	学 位 論 文 の 要 約
氏 名	栫健太郎
学位論文題目	共生窒素固定放線菌Frankiaの遺伝学的研究手法の確立
	序論

窒素固定の原理

生物が生育するためには窒素養分が必須である。窒素養分は代謝され、様々な生体化合物、例えば DNAやタンパク質の合成に用いられる。大気中にはおよそ78%の窒素ガスが含まれるが、窒素ガスは 非常に安定な分子であるため、ほとんどの生物はそれを直接養分として利用できない。窒素ガスを生 物が利用できる形態に変換することを窒素固定という。地球上で固定窒素の主要な供給源は、ハーバ ー・ボッシュ法による工業的窒素固定と生物的窒素固定によるものである。生物的窒素固定は真性細 菌と古細菌によって行われる。その反応は以下のとおりである (56)。

 $N_2 + 8H^+ + 8e^- + 16MgATP \rightarrow 2NH_3 + H_2 + 16MgADP + 16P_i$

窒素分子中の窒素原子は三重結合で強固に結合しており、窒素固定反応には多くのエネルギーが必要とされる。ニトロゲナーゼという酵素が触媒となり、この結合を還元する (56)。

窒素固定細菌

窒素を固定し窒素養分が乏しい環境でも生育できる生物をジアゾ栄養生物と呼ぶ。真正細菌と古細菌に属する様々な生物がジアゾ栄養生物に属する。 *Clostrdium pasteurianum*は最初に単離されたジア ゾ栄養生物である (28)。このバクテリアは偏性嫌気性菌である。一方、*Bacillus polymyxaや*

Rhodospirillum rubrumは通性好気性のグラム陽性菌であり、有酸素下で窒素固定を行う (15)。このようなジアゾ栄養生物は有酸素下でニトロゲナーゼが失活しないよう、ニトロゲナーゼを酸素から保護している (67) (29)。Azotobacter属も通性好気性の窒素固定細菌としてよく知られている。土壌に広く分布しており細胞表面にアルギン酸の防護膜を形成することで酸素を遮断している (54)。

*Chroococcales*目や*Oscillatoriales*目、*Nostocales*目に分類される多細胞性の藍藻(シアノバクテリア)は 窒素固定を行う。*Nostocales*目はヘテロシストと呼ばれる細胞を分化し、窒素固定の場とする。シアノ バクテリアは光合成を行うが、ヘテロシストは酸素を放出するphotosystem IIを欠いている。ヘテロシ ストの外膜はglycolipidsとpolysaccharidesの層に覆われている (43)。Glycolipidsは酸素から細胞を防護 し、polysaccharidesはglycolipidsの層を安定化させると考えられる。このように窒素固定の場である特 別な器官は基本的に酸素から隔絶されている。

共生窒素固定

共生窒素固定細菌は、宿主植物の細胞に共生し、宿主の根に根粒という器官を形成し窒素固定を行う (22)。根粒中の酸素分圧は低レベルに保たれている (50)。これは根粒中のニトロゲナーゼを保護する 作用である。窒素分子は窒素固定細菌のニトロゲナーゼにより還元されてアンモニアとなり、宿主植 物に窒素養分として供給される。共生窒素固定細菌は、窒素固定反応を駆動するエネルギー源として 宿主より光合成産物を受け取る。この共生の結果、宿主植物は窒素養分が少ない土壌でも旺盛に生育 できる。

代表的な共生窒素固定細菌である根粒菌は、*Rhizobium、Bradyrhizobium、Mesorhizobium、Sinorhizobium、Azorhizobiumの細菌属を含み、マメ科植物を宿主とする。*

根粒菌は、S. melilotiはアルファルファと、B. japonicumはダイズと共生するというように、厳密な宿 主特異性を持つ。この宿主特異性は、植物の根から分泌されるフラボノイドを認識して、根粒菌がnod 遺伝子群を活性化することで成り立つと考えられている。nod遺伝子群により合成、分泌されるリポキ トオリゴ糖をNod factorと呼ぶ。Nod factorは10⁻⁹~10⁻¹²Mといった低濃度で宿主植物に根毛の変形、前 感染糸形成や皮層細胞分裂を引き起し根粒形成へと導く。Nod factorはβ-1,4結合したN-アセチル-D-グ ルコサミンを基本骨格としている。キチン合成酵素のNodCにより基本骨格が形成され、NodBが非還 元末端の糖残基を脱アセチル化しNodAによりアシル基が付加される。これらに関わる遺伝子の転写を 調節するnodDも含め、nodA~nodDはどの根粒菌にも存在する。このようにNod factorは根粒形成に必 須のシグナル分子だが、構造が決定された当初その受容機構は判明していなかった。現在はNod factor 受容体(NFR)によって受容されることが判明している。植物種によりNFRの受容体ドメインである LysMドメインは異なり、これが宿主特異性を生み出していると考えられる。LysMドメインは病原糸 状菌を認識する機能があり、ここからNod factor受容体に進化したと考えられる。NFRがNodファクタ ーを受容すると、特異的なシグナル伝達経路が活性化する。この経路には少なくとも8つのタンパク質 が関わっていることが知られており、根粒菌だけでなく菌根菌共生にも用いられることがわかってい る。故にこのシグナル伝達経路は共通共生経路と呼ばれる。共通共生経路のシグナル伝達については 多くが判明しているが、NFRから共通共生経路を活性化させるシグナルは不明であり、菌根菌のシグ ナルであるMycファクターではなぜ根粒を作らないのかといった点など多くの研究課題がある。

Frankia

放線菌の一種であるグラム陽性菌Frankiaは、宿主植物の根に根粒を形成し、窒素固定を行う(5)。 Frankiaは、前述の根粒菌と同様に宿主より光合成産物を受け取り、大気中の窒素分子をニトロゲナー ゼにより還元し宿主植物に窒素養分として供給する。Frankiaの宿主はアクチノリザル植物と呼ばれ、 8科23属およそ300種が確認されている(5)。その内訳は、ブナ目(Fagales)ではカバノキ科(Betulaceae) のハンノキ属(Alnus)、ヤマモモ科(Myricaceae)のヤマモモ属(Myrica)、モクマオウ科(Casuarinaceae) のモクマオウ属(Casuarina)など、バラ目(Rosales)ではグミ科(Elaeagnaceae)のグミ属(Elaeagnus) など、ウリ目(Cucurbitales)ではドクウツギ科(Coriariaceae)ドクウツギ属(Coriaria)といった木 本植物である(45)。例外的にダティスカ科(Datiscaceae)のダティスカ属(Datisca)は草本植物であ る(45)。このようにFrankiaの宿主範囲はとても広いのが特徴である。

アクチノリザル植物は湿潤、乾燥、冷帯、熱帯地域を含め非常に広範囲に分布するため、Frankiaの 窒素固定量は共生窒素固定の中でも大きな割合を占めると思われる。ヤシャブシは植生遷移において、 木本植物が侵入しにくい初期段階から生育するので、荒地回復に貢献している。

根へのFrankiaの感染様式は2タイプある。細胞内感染と細胞間感染である(64)。細胞内感染では Frankiaは宿主の根毛から感染する(7)。アクチノリザル植物はマメ科植物と同様の共通共生経路を持ち(23)、感染初期に根毛変形を起こす場合がある。それはFrankiaから分泌された物質によると考えられるが、現在のところ根毛変形に関わる物質は不明である(18)。Frankiaは変形した根毛の細胞壁を貫通し、根の皮層細胞に菌糸を伸ばして侵入する。感染細胞に近接した皮層細胞は感染細胞から分離し、 感染細胞は根粒原基を形成する。根粒原基は内鞘に向けて膨れ上がり成熟した根粒へと成長する。成 熟した根粒は窒素固定を開始する。一方、細胞間感染は*ElaeagnusやDiscaria,Ceanothus*属の植物種で 観察される。細胞間感染では変形根毛の感染糸からの*Frankia*の侵入は観察されていない (36) (35) (62)。

Frankiaの細胞は3種の形態に分化する。菌糸、胞子嚢、そしてベシクルである(Fig. 1A)。菌糸は 一般的な放線菌のように細胞が繊維状に連なり、一定の間隔をおいて分枝する。BAP-T液体培地(32) で培養したFrankia sp. strain HFPCcI3(CcI3株)の菌糸のサイズは幅約1µm、直径約2.4µmである(Fig. 1B)。菌糸中の細胞同士は細胞隔壁で区分されている(Fig. 1B)。胞子嚢は胞子を内包する器官であ る。胞子形成は窒素やリン酸など生育に必須の養分が欠乏した環境で起こる。Alnus、Compotania、 Myricaの根粒中ではFrankiaは胞子を形成することがあるが(63)(37)(60)、他のアクチノリザル植物で はそのような現象は確認されていない(5)。ベシクルは窒素固定の場である。ベシクルの直径は酸素 レベルに左右されるが、2~6µm程度である(51)。また、ベシクルを電子顕微鏡で観察したところ17か 694の脂質多重膜に包まれていたことが分かった(20)。ベシクルの脂質多重膜の主な構成成分は2つ ある。ひとつはホパノイド脂質(bacteriohopantetrol)であり、もうひとつはそのフェニル酢酸モノエ ステルである(8)。ホパノイド脂質はベシクルに特異的に見られる化合物ではなく、広くバクテリア 界に存在する(42)。根粒中のベシクルは宿主により様々な形態を取る。例えばAlnusやElaeagnusでは 多細胞の球状ベシクル、CeanothusやDryasでは単細胞のベシクル、Myricaでは多細胞の根棒状のベシ クル、CoriariaやDatiscaでは糸状のベシクルを形成する(6)。例外的にCasuarinaやAllocasuarinaの根粒 中ではベシクルの形成は起こらない。ベシクル形成のしくみについてはよく分かっていない。

2007年に3株のFrankiaでゲノムの全塩基配列が決定された(46)。Casuarina glaucaから単離された Frankia sp. CcI3株のゲノムサイズは5.43 Mbpで4499の遺伝子を持つ。Alnus crispaから単離された ACN14a株のゲノムサイズは7.5 Mbpで6786の遺伝子を持つ。Elaeagnus angustifoliaから単離された EAN1pec株のゲノムサイズは7.5 Mbpで6786の遺伝子を持つ。これらのゲノムのGC含量は順に 70.07%、72.83%、70.94%と他のバクテリアに比べて高い数値を示す。また近年ゲノムプロジェクトに より、Elaeagnus umbellataから単離されたEu1c株が8.82 Mbp (3)、Elaeagnus angustifoliaから単離された BMG5.12 株が7.59 Mbp (47)、Alnus nitidaから単離されたQA3株が7.59 Mbp (57)、Discaria trinervisから 単離されたBUC110501株が7.89 Mbp (65)、Coriaria nepalensisから単離されたCN3株が9.96 Mbp (19)、 Casuarina cunninghamianaとから単離されたCcI6株が5.58 Mbp (49)、Elaeagnus umbellataから単離された EUN1f株が9.35 Mbp、北アメリカの森林土壌から単離されたIso899株が5.1 Mbpのゲノムサイズを持つ ことが判明している。

