:1) and for



14 BREAFHFFRMALE BARBERE $51% (2000)

w # 0,—4/27 the fibres are all non-singular and isomorphic to each other.

Thus this is the case in Proposition 3 Case 3.

Example 8 Let L; (i = 1,2, 3) be three different lines in P2 intersecting
one point p and Ly be a line which does not contain p. Then by the linear
system generated by 3Ly and L; + L, + L3 we can construct an elliptic fibre
space 7 : S — PL with singular fibres of type IV* and IV which correspond
to 3Lo and L; + Ly + L3 respectively. For example we put Lo = {Z = 0},
Li={X =0}, Ly ={Y =0} and L3 = {X + Y = 0}. Then a fibre which
does not correspond to 3L, is defined by {XY (X +Y) — wZ3 = 0} where
w € C. Then for w # 0 all fibres are non-singular and isomorphic to each

other. Thus this is the case in Proposition 4.

Acknowledgement The author used the computer algebraic system

Asir ([7]) to calculate above examples.
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