On examples of open algebraic surfaces with $\bar{q}=1, \bar{P}_{2}=0$

Yoshiyuki Kuramoto*

(Received 15 October, 1999)

1 Introduction

In this note algebraic surfaces are assumed to be defined over the complex number field \mathbb{C}. In [6] the author proved that any nonsingular open algebraic surface S with $\bar{\kappa}(S) \geq 0$ and $\bar{q}(S) \geq 1$ satisfies $\bar{P}_{12}(S) \geq 1$ and gave some examples with $\bar{q}(S)=1, \bar{P}_{2}(S)=0$ which are rational and have structures of elliptic fiber spaces over \mathbb{C}^{*}, where $\bar{\kappa}(S)$ is the logarithmic Kodaira dimension of $S, \bar{q}(S)$ is the logarithmic irregularity of S and $\bar{P}_{m}(S)$ is the logarithmic m-genus of S. In this note we give some results on the classification of such surfaces using the theory of elliptic surfaces by Kodaira ([3][4][5]).

First we fix our notations:
S : a nonsingular algebraic surface over \mathbb{C}
$\bar{S} \quad$: a nonsingular complete algebraic surface which contains S as a Zariski open subset and such that $D=\bar{S} \backslash S$ is a reduced simple normal crossing divisor on \bar{S}
$K_{\bar{S}}$: the canonical divisor of \bar{S}

[^0]$p_{g}(\bar{S}) \quad: \quad$ the geometric genus of \bar{S}
$P_{m}(\bar{S}) \quad: \quad$ the m－genus of \bar{S} for a positive integer m
$\bar{p}_{g}(S) \quad: \quad$ the logarithmic geometric genus of S
$\bar{P}_{m}(S) \quad: \quad$ the logarithmic m－genus of S
$\bar{\kappa}(S) \quad: \quad$ the logarithmic Kodaira dimension of S
$q(\bar{S}) \quad: \quad$ the irregularity of \bar{S}
$\bar{q}(S) \quad: \quad$ the logarithmic irregularity of S
$p_{a}(\bar{S}) \quad: \quad$ the arithmetic genus of \bar{S}
We assume that S is a non－singular rational surface with an elliptic fibration $\pi: S \rightarrow \mathbb{C}^{*}$ which is extended to an elliptic fibration $\bar{\pi}: \bar{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ such that $D=\operatorname{red} F_{1}+r e d F_{2}$ where $F_{i}(i=1,2)$ are fibres of $\bar{\pi}$ and $r e d F_{i}$ $(i=1,2)$ are reduced fibres．

Remark 1 Such a situation can arise from the quasi－Albanese mapping when $\bar{q}(S)=1$ ．（Iitaka［2］）．

Theorem 1 Let S be as above．Suppose that $\bar{P}_{2}(S)=\bar{P}_{3}(S)=0$ and that the fibration $\bar{\pi}: \bar{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is free from multiple fibres．Then we have following three cases：

Case 1： $\bar{\kappa}(S)=1$ and $\bar{P}_{4}(S)=1$ and the moduli of general fibres of the ellipic fibration π are not constant and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one as a fibration over \mathbb{C}^{*} ．
Case 2： $\bar{\kappa}(S)=0$ and $\bar{P}_{4}(S)=1$ and the moduli of general fibres of π are constant and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one．

Case 3： $\bar{\kappa}(S)=0$ and $\bar{P}_{6}(S)=1$ and the moduli of general fibres of π are constant and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one．

Remark 2 An explicit construction of case 1 was given in［6］p．357． Since the argument in［6］p． 354 neglected the case in which the moduli of general fibres of π are constant，the conclusion of［6］Proposition 5 shoud be
corrected to $\bar{P}_{4}(S) \geq 1$ or $\bar{P}_{6}(S) \geq 1$. But [6] Theorem 1 and Theorem 2 hold.

We will give explicit constructions of above three cases and some other cases in section 4. We have also some results in the case of $\bar{P}_{2}(S)=0$ and $\bar{P}_{3}(S) \geq 1$ which are stated in section 3.

2 Preliminaries

For the fundamental results on elliptic surfaces we refer Kodaira's original papers [2][3][4] or the book [1]. Here we summarize them as far as we need to state our results.

By an elliptic fibration of a complex analytic surface X we mean a proper connected holomorphic map $f: X \rightarrow \Delta$, such that the general fibre X_{w} ($w \in \Delta$) is a non-singular elliptic curve. Unless otherwise stated we shall always assume that f is minimal, i.e. all fibres are free of exceptional curves.

Fact 1 ([5]Theorem 6.2) The singular fibres of an elliptic fibration over the unit disk are classified in following types: ${ }_{m} \mathrm{I}_{b}, \mathrm{II}, \mathrm{III}, \mathrm{IV}, \mathrm{I}_{b}^{*}, \mathrm{II}^{*}, \mathrm{III}^{*}, \mathrm{IV}^{*}$, where b is an integer ≥ 0.

The type ${ }_{1} \mathrm{I}_{b}$ is also denoted by I_{b}.
A fibre of type I_{0} is a regular fibre i.e. a non-singular elliptic curve with multiplicity 1.
A fibre of type I_{1} is a rational curve with one node with multiplicity 1 .
A fibre of type $\mathrm{I}_{b}(b \geq 2)$ is a cycle of b non-singular rational curves with multiplicity 1.

A fibre of type ${ }_{m} \mathrm{I}_{b}(m \geq 2)$ is called a multiple fibre which is the m-ple of a fibre of type I_{b}.
A fibre of type II is a rational curve with one cusp with multiplicity 1.
A fibre of type III consists of two non-singular rational curves intersecting one point with intersection multiplicity 2 and each component has
multiplicity 1.
A fibre of type IV consists of three non－singular rational curves intersecting one point and each component has multiplicity 1.

A fibre of all the other types is a tree of non－singular rational curves in which some component has multiplicity ≥ 2 and some component has multiplicity 1.

Any non－singular rational curve which appears as an irreducible component of a singular fibre has the self－intersection number -2 ．

Let $f: X \rightarrow \Delta$ be an elliptic fibration over an algebraic curve Δ without multiple fibres．Let $\left\{a_{\rho}\right\}$ be a finite subset of Δ such that for $u \in \Delta^{\prime}=\Delta \backslash\left\{a_{\rho}\right\}, f^{-1}(u)$ is a regular fibre．Kodaira defined the functional invariant $\mathcal{J}=\mathcal{J}(u)$ of f which is a meromorphic function on Δ and the homological invariant G belonging to \mathcal{J} which is a sheaf on Δ extended from a localy constant sheaf on Δ^{\prime} ．We denote by $\mathcal{F}(\mathcal{J}, G)$ the set of all elliptic fibrations over Δ free from multiple fibres whose functional and homological invariants are \mathcal{J} and G ．

Fact 2 （［4］）Any elliptic fibration over Δ free from multiple fibres belongs to some $\mathcal{F}(\mathcal{J}, G)$ ．

Fact 3 （［5］）If a meromorphic function \mathcal{J} on Δ is given，there exist a finite number of homological invariants belonging to \mathcal{J} ．

Fact 4 （［5］Theorem 10．2）For a meromorphic function \mathcal{J} on Δ and the homological invariant G belonging to \mathcal{J} ，there is a unique member B in $\mathcal{F}(\mathcal{J}, G)$ which possesses a global holomorphic section．B is called the basic member of $\mathcal{F}(\mathcal{J}, G)$ ．

For $a_{\rho} \in \Delta$ we denote by $C_{a_{\rho}}$ the fibre over a_{ρ} ．

Fact 5 ([5]Theorem 9.1 or [1]p. 159 Table 6) The behaviour of the functional invariant $\mathcal{J}(s)$ is as follows:

1. If $\mathcal{J}\left(a_{\rho}\right) \neq 0,1, \infty$ or $\mathcal{J}(s)$ has a zero of order $h \equiv 0(3)$ at a_{ρ} or $\mathcal{J}(s)-1$ has a zero of order $h \equiv 0(2)$ at a_{ρ}, then the type of $C_{a_{\rho}}$ is I_{0} or I_{0}^{*}.
2. If $\mathcal{J}(s)$ has a pole of order b at a_{ρ}, then the type of $C_{a_{\rho}}$ is I_{b} or $\mathrm{I}_{b}^{*}(b \geq 1)$.
3. If $\mathcal{J}(s)$ has a zero of order $h \equiv 1(3)$ at a_{ρ}, then the type of $C_{a_{\rho}}$ is II or IV^{*}.
4. If $\mathcal{J}(s)$ has a zero of order $h \equiv 2(3)$ at a_{ρ}, then the type of $C_{a_{\rho}}$ is II^{*} $o r$ IV.
5. If $\mathcal{J}(s)-1$ has a zero of order $h \equiv 1(2)$ at a_{ρ}, then the type of $C_{a_{\rho}}$ is III or III* *.