Frankiaの形質転換

共生窒素固定という共通の能力を持つにも関わらず、Frankiaと根粒菌は大きく異なる性質を持つ。し かし根粒菌とは対照的に、Frankiaの共生についての遺伝子レベルでの知見は極めて少ない。その理由 の一つは、Frankiaでは形質転換法が確立しておらず、遺伝子操作が困難だからである。遺伝子の機能 解析には大きく分けて順遺伝学的手法と逆遺伝学的手法の2つがある。順遺伝学的手法は、まず窒素固 定ができないなどといった特定の形質を示す変異体を単離する。変異体に形質転換により野生株のゲ ノムライブラリーを導入して変異表現型が相補された株を得る。そして相補株に導入されたゲノムラ イブラリークローンの塩基配列を解析し、変異部位を特定することでその変異表現型の原因となる遺 伝子を同定する。逆遺伝学的手法は、相同性や発現パターン等から特定の生命現象に関わる遺伝子を 予測し、相同組換えによる形質転換によりその遺伝子を破壊する。この変異株で対象の形質の異常が 確認されれば、その遺伝子がその生命現象に関与することが証明できる。どちらもメジャーな分子遺

伝学的手法として広く用いられているが、Frankiaでは現在どちらも実施不可能である。順遺伝学的 手法の問題点として、Frankiaの菌糸は多細胞性であり、劣性の変異体の単離が困難であることがあげ られる (61)(31)。さらにゲノムライブラリーの導入や、逆遺伝学的解析における遺伝子破壊には形質 転換が必須であるが、その方法は確立さていない (5)(12)(39)(59)(38)。よってFrankiaの分子遺伝学的 解析のためには、形質転換法の確立が必須である。本章ではFrankiaの形質転換法の確立のため、遺伝 子導入法、マーカー遺伝子、導入遺伝子の維持方法ついて検討した。これまでに、エレクトロポレー ション法によりFrankia細胞内へのプラスミド導入に成功したという報告があるが (12)、形質転換体の 単離はできなかった。本研究において私は、Casuarina属やMyrica属の植物と共生するCcI3株の形質転 換法の確立に取り組んだ。CcI3株の全ゲノム配列は決定されており(45)、そのサイズは約5.4 Mbで、 4499のopen reading frame (ORF)を持つ。ゲノムのGC含量が70.1%と非常に高いため、プロモーター 配列やコドン使用頻度の違いから一般的な選択マーカー遺伝子の発現が困難であると予想される。よ って、Frankia自身の高発現遺伝子(infC)のプロモーターをマーカー遺伝子の発現に用いた (32)。タ ーミネーターはCcl3株のホスフォセリンアミノトランスフェラーゼのものを用いた (32)。マーカー遺 伝子にはコドン使用頻度が比較的CcI3株に近いenhanced green fluorescence protein遺伝子(eGFP)やテ トラサイクリン耐性遺伝子、ゲンタマイシン耐性遺伝子、同義コドンの使用頻度をCcI3株に最適化し た人工合成ゲンタマイシン耐性遺伝子 (33) を用いた。

選択マーカー遺伝子の選択

ほとんどのアミノ酸はそれをコードする複数の同義コドンを持つ。しかし生物種によって同義コドンの使用頻度には偏りがある (58)。使用頻度の低い同義コドンに対応するtRNAの発現量は低いことが知られている。よって形質転換に用いるマーカー遺伝子のコドン使用頻度は対象の生物に近いことが望ましい。当研究室で所有する抗生物質耐性遺伝子のうち、ハイグロマイシン、カナマイシン耐性遺伝子はCcI3株のリボソームタンパク質遺伝子に対して比較的高いCAIを示した(Table 1)。しかしCcI3株はハイグロマイシン、カナマイシンに耐性を持つのでこれらを使用することはできなかった。蛍光は観察が容易なので、蛍光マーカー遺伝子の使用は形質転換の成否を短時間で判別できる。eGFPは放線菌で発現した実績のある蛍光マーカー遺伝子で、CcI3株ともコドン使用の類似度が高く、発現が期待された。これらの理由から本実験ではeGFP、テトラサイクリン耐性遺伝子、ゲンタマイシン耐性遺伝子をマーカー遺伝子として使用した。

Frankiaに導入した外来遺伝子は5日で分解されることが報告されている (12)。プラスミドを持つ Frankiaは存在するが (44)、それを用いた形質転換も成功しなかった (12)。よって私は外来遺伝子の維持には染色体への導入が適していると判断した。CcI3株染色体へのマーカー遺伝子の挿入は相同組換 えによって試みた。マーカー遺伝子の挿入部位は遺伝子間領域であり、形質転換によるCcI3株の遺伝 子に対する影響はないと考えられた。

eGFPを用いた形質転換

eGFPは蛍光マーカー遺伝子である (11)。私はCcI3株のtranslation initiation factor 3 (Francci3_3182) 遺 伝子 (*infC*)のプロモーターをeGFP遺伝子に連結した。翻訳に関わる*infC*のプロモーターは活性が高い と考えられ、GFP蛍光の観察を容易にすると期待された。上流の遺伝子の終止コドンから*infC*遺伝子の 開始コドン直前までをプロモーター領域として選択した。しかしゲノムプロジェクトにより予測され た*infC*遺伝子の開始コドンGTGの27 bp下流にも開始コドンとして機能しうるGTGが確認された (Fig. 2)。よって上流の遺伝子の終始コドンの直後から1つ目の*infC*のGTGコドンまでの配列をP_{infC-s}、それ より27 bp長い、2つ目のGTGコドンまでの配列をP_{infC-1}とした(32)。それぞれのプロモーター領域を eGFPに連結し、形質転換用コンストラクトpKKF1およびpKKF2を作製した。形質転換用コンストラク トのマーカー遺伝子は相同組換えにより遺伝子間領域(Francci3_1696 とFrancci3_1697の間)に組込ま れるよう、上流と下流にそれぞれ4 kbの相同組換え用アームを付加した(32)。これらをエレクトロポ レーション法によりCcI3株に導入し36時間後に観察したが、蛍光は見られなかった。RT-PCRにより eGFPの転写産物が検出されたことから今回のエレクトロポレーションの条件で細胞内にコンストラ クトDNAは導入され、マーカー遺伝子は転写されていることが分かった(Fig. 3)。それにもかかわら ずGFP蛍光が検出されなかった理由として、タンパク質の蓄積量が十分ではなかったのではないかと 考えた。