Remark 3 In the case of $\mathcal{J}(s)=c=$ constant, if $c \neq 0,1$ then the basic member has no singular fibres. But if $c=0$ any of types II, $\mathrm{IV}^{*}, \mathrm{II}^{*}$ or IV can occur, and if $c=1$ then type III or III^{*} can occur. (cf. Examples in section 4.)

For the compact analytic surface X with the elliptic fibration $f: X \rightarrow \Delta$, we denote by $\nu(\mathrm{T})$ the number of singular fibres of f of type T.

Fact 6 ([5]Theorem 12.2) The arithmetic genus p_{a} of X is given by the formula

$$
\begin{align*}
12\left(p_{a}+1\right)= & \sum_{b} b \nu\left(\mathrm{I}_{b}\right)+\sum_{b}(b+6) \nu\left(\mathrm{I}_{b}^{*}\right)+2 \nu(\mathrm{II})+3 \nu(\mathrm{III})+4 \nu(\mathrm{IV}) \\
& +10 \nu\left(\mathrm{II}^{*}\right)+9 \nu\left(\mathrm{III}^{*}\right)+8 \nu\left(\mathrm{IV}^{*}\right) \tag{1}
\end{align*}
$$

Remark 4 If X is isomorphic to the basic member B of $\mathcal{F}(\mathcal{J}, G)$, then $\sum_{b} b\left(\nu\left(\mathrm{I}_{b}\right)+\nu\left(\mathrm{I}_{b}^{*}\right)\right)$ is equal to the total multiplicity of the poles of the meromorphic function \mathcal{J} which we denote by j.

3 Proof of Theorem 1 and some results

We assume that S is a non－singular rational surface with an elliptic fibration $\pi: S \rightarrow \mathbb{C}^{*}$ which is extended to an elliptic fibration $\bar{\pi}: \bar{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ such that $D=\operatorname{red} F_{1}+\operatorname{red} F_{2}$ where $F_{i}(i=1,2)$ are fibres of $\bar{\pi}$ and $\operatorname{red} F_{i}$ are reduced fibres．Since we assume that D is a simple normal crossing divisor， $F_{i}(i=1,2)$ may contain some exceptional curves．By contracting them， we have a minimal elliptic fibration $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ and a proper birational morphism $\mu: \bar{S} \rightarrow \hat{S}$ such that $\bar{\pi}=\hat{\pi} \circ \mu$ and $\left.\mu\right|_{S}$ is an isomorphism．We denote $\mu_{*} F_{i}=\hat{F}_{i}(i=1,2)$ ．

Remark 5 Under the above assumption there exists an exceptional curve on \hat{S} which is not contained in a fibre of $\hat{\pi}$ ，because there is no irreducible irrational curve C with $C^{2} \leq 0$ on $\mathbb{P}_{\mathbb{C}}^{2}$ or Hirzebruch surfaces Σ_{n} ．

Lemma 1 Under the above condition，the elliptic fibration $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ has at most one multiple fibre．

Proof．We refer［6］p．353．Anyway it is an immediate consequence of the canonical bundle formula［3］．

Lemma 2 Under the above condition，if the elliptic fibration $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ has no multiple fibres，then it possesses a global section．

Proof：Since there exists an exceptional curve E on \hat{S} ，if $\hat{\pi}$ has no multiple fibres we have

$$
-1=E \cdot K_{\hat{S}}=-E \cdot \hat{F}
$$

where \hat{F} is a general fibre of $\hat{\pi}$ ．Thus E is a global section．

Lemma 3 Under the above condition，if $\bar{P}_{2}(S)=0$ then
$\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{III}^{*}, \mathrm{II}\right\}$ or $\left\{\mathrm{III}^{*}, \mathrm{III}\right\}$ or $\left\{\mathrm{II}^{*}, \mathrm{II}\right\}$ or $\left\{\mathrm{IV}^{*}, \mathrm{III}\right\}$ or $\left\{\mathrm{IV}^{*}, \mathrm{II}\right\}$ or $\left\{\mathrm{IV}^{*}, \mathrm{IV}\right\}$ ．

Proof: From [6]p. 353 Lemma 4, we infer that one of $\hat{F}_{i}(i=1,2)$ is of type II* or III* or IV^{*}. Since $\bar{p}_{g}(S)=0$ we infer from [6]p. 345 Lemma 2 that D contains no fibres of type I_{b} or I_{b}^{*}, and from the assumption that \hat{S} is rational we have $p_{a}(\hat{S})=0$. Combining these with the formula (1) we can easily deduce the conclusion.

Remark 6 If we assume that $\hat{\pi}$ has no multiple fibres and that the moduli of general fibres of $\hat{\pi}$ are not constant i.e. the functional invariant \mathcal{J} is not constant, then $j \geq 1$ and therefore only $\left\{\mathrm{III}^{*}, \mathrm{II}\right\},\left\{\mathrm{IV}^{*}, \mathrm{III}\right\}$ and $\left\{\mathrm{IV}^{*}, \mathrm{II}\right\}$ are the cases. If $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{II}^{*}, \mathrm{II}\right\}$ or $\left\{\mathrm{IV}^{*}, \mathrm{IV}\right\}$ then $\mathcal{J}=0$, and if $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{III}^{*}, \mathrm{III}\right\}$ then $\mathcal{J}=1$.

Lemma 4 Under the above condition, if $\bar{P}_{2}(S)=\bar{P}_{3}(S)=0$ then $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{III}^{*}, \mathrm{II}\right\}$ or $\left\{\mathrm{III}^{*}, \mathrm{III}\right\}$ or $\left\{\mathrm{II}^{*}, \mathrm{II}\right\}$.

Proof: If $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{IV}^{*}, \mathrm{III}\right\}$ or $\left\{\mathrm{IV}^{*}, \mathrm{II}\right\}$ or $\left\{\mathrm{IV}^{*}, \mathrm{IV}\right\}$, then we infer that $\bar{P}_{3}(S) \geq 1$ by the argument in [6]p.355-356.

Proof of Theorem 1: If the assumption of Theorem 1 holds, we infer from Lemma 2 and Fact 2 and Fact 4 that \hat{S} is the basic member of some $\mathcal{F}(\mathcal{J}, G)$ where \mathcal{J} is a meromorphic function on $\mathbb{P}_{\mathbb{C}}^{1}$. First we assume that \mathcal{J} is not constant. Then we infer from Remark 6 and Lemma 4 that $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{III}^{*}, \mathrm{II}\right\}$. Then by the argument of [6]p. 354 Case 1 , we infer that $\bar{P}_{4}(S)=1, \bar{P}_{12}(S)=2$ and $\bar{\kappa}(S)=1$. On the other hand from the formula (1) we infer that $\hat{\pi}$ has only one singular fibre except for $\hat{F}_{i}(i=1,2)$ which is of type I_{1}. Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}_{\mathbb{C}}^{1}$, we may assume that C_{0} is of type II and C_{1} is of type III* and C_{∞} is of type I_{1}. Denoting this inhomogeneous coordinate by s we infer from Fact 5 that $\mathcal{J}(s)$ has only one pole with multiplicity 1 at $s=\infty$ and has a zero of order $h \equiv 1(3)$ at $s=0$ and that $\mathcal{J}(s)-1$ has a zero of order $h \equiv 1(2)$ at $s=1$. It is obvious that a meromorphic function $\mathcal{J}(s)$ on $\mathbb{P}_{\mathbb{C}}^{1}$
satisfying such conditions is only $\mathcal{J}(s)=s$ ．Since the homological invariant G belonging to $\mathcal{J}(s)=s$ which induces the above set of singular fibres is unique，$\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is isomorphic to the basic member of $\mathcal{F}(\mathcal{J}, G)$ which is uniquely determined upto isomorphisms induced by automorphisms of $\mathbb{P}_{\mathbb{C}}^{1}$ ． Thus we have the conclusion in case 1.

Next we assume that $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\{$ III＊，III $\}$ ．Then the functional invariant \mathcal{J} is constant 1 and there are no singular fibres except for $\hat{F}_{i}(i=1,2)$ ．The elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ satisfying these conditions is uniquely determined upto isomorphisms induced by automorphisms of $\mathbb{P}_{\mathbb{C}}^{1}$ and therefore $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to fixed one．In this case by the similar argument as in［6］p． 354 Case 1 we have an effective divisor which belongs to the linear system $\left|4\left(K_{\bar{S}}+D\right)\right|$ and whose intersection form is negative definite．Hence $\bar{P}_{4}(S)=1$ and $\bar{\kappa}(S)=0$ ．Thus we have the conclusion in case 2 ．

Now we assume that $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{II}^{*}, \mathrm{II}\right\}$ ．Then $\mathcal{J}=0$ and there are no singular fibres except for $\hat{F}_{i}(i=1,2)$ and we infer that $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one．In this case we have $\bar{P}_{6}(S)=1$ and $\bar{\kappa}(S)=0$ ．Thus we have the conclusion in case 3 ．