テトラサイクリン耐性遺伝子を用いた形質転換

CcI3株はテトラサイクリンに感受性であり、BAP-T液体培地では5 µg/mLのテトラサイクリンによ り生育は阻害される。Pintesとtet^Rを連結した融合マーカー遺伝子を含むコンストラクトDNA形質転換 用コンストラクトDNA pKKF3と、P_{infC-1}とtet^Rを連結した形質転換用コンストラクトpKKF4をエレクト ロポレーションによりCcI3株に導入した (32)。この操作を行ったCcI3株の細胞をそれぞれKKF3および KKF4と定義した。同時にコンストラクトDNAを用いずにエレクトロポレーションを施したコントロ ール実験も行った(no DNA)。5 μg/mLのテトラサイクリンを含むBAP-T液体培地で24~33日間培養 したところ、KKF3の菌濃度はno DNAの菌濃度と有意な差は示さなかった。一方、KKF4はno DNAや KKF3に比べ有意に高い菌体濃度まで増殖した(Fig. 4A)。これは、pKKF3のプロモーターはpKKF4 のものより27 bp短く(Fig. 2)、本来の転写開始点を含んでいないからだと考えられた。この結果より P_{infC-1}はFrankia細胞内で転写および翻訳活性を示すことがわかった。選択培地中で生育した細胞からゲ ノムDNAを抽出し、これらを鋳型としてPCR法によりマーカー遺伝子の有無を確認した。この結果、 KKF3およびKKF4では期待されるサイズのバンドが検出され、細胞中にマーカー遺伝子が存在するこ とが確認された(Fig. 4B)。tet^Rが相同組換えによりCcI3株の染色体に挿入されているかを確認するた め、相同組換えに用いた染色体領域の42 bp上流にアニールするプライマーと(LAout)、tet^Rにアニー ルするプライマー(Tet-f2)を用いたPCRを行った(Fig. 5A)。相同組換えによりマーカー遺伝子が染 色体に挿入されていた場合、このPCRにより4.2 kbのシグナルが得られる。PCRの結果、KKF3とKKF4 の両者で予測された4.2 kbのシグナルが得られた(Fig. 5B)。これらの形質転換細胞を新たな抗生物質 入りの液体培地で継代培養したところ、いずれも野生株細胞(WT)と比べ有意に濃い濃度で増殖した。 しかし細胞内のマーカー遺伝子の量は1細胞あたり1コピー以下に減少していた(Fig. 6A)。次に、KKF4 から抽出したゲノムDNAを用いてtet^Rをプローブとしてサザンブロット解析を試みた。AscIとPstI-KpnI による消化はpKKF4の外側の染色体部位を切断し、pKKF4が染色体に挿入されている場合それぞれ7.6 kb、12.2 kbのシグナルが得られると期待される(Fig. 7A)。一方PuvIIはマーカー遺伝子の両端を切断 し、pKKF4の染色体への導入の有無にかかわらず2.2 kbのシグナルが得られる。しかしAscIとPstI-KpnI で消化したKKF4ゲノムでは、期待された位置にバンドは得られず、スメアーなシグナルが検出された。 PuvIIで消化したKKF4ゲノムもスメアーなシグナルを示したが、2.2 kbのバンドも検出され、完全長の tet^R遺伝子が存在することが確認された。以上の結果より相同組換えによる染色体へのマーカー遺伝子 の挿入はほとんど起こっておらず、細胞に導入された形質転換用コンストラクトは様々なサイズに分 解されたことがわかった(Fig.7B)。

KKF3およびKKF4は一過的ではあるが抗生物質耐性を示したことから、 tet^R はマーカー遺伝子として

有用である。しかし継代培養で増殖した細胞のごく一部にしかtet^Rは含まれなかったことから、細胞 質に残存したプラスミドDNA由来の抗生物質耐性遺伝子が発現した可能性や(Fig. 7)、spontaneous mutantが出現した可能性が考えられた。また*Frankia*は細胞同士が連結しているので、耐性遺伝子の翻 訳産物が細胞間を伝播し、マーカー遺伝子を持たない細胞も抗生物質耐性を獲得した可能性も考えら れる。