Q．E．D．

Proposition 2 If $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{IV}^{*}, \mathrm{III}\right\}$ and $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ has no multiple fibres，then $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one as a fibration over \mathbb{C}^{*} and $\bar{P}_{4}(S)=1$ and $\bar{\kappa}(S)=0$ ．

Proof：By the same argument in the proof of Theorem 1，we can apply the formula（1）to \hat{S} ．Since $p_{a}(\hat{S})=0$ and $\nu\left(\mathrm{IV}^{*}\right) \geq 1, \nu(\mathrm{III}) \geq 1$ ，we infer that $\hat{\pi}$ has only one singular fibre except for $\hat{F}_{i}(i=1,2)$ which is of type I_{1} ． Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}_{\mathbb{C}}^{1}$ ，we may assume that C_{0} is of type IV^{*} and C_{1} is of type III and C_{∞} is of type I_{1} ． Denoting this inhomogeneous coordinate by s we infer that $\mathcal{J}(s)=s$ in the same way as in the proof of Theorem 1 ．Hence $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is isomorphic to
the basic member of $\mathcal{F}(\mathcal{J}, G)$ where G is the homological invariant determined by the singular fibres. On the other hand by the similar argument as in [6]p. 354 Case 1, we have an effective divisor which belongs to the linear system $\left|4\left(K_{\bar{S}}+D\right)\right|$ and whose intersection form is negative definite.
Hence $\bar{P}_{4}(S)=1$ and $\bar{\kappa}(S)=0$.
Q. E. D.

Remark 7 The functional invariant in Proposition 2 is the same as in Theorem 1 but the homological invariant is different.

Remark 8 If $\hat{\pi}$ has a multiple fibre we have $\bar{P}_{4}(S) \geq 1$ and $\bar{\kappa}(S)=1$.

Proposition 3 If $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{IV}^{*}, \mathrm{II}\right\}$ then $\bar{P}_{3}(S) \geq 1$ and $\bar{\kappa}(S)=1$. Moreover if we assume that $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ has no multiple fibres, we have following three cases:
Case 1: The functional invariant \mathcal{J} is not constant and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one as a fibration over \mathbb{C}^{*}.

Case 2: The functional invariant \mathcal{J} is not constant and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a member of a family of elliptic fibrations over \mathbb{C}^{*} parametrized by $\mathbb{C} \backslash\{0,1,-1\}$.
Case 3: $\mathcal{J}=0$ and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one as a fibration over \mathbb{C}^{*}.

Proof: $\bar{P}_{3}(S) \geq 1$ was already stated in the proof of Lemma 4. By the argument in [6]p.355-356 we infer immediately that $\bar{P}_{6}(S) \geq 2$. Thus we have $\bar{\kappa}(S)=1$.

First we assume that \mathcal{J} is not constant. Then $j \geq 1$ and we infer from formula (1) that $\nu\left(\mathrm{IV}^{*}\right)=\nu(\mathrm{II})=1$ and $j=2$. Thus we have two cases one of which is $\nu\left(\mathrm{I}_{2}\right)=1, \nu\left(\mathrm{I}_{1}\right)=0$ and the other is $\nu\left(\mathrm{I}_{2}\right)=0, \nu\left(\mathrm{I}_{1}\right)=2$ and there is no singular fibres except for above 3 or 4 fibres.

Case 1: Suppose that $\nu\left(\mathrm{I}_{2}\right)=1$. Then there is three singular fibres whose types are II and IV^{*} and I_{2} respectively. Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}_{\mathbb{C}}^{1}$, we may assume that C_{0} is of type IV^{*} and
C_{1} is of type II and C_{∞} is of type I_{2} ．Denoting this inhomogeneous coordinate by s we infer from Fact 5 that $\mathcal{J}(s)$ is a quadratic polynomial in s such that $\mathcal{J}(0)=\mathcal{J}(1)=0$ ．Thus we have $\mathcal{J}(s)=c s(s-1)$ where c is a nonzero constant．Since \hat{S} has no singular fibres of type III or III＊， $\mathcal{J}(s)-1$ has no simple zeros．Hence the quadratic equation $c s(s-1)=1$ has a multiple root and therefore we have $c=-4$ ．Thus $\mathcal{J}(s)=-4 s(s-1)$ and $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is isomorphic to the basic member of $\mathcal{F}(\mathcal{J}, G)$ where $\mathcal{J}(s)=-4 s(s-1)$ and G is the uniquely determined homological invariant by the set of singular fibres．

Case 2：Suppose that $\nu\left(\mathrm{I}_{1}\right)=2$ ．In this case there are four singular fibres and we can prescribe the positions of any three singular fibres by a suitable automorphism of $\mathbb{P}_{\mathbb{C}}^{1}$ ．Hence by choosing a suitable inhomogeneous coordinate for $\mathbb{P}_{\mathbb{C}}^{1}$ we may assume that C_{0} is of type IV^{*} and C_{1} is of type II and C_{∞} is of type I_{1} ．If we denote this inhomogeneous coordinate by s ， the remaining singular fibre which is of type I_{1} is defined by $s=\alpha$ where $\alpha \neq 0,1, \infty$ ．Then we infer from Fact 5 that $\mathcal{J}(0)=\mathcal{J}(1)=0$ and that $\lim _{s \rightarrow \alpha}(s-\alpha) \mathcal{J}(s)$ and $\lim _{s \rightarrow \infty} s^{-1} \mathcal{J}(s)$ are nonzero constants．Hence we have $\mathcal{J}(s)=c s(s-1)(s-\alpha)^{-1}$ where c is a nonzero constant．Since $\mathcal{J}(s)-1$ has no simple zeros，the quadratic equation $c s(s-1)=s-\alpha$ has a multiple root．Thus we have $(c+1)^{2}=4 c \alpha$ and

$$
\begin{equation*}
\mathcal{J}(s)=\frac{4 c^{2} s(s-1)}{4 c s-(c+1)^{2}} \tag{2}
\end{equation*}
$$

Since $\alpha \neq 0,1, \infty$ we have $c \neq 0,1-1$ ．For $c \in \mathbb{C} \backslash\{0,1,-1\}$ we denote by \bar{B}_{c} the basic member of $\mathcal{F}(\mathcal{J}, G)$ where $\mathcal{J}(s)$ is given by（2）and G is the homological invariant determined by the singular fibres．We denote by $\overline{\mathcal{B}}$ the family $\left\{\bar{B}_{c} \mid c \in \mathbb{C} \backslash\{0,1,-1\}\right\}$ ．Since every member \bar{B}_{c} of $\overline{\mathcal{B}}$ has fixed fibres C_{0} of type IV^{*} and C_{1} of type II，we put $\bar{B}_{c} \backslash C_{0} \cup C_{1}=B_{c}$ and denote by \mathcal{B} the family $\left\{B_{c} \mid c \in \mathbb{C} \backslash\{0,1,-1\}\right\}$ ．Then $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is isomorphic to a member of the family $\overline{\mathcal{B}}$ and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a member of the family \mathcal{B} ．

Case 3: Finally we assume that \mathcal{J} is constant. Then $\mathcal{J}=0$ since there are singular fibres of type IV* and II. Then we infer from formula (1) that $\nu\left(\mathrm{IV}^{*}\right)=1$ and $\nu(\mathrm{II})=2$ and there are no other singular fibres. Since we can prescribe the positions of these three singular fibres by an automorphism of $\mathbb{P}_{\mathbb{C}}^{1}$, we infer that $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one.
Q.E.D.

Proposition 4 If $\left\{\right.$ type of $\left.\hat{F}_{i} \mid i=1,2\right\}$ is $\left\{\mathrm{IV}^{*}, \mathrm{IV}\right\}$ and $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ has no multiple fibres, then $\bar{P}_{3}(S)=1$ and $\bar{\kappa}(S)=0$ and $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one as a fibration over \mathbb{C}^{*}.

Proof: From the assumption we have $\mathcal{J}=0$ and there are no singular fibres except for $\hat{F}_{i}(i=1,2)$. Thus we infer that $\pi: S \rightarrow \mathbb{C}^{*}$ is isomorphic to a fixed one. On the other hand by the similar argument as in [6]p. 354 Case 1, we have an effective divisor which belongs to the linear system $\left|3\left(K_{\bar{S}}+D\right)\right|$ and whose intersection form is negative definite. Hence $\bar{P}_{3}(S)=1$ and $\bar{\kappa}(S)=0$.
Q.E.D.

Remark 9 If $\hat{\pi}$ has a multiple fibre we have $\bar{P}_{3}(S) \geq 1$ and $\bar{\kappa}(S)=1$.
By Theorem 1 and Proposition 2-4 we have classified ellipic fibre spaces $\pi: S \rightarrow \mathbb{C}^{*}$ which are extended to fibre spaces $\bar{\pi}: \bar{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with no multiple fibres such that \bar{S} are rational and $\bar{P}_{2}(S)=0$. In the next section we give explicit constructions of examples of each cases.