ゲンタマイシン耐性遺伝子を用いた形質転換

CcI3株はゲンタマイシンに感受性であり、BAP-T液体培地では75 µg/mLのゲンタマイシンにより生 育は阻害される。P_{infC-s} とgm^Rとを連結した融合マーカー遺伝子を含むコンストラクトDNA pKKF5と、 P_{infC1} とgm^Rとを連結した融合マーカー遺伝子を含むコンストラクトDNAであるpKKF6をエレクトロ ポレーションによりCcI3株に導入した (32)。この操作を行ったCcI3株の細胞をそれぞれKKF5および KKF6と定義した。75 μg/mLのゲンタマイシンを含むBAP-T液体培地で19日間培養したところ、1回の 実験においてKKF5およびKKF6はno DNAに比べ高い菌濃度で増殖した。しかし以降同様の実験を4回 行ったが、再現性は得られなかった(Fig. 8A)。これはgm^RのCAIがtet^Rより低いために翻訳効率が低 く、十分なゲンタマイシン耐性タンパク質が蓄積しなかったことが原因と考えられた。よってgm^Rは マーカー遺伝子として用いることは難しいと考えられた。選択培地中で増殖した細胞からゲノムDNA を抽出し、これを鋳型としてPCR法によりマーカー遺伝子の有無を確認した。KKF6のゲノム抽出は失 敗したため以後の実験はKKF5でのみ行った。この結果、KKF5の細胞中にマーカー遺伝子が存在する ことが確認された(Fig. 8B)。gm^Rが相同組換えによりCcI3株のゲノムに導入されているかを確認する ため、相同組換えに用いた染色体領域の42 bp上流にアニールするプライマー(LAout)と、gm^Rにアニ ールするプライマー(Gm-f2)を用いたPCRを行った(Fig. 5A)。その結果、期待されたサイズの断片 の増幅がみられた(Fig. 5C)。また、KKF5を新たな抗生物質入りの液体培地で継代培養したところ、 WTと比べ有意に早く増殖した。しかし細胞内のマーカー遺伝子の量は1細胞あたり1コピー以下に減少 していた(Fig. 6B)ことから(Fig. 6B)、やはり相同組換えによる形質転換は困難と思われた。ゲン タマイシンは原核生物のリボソームの30Sサブユニットに結合し、タンパク質の合成を阻害する (69)。 選択培地中に存在する非形質転換細胞の一部が、リボソームのゲンタマイシン結合部位に変異を起こ し、ゲンタマイシンに耐性を持った可能性が考えられる。これらの細胞は形質転換細胞より高い抗生 物質耐性を持ち、選択培地中でより早く増殖したと思われる。ゆえに継代培養時に形質転換体が相対 的に減少したのではないかと考えられた。

コドン使用頻度をCcI3株に最適化したマーカー遺伝子

継代培養中に、自然の突然変異によりマーカー遺伝子を持たずに抗生物質耐性を獲得した細胞

(spontaneous resistant)が出現すると考えられた。spontaneous resistantはマーカー遺伝子をもつ細胞よ り早く増殖し、その結果マーカー遺伝子を持つ形質転換細胞が培養液中で相対的に減少したと考えら れた。マーカー遺伝子の抗生物質耐性をspontaneous resistantの抗生物質耐性より高めれば、継代培養に よる形質転換細胞の減少を回避できるかもしれないと考えた。そこでgm^Rの178コドンのうち、107コ ドンをCcI3株で1番目または2番目に多く用いられている同義コドンに変換した人工合成遺伝子fgm^Rを 作製した(Fig. 9)。fgm^RのCAIは当研究室が所有する抗生物質耐性遺伝子の中で最も高い値0.825 (33) を示した(Table 1)。fgm^RをP_{infC-1}と連結した融合遺伝子を含む形質転換用コンストラクトpKKF9を作 製した。pKKF9とコドン未変換のgm^R含むpKKF6とをエレクトロポレーションによりCcI3株に導入し、 ゲンタマイシンを含む液体培地中で14~42日間培養した。その結果、pKKF9ではpKKF6と比べ、形質 転換成功率および選択培地中での生育ともに有意な向上が見られた(Fig. 10)。このことから、コドン使用頻度を*Frankia*に最適化したマーカー遺伝子を用いることで、*Frankia*により高い抗生物質耐性を付与できることが分かった。この原因は、コドン使用頻度の最適化により*Frankia*細胞内でのマーカー遺伝子の翻訳効率が高まったことにあると考えられた。

しかし、*fgm^R*を用いても、継代培養によるマーカー遺伝子の減少は避けられなかった。また、サザ ンブロット解析では、染色体上には*fgm^R*由来のシグナルはほとんど確認されなかったことから、相同 組換えの効率は低く、染色体にマーカー遺伝子が導入された細胞はまれであったと考えられる。それ にもかかわらずゲンタマイシンに対し耐性を示す細胞が出現したのは*tet^R*と同様の理由が考えられる (Fig. 7)。

高発現遺伝子の予測とそのプロモーターの利用

マーカー遺伝子に連結するプロモーターをより活性の高いものに代えることにより、マーカー遺伝 子の抗生物質耐性を高めようと試みた。転写活性の高いプロモーターを探索するため、free living状態 のFrankia alni ACN14a株のマイクロアレイデータを利用した (1)。マイクロアレイのシグナル値が高い 遺伝子のプロモーター活性は高いと予想した。このマイクロアレイデータにおいて、infCは61番目に 高いシグナル値を示した(Table 2)。よってシグナル値が1番目から60番目までの遺伝子に着目し、そ れらの遺伝子地図を作成した。この遺伝子地図を参考にして転写単位(オペロンまたは単独遺伝子) の先頭に位置する遺伝子を選択した。このような遺伝子の上流にはプロモーターが存在すると期待さ れる。これらの遺伝子に対してノーザンブロット解析を行った結果、FRAAL3771、FRAAL4031、 FRAAL5161の3遺伝子において予測通りの転写単位を構成することが確認できた(41)(Fig. 11)。こ れら3遺伝子のプロモーター領域をtet^Rと連結した新たな形質転換用コンストラクトを作製し、それぞ れpKKF10、pKKF11、pKKF12とした。これらをエレクトロポレーション法によりCcI3株に導入し、テ トラサイクリンを含む液体培地中で34~58日間培養した。その結果、いずれの形質転換体でも増殖が 見られたが、pKKF4と比べ形質転換の成功率および選択培地での菌体濃度に有意な向上は見られなか った(Fig. 12)。それほど転写活性が高くないプロモーターを持つ遺伝子でも、転写産物の分解速度 が遅ければ、蓄積量が増加して高いシグナル値を示す可能性がある。よって高シグナル値を示した遺 伝子が必ずしも高発現プロモーターをもつとは限らない。今回の実験で用いたプロモーターは、この ような理由から高い転写活性を有していなかったのかもしれない。もしくはPintc1の活性は既にマーカ ー遺伝子の発現に十分であり、高発現プロモーターを用いても有意な差が見られなかったのかもしれ ない。