4 Constructions of examples

In this section we denote by $(X: Y: Z)$ a homogeneous coodinate for $\mathbb{P}_{\mathbb{C}}^{2}$.
Example 1 Let C be a rational curve of degree 3 with one cusp in $\mathbb{P}_{\mathbb{C}}^{2}$ and L be a line which is tangent to C at one non-singular point and intersects simply with C at one another point. Removing the base points
of the linear system generated by $3 L$ and C ，we have an elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with singular fibres of type III＊and II which correspond to $3 L$ and C respectively．For example we put $C=\left\{Y^{2} Z-X^{3}=0\right\}$ and $L=\{-3 X+2 Y+Z=0\}$ ．Then a fibre which does not correspond to $3 L$ is defined by $\left\{Y^{2} Z-X^{3}-w(-3 X+2 Y+Z)^{3}=0\right\}$ where $w \in \mathbb{C}$ ．We infer that when $w=108^{-1}$ the fibre has one node at $(X: Y: Z)=(-1: 1: 1)$ ． Thus this is the case we treated in Theorem 1 Case 1.

Remark 10 The above construction is different from the one in［6］p．357．
Example 2 Let C be a conic in $\mathbb{P}_{\mathbb{C}}^{2}$ and L_{1} and L_{2} be two different tangent lines of C ．Then by the linear system generated by $3 L_{1}$ and $C+L_{2}$ we have an elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with singular fibres of type $I I I^{*}$ and III which correspond to $3 L_{1}$ and $C+L_{2}$ respectively．For example we put $C=.\left\{Y Z-X^{2}=0\right\}$ and $L_{1}=\{Z=0\}$ and $L_{2}=\{Y=0\}$ ．Then a fibre which does not correspond to $3 L_{1}$ is defined by $\left\{\left(Y Z-X^{2}\right) Y-w Z^{3}=0\right\}$ where $w \in \mathbb{C}$ ．For $w \neq 0$ they are all nonsingular and isomorphic to each other．Thus this is the case in Theorem 1 Case 2.

Example 3 Let C be a rational curve of degree 3 with one cusp in $\mathbb{P}_{\mathbb{C}}^{2}$ and L be the tangent line of C at the nonsingular inflection point．Then by the linear system generated by $3 L$ and C we have an elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with singular fibres of type II^{*} and II which correspond to $3 L$ and C respectively．For example we put $C=\left\{Y Z^{2}-X^{3}=0\right\}$ and $L=\{Y=0\}$ ．Then a fibre which does not correspond to $3 L$ is defined by $\left\{Y Z^{2}-X^{3}-w Y^{3}=0\right\}$ where $w \in \mathbb{C}$ ．For $w \neq 0$ they are all nonsingular and isomorphic to each other．Thus this is the case in Theorem 1 Case 3.

Example 4 Let C be a conic in $\mathbb{P}_{\mathbb{C}}^{2}$ and L_{1} be a line intersecting with C simply at two point p, q and L_{2} a tangent line of C at a point different from p and q ．Then by the linear system generated by $3 L_{1}$ and $C+L_{2}$ we have an elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with singular fibres of type $I V^{*}$ and

III which correspond to $3 L_{1}$ and $C+L_{2}$ respectively. For example we put $C=\left\{Y Z-X^{2}=0\right\}$ and $L_{1}=\{Y-Z=0\}$ and $L_{2}=\{Y=0\}$. Then a fibre which does not correspond to $3 L_{1}$ is defined by $\left\{\left(Y Z-X^{2}\right) Y-w(Y-Z)^{3}=0\right\}$ where $w \in \mathbb{C}$. We infer that when $w=-4 / 27$ the fibre has a node at $(X: Y: Z)=(0:-2: 1)$. Thus this is the case in Proposition 2.

Example 5 Let C be a rational curve of degree 3 with one cusp in $\mathbb{P}_{\mathbb{C}}^{2}$ and L be a line which intersects simply with C at three points. Then by the linear system generated by C and $3 L$ we have an elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with singular fibres of type IV^{*} and II which correspond to $3 L$ and C respectively. If we put $C=\left\{Y^{2} Z-X^{3}=0\right\}$ and $L=\{X-Z=0\}$, then a fibre which does not correspond to $3 L$ is defined by $\left\{Y^{2} Z-X^{3}-w(X-Z)^{3}=0\right\}$ where $w \in \mathbb{C}$. Then by calculation we infer that for $w=-1$ the corresponding fibre is of type I_{2}, and for $w \neq 0,-1$ the corresponding fibre is regular. Thus this is the case in Proposition 3 Case 1.