Frankiaのプロトプラスト化

第二章で様々な手法を用いて形質転換を試みたが、安定な形質転換体を得ることはできなかった。その原因の一つとして遺伝子導入の効率が低いことが考えられる。Frankiaはグラム陽性菌なので細胞壁が厚く、細胞穿孔が困難かもしれない。また菌糸が先端生長するため、先端の細胞以外にマーカー遺伝子が導入されてもほとんど増殖しないため、表現型が観察されないことも考えられる。遺伝子導入効率は、細胞壁の除去もしくは弱化を行うことで改善れるかもしれない。一般的に放線菌では、胞子や細胞のプロトプラスト化により菌糸を単細胞化する。Frankiaのプロトプラスト化は報告があるが(61)、CcI3株では成功していない。そこで私は、CcI3株の菌糸の細胞壁を弱化するための培養条件や、他の放線菌で実績のある様々な細胞壁溶解酵素を検討し、細胞のプロトプラスト化を目指した。

グリシンを含むBAP-Tでの培養

*Frankia*の培養時にグリシンを加えると菌糸の細胞壁の強度が低下し、加水分解酵素に対する感受性 が高まるという報告がある (61)。私はCcI3株をBAP-T液体培地と0.1%のグリシンを添加したBAP-T培 地でそれぞれ培養し、菌糸に与える影響を調べた。グリシンを含むBAP-T液体培地においてCcI3株は 増殖速度が遅く、菌糸も短かった(Fig. 13)。一方、グリシンの濃度が0.3%になると生育がほとんど 見られず、十分な菌濃度を得ることは困難だった。以上の結果より、CcI3株においてプロトプラスト を得るために最適なグリシン濃度は0.1%であると結論した。

酵素の検討

LysozymeとLabiaseでは細胞壁の分解が確認されたが、Achromopeptidaseではほとんど観察されなかった(Fig. 14)。しかしいずれの酵素を用いた場合でも明視野でのプロトプラストの観察は困難だった。そこで以降はDAPI染色によりプロトプラストを観察した。次に、培養液のグリシン濃度の、酵素による細胞壁分解への影響を調べた。グリシンを含まないBAP-T液体培地で培養したCcI3株細胞を、LysozymeまたはLabiaseで処理し、DAPI染色により観察したところ、プロトプラスト状の細胞が見られた(Fig. 15)。しかし細胞壁の分解度合いは両酵素とも酵素を用いないコントロールと比べて大きな差はなかった(Fig. 15)。0.1%のグリシンを含むBAP-Tで培養したCcI3株細胞をLysozymeまたはLabiaseで処理した時、最も多くのプロトプラスト状の細胞が観察された(Fig. 16)。0.3%のグリシンを含むBAP-Tで培養したCcI3株細胞を用いた場合、プロトプラストの数は0.1%のグリシンを含むBAP-Tで培養したCcI3株細胞を用いた場合、プロトプラストの数は0.1%のグリシンを含むBAP-Tで培養したCcI3株細胞を用いた場合、プロトプラストの数は0.1%のグリシンを含むBAP-Tで培養したCcI3株細胞を用いた時に最も細胞壁が分解されていた(Fig. 16)。しかしこの培地においてCcI3株の生育速度は著しく低下した。CcI3株の細胞壁を分解する能力は、Labiaseが最も高いと思われる。しかしながらフィルターろ過後のろ液中には球状細胞は観察されなかった。ろ過時の遠心力が強すぎたか、培地の浸透圧が適してなかったのかもしれない。

プロトプラストのリジェネレーション

菌糸を完全に分解することはできなかったので、フィルターろ過により未消化の菌糸を除去した。 ろ液をDAPI染色し、顕微鏡で観察したところ、菌糸は除かれたがプロトプラスト状の細胞はほとんど 観察されなかった。ろ液を固体培地に滴下して培養したが、コロニーは得られなかった。Frankiaのプ ロトプラストからのリジェネレーションにはtop agar法が用いられてきた (61)。しかし私は以前、CcI3 株のtop agar法による培養を試みたが効率よくコロニーを得ることができなかった。そこで酵素処理し た細胞は、フィルターで透過したあとにtop agarを用いずに直接CB培地に塗布した。菌糸の場合は、こ の培養方法でtop agar法と同等かそれ以上のコロニーが出現する。しかしコロニーを得ることはできな かった。ろ液にプロトプラストと思われる球状細胞がほとんど確認されなかったことから、ろ過中に プロトプラストが破壊されたのかもしれない。よってフィルターろ過により未消化の菌糸を除くのは 困難である。他の菌糸の除去法として、コットンを用いたろ過法がある (48)。今後の実験ではこの方 法を用いるのが良いかもしれない。また、菌糸除去後の細胞懸濁液には細胞壁溶解酵素が多く含まれ、 生育を阻害するおそれがある。top agar法を用いることで濾液中の酵素の濃度を薄め、細胞を保護する ことができると期待される。ゆえにプロトプラストのリジェネレーションを行うためにはtop agar法の 確立が必要と思われる。