Example 6 In the above example if we put $C=\left\{Y^{2} Z-X^{3}=0\right\}$ and $L=\left\{3 a^{2} X+u Y-Z=0\right\}$, where $u, a \in \mathbb{C}$ such that $a \mathbf{u}\left(u+2 a^{3}\right)\left(u-2 a^{3}\right) \neq 0$, then a fibre which does not correspond to $3 L$ is defined by $\left\{Y^{2} Z-X^{3}-w\left(3 a^{2} X+u Y-Z\right)^{3}=0\right\}$ where $w \in \mathbb{C}$. Then by calculation we infer that for two different nonzero values of w the fibre has one node. In fact for $w=w_{1}=-(4 / 27)\left(u+2 a^{3}\right)^{-2}$ the corresponding fibre has a node at $(X: Y: Z)=(a: 1:(-1 / 2) u)$, and for $w=w_{2}=-(4 / 27)\left(u-2 a^{3}\right)^{-2}$ the corresponding fibre has a node at $(X: Y: Z)=(-a: 1:(-1 / 2) u)$. Thus this is the case in Proposition 3 Case 2.

Example 7 In the above example if we put $C=\left\{Y^{2} Z-X^{3}=0\right\}$ and $L=\{Y-Z=0\}$, then a fibre which does not correspond to $3 L$ is defined by $\left\{Y^{2} Z-X^{3}-w(Y-Z)^{3}=0\right\}$ where $w \in \mathbb{C}$. Then we infer that for $w=-4 / 27$ the fibre has one cusp at $(X: Y: Z)=(0:-2: 1)$ and for
$w \neq 0,-4 / 27$ the fibres are all non－singular and isomorphic to each other． Thus this is the case in Proposition 3 Case 3.

Example 8 Let $L_{i}(i=1,2,3)$ be three different lines in $\mathbb{P}_{\mathbb{C}}^{2}$ intersecting one point p and L_{0} be a line which does not contain p ．Then by the linear system generated by $3 L_{0}$ and $L_{1}+L_{2}+L_{3}$ we can construct an elliptic fibre space $\hat{\pi}: \hat{S} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ with singular fibres of type IV＊and IV which correspond to $3 L_{0}$ and $L_{1}+L_{2}+L_{3}$ respectively．For example we put $L_{0}=\{Z=0\}$ ， $L_{1}=\{X=0\}, L_{2}=\{Y=0\}$ and $L_{3}=\{X+Y=0\}$ ．Then a fibre which does not correspond to $3 L_{0}$ is defined by $\left\{X Y(X+Y)-w Z^{3}=0\right\}$ where $w \in \mathbb{C}$ ．Then for $w \neq 0$ all fibres are non－singular and isomorphic to each other．Thus this is the case in Proposition 4.

Acknowledgement The author used the computer algebraic system Asir（［7］）to calculate above examples．

References

［1］Barth，W．，Peters，C．，Ven，A．Van de：Compact complex surfaces， Erg．Math．3．Folge，Bd．4，Springer，Heidelberg（1984）
［2］Iıtaka，S．：Logarithmic forms of algebraic varieties．J．Fac．Sci．Univ． Tokyo，23，（1976）525－544．
［3］Kodaira，K．：On compact complex analytic surfaces I．Ann．of Math．， 71（1960）111－152．
［4］Kodaira，K．：On the structure of compact complex analytic surfaces I．Amer．J．of Math．，86（1964）751－798．
［5］Kodaira，K．：On compact analytic surfaces II，III．Ann．of Math．， 77，563－626，78（1963）1－40．
[6] Kuramoto, Y.: On the logarithmic plurigenera of algebraic surfaces. Compositio Mathematica, Vol. 43, Fasc. 3, (1981)343-364.
[7] Noro, M. Et al: Risa/Asir, ftp://endeavor.fujitsu.co.jp/pub/isis/asir

Yoshiyuki Kuramoto

Department of Mathematics Education
Faculty of Education
Kagoshima University
Kagoshima, Japan
kuramoto@edu.kagoshima-u.ac.jp

[^0]: *Department of Mathemaics Education, Faculty of Education, Kagoshima University, Kagoshima 890-0065, Japan