Frankiaの変異体の単離

CcI3株の相同組換えによる形質転換を試みたが成功には至らなかった。よってFrankiaの窒素固定や 共生に関わる遺伝子を逆遺伝学的手法によって同定することは現状では難しい。そこで私は順遺伝学 的によりこれらの遺伝子を同定することを試みることにした。近年開発された次世代シーケンサーに より、生物のゲノム配列を短時間で決定することが可能となった。まず窒素固定や共生に異常を示す Frankiaの変異体を単離し、変異株の全ゲノム配列を次世代シーケンサーにより決定する。そしてそれ を野生株の配列と比較し、変異を持つ遺伝子を特定する。それらに対応する野生型の遺伝子を変異株 に形質転換し変異表現型を相補する遺伝子を特定することで、変異原因遺伝子の同定が可能である。 しかし現時点でFrankiaの変異体の単離法は確立されていない。機能獲得(gain-of-function)型の変異 体を得たという報告はいくつかあるが(40)、機能欠失(loss-of-function)型の変異体の単離例はない。 なぜならFrankiaは多細胞性の菌糸として生長するので、変異処理後の菌糸断片には変異細胞と野生型 の細胞が混在しており、変異表現型が隠れてしまうからである。一般的な放線菌では、プロトプラス トや胞子を用いて菌糸を単細胞化することでこの問題を解決する。いくつかのFrankia株で細胞のプロ トプラスト化や胞子の発芽が報告されている(10,61)。しかしCcI3株ではどちらも成功していない。

この章では、胞子やプロトプラストを用いることなく、単一の変異遺伝子型の細胞からなる菌糸を 得る方法を開発し、loss-of-function型の変異体を得ることを試みた。

Loss-of-function型変異体の単離

Frankiaは多細胞性の菌糸として生育する。よって劣性を示すloss-of-function型の変異細胞の表現型は、隣接する野生型細胞の優性の表現型に被い覆されてしまい、観察できない。それ故、loss-of-function型の変異体を単離するには、単一の変異遺伝子型の細胞のみで構成された菌糸断片を得なくてはならない。このような菌糸断片を得るため、私はFrankiaの菌糸が先端生長する特性に着目した。超音波により断片化された菌糸を変異処理し、一定時間液体培地で培養した。変異した菌糸先端の細胞は細胞分裂を起こし複製される。この操作により菌糸先端に同一の遺伝子型を持つ細胞が連なった状態を作り出すことができる。超音波処理によりこれらの菌糸を再び断片化した。各断片化細胞をポアサイズ5 µmのフィルターでろ過し、短く断片化された細胞を回収した。このろ過には、同一変異遺伝子型の細胞のみからなる菌糸断片が濃縮されていると期待される。

ろ過された菌糸断片の長さは大半が8から12 μmだった。CcI3株1細胞の長さはおよそ2.4 μmなので、 ろ過後の菌糸断片に含まれる細胞数は3~5細胞と見積もられた。

この操作により単一遺伝子型の菌糸断片が得られたかどうかを確認するため、ろ過菌液をCB固体培地 で培養しコロニーを形成させた。13のコロニーからゲノムDNAを抽出し、次世代シーケンサーで全塩 基配列を解析した。13のコロニーのうち、9つは特定の変異表現型が見られなかったものを選んだ。残 りの4つは変異表現型を示すものを選んだ(6A1、shiro1、shiro2、shiro3、後述)。いずれのコロニー においてもゲノムの約200回カバレッジ相当のシーケンスデータを得た。その結果、全てのコロニーに おいて、ほぼ全てのリードが変異塩基を示す塩基置換が見つかった(Table 3)。ごく一部のリードは WT型の塩基を示したが(Table 3)、これらは塩基配列の解析に伴うランダムエラーによるものと推測 された。ゲノムあたりの変異の数は株により9~20だった。それぞれの株で2~15の独自の変異塩基が 検出された(Fig. 17)。一方、予期していなかったことだが、複数の株において同一の変異が検出さ れることがあった(Fig. 17)。次世代シーケンサーの結果を確認するため、特異的なプライマー(Table 9)を用いて変異塩基の周辺領域をPCRにより増幅し、増幅断片を鋳型としてサンガー法によるシーケ ンスを行った (55)。サンガーシーケンスにより確認した10コロニー中の38の塩基において、次世代 シーケンサーの結果と全く同じ変異が検出された。重要なことに、サンガーシーケンスの波形データ は変異塩基以外のシグナルを示さなかったことから、これらのコロニーは単一遺伝子型の細胞で構成 されていると考えられた。

Loss-of-function型変異体の単離の1つの試みとして、私は窒素固定変異体のスクリーニングを行った。2,400コロニーをCB最少液体培地とCBminN-固体培地で培養した。3回のスクリーニングの後、私は6A1というCBminN-培地においてWTより増殖の遅い変異株を得た。WTと6A1を、アンモニアを含む 培地(CB最少液体培地)とアンモニアを含まない培地(CBminN-液体培地)で培養し、生育速度を比較する実験を3回行った。そのうち1回は、CB最少液体培地では両株とも同程度に増殖し、CBminN-液体培地では6A1の増殖速度はWTより低かった。しかし残りの2回において、6A1の増殖速度はCB最少液体培地ではWTの半分程度であり、CBminN-液体培地中ではWTとほぼ同等だった。一方、CBminN-液体培地における窒素固定活性(ARA)は、6A1株が有意にWTより低い値を示した。

Ccl3株はCB培地において茶色の色素を合成する。2,400のコロニーのうち色素を合成しないコロニー が3つ見つかった(*shiro1、shiro2、shiro3*)。*shiro1とshiro2*はEMSで処理した細胞から、*shiro3*はプロ フラビンで処理した細胞から得られた。これらの形質は継代培養を行っても安定に受け継がれた。こ れら結果より、私が開発した方法は、単一遺伝子型の細胞からなる菌糸断片を得て、Loss-of-function 型変異体を単離するために有用な方法であることがわかった。

選択圧のない培地で培養し、特定の表現型を示さない9つのコロニーを選択したにもかかわらず、その全てのゲノムに変異が確認された (Fig. 17)。このように高頻度で変異体コロニーが得られたことから、変異原処理によりほとんどの細胞に突然変異が引き起こされたと考えられる。原理的に、私の実験方法はヘテロな遺伝子型のコロニーを完全に除外できるわけではない。しかし解析した9個のコロニーにおいて、ヘテロな遺伝子型のコロニーは見つからず、すべて単一遺伝子型の細胞で構成されていた(Table 3)。変異処理したもともとの菌糸の長さに対する、先端で新たに伸長した同一遺伝子型の菌糸の長さの比が高いと、同一遺伝子型のコロニーが得られやすい。今回の実験で得られたコロニーには複数の遺伝子型を持つものは確認されなかったので、その比の値は十分実用的なレベルで単一遺伝子型の菌糸が得られる程度の高さだったと思われる。加えて、選択圧を与えなくともこのような単一遺伝子型のコロニーが得られたことから、Frankiaの菌糸はStreptmycesと違い多核細胞でないと考えられた(24)。

2,400の変異処理コロニーから、私は4つの変異体を単離した。そのうち3つ (shiro1、shiro2、shiro3) は細胞の色が白色になった色素異常変異体だった。液体培地で3回以上継代培養を行ってもこの形質は 維持された。色素異常変異株の結果は、私が開発した断片化ろ過法が単一遺伝子型の菌糸を濃縮でき ることを示す強力な証拠である。もう1つの変異体6A1株は、アンモニア欠乏培地において増殖速度と ARAがWTより低下した株である。しかしどちらの形質も完全に失われたわけではなかった (Fig. 17)。 6A1株に起こった窒素固定に関する変異は致命的でなく、変異した遺伝子でも本質的な機能は保たれ ているのだろう。

shiro1、shiro2、shiro3株の色素合成に関する既知遺伝子および、6A1株の窒素固定に関する既知遺伝子には変異は確認されなかった (Table 3)。shiro1とshiro2は、Francci3_2727とFrancci3_2745遺伝子に 共通した変異を持つことから、これらの遺伝子が色素合成に関わる可能性がある。Frankiaにはメラニン色素を合成する株が確認されており (70)、CcI3株の色素もメラニン由来である可能性がある。 *Francci3_2745*はlysylphosphatidylglycerol生合成遺伝子としてアノテーションされている。このタンパク質はメラニン合成に関わっているかもしれない。一方6A1株においては、SOLiDで検出されなかった変異が窒素固定能の低下に関与しているのかもしれない。もしくは変異は全て検出されたが、検出された6A1株の変異した遺伝子が間接的に窒素固定に関わるものだった可能性もある。これらの仮説の検証のため、今後は更に多くの窒素固定変異体を本方法でスクリーニングする必要がある。

多くの場合、loss-of-function型変異体、例えば窒素固定変異体や共生変異体は生育に不利な表現型を示すため、単離が困難である。しかし私が開発した方法を用いればこのようなloss-of-function型変異体や表現型を示さないサイレント変異体を単離できるだろう。この結果、*Frankia*のようにモデル化されていない生物の分子遺伝学的解析に大きな進展をもたらすことが期待される。

Reference

- Alloisio, N., C. Queiroux, P. Fournier, P. Pujic, P. Normand, D. Vallenet, C. Medigue, M. Yamaura, K. Kakoi, and K. Kucho. 2010. The *Frankia alni* symbiotic transcriptome. Mol. Plant Microbe. Interact. 23:593-607.
- Amin, A.R., M.G. Attur, G.D. Thakker, P.D. Patel, P.R. Vyas, R.N. Patel, I.R. Patel, and S.B. Abramson. 1996. A novel mechanism of action of tetracyclines: effects on nitric oxide synthases. Proc. Natl. Acad. Sci. U. S. A. 93:14014-14019.
- 3. Baker, D., W. Newcomb, and J.G. Torrey. 1980. Characterization of an ineffective actinorhizal microsymbiont, *Frankia* sp. EuI1 (Actinomycetales). Can. J. Microbiol. 26:1072-1089.
- 4. Baltz, R.H. 1978. Genetic recombination in *Streptomyces fradiae* by protoplast fusion and cell regeneration. J. Gen. Microbiol. 107:93-102.
- 5. Benson, D.R., and W.B. Silvester. 1993. Biology of *Frankia* strains, actinomycete symbionts of actinorhizal plants. Microbiol. Rev. 57:293-319.
- Berg, R.H. 1999. Cytoplasmic bridge formation in the nodule apex of actinorhizal root nodules. Can. J. Bot. 77:1351-1357.
- Berry, A.M., L. McIntyre, and M.E. McCully. 1986. Fine structure of root hair infection leading to nodulation in the *Frankia-Alnus* symbiosis. Can. J. Bot. 64:292-305.
- Berry, A.M., O.T. Harriott, R.A. Moreau, S.F. Osman, D.R. Benson, and A.D. Jones. 1993. Hopanoid lipids compose the *Frankia* vesicle envelope, presumptive barrier of oxygen diffusion to nitrogenase. Proc. Natl. Acad. Sci. U. S. A. 90:6091-6094.
- 9. Brenner, S., L. Barnett, and F.H.C. Crick. 1961. The theory of mutagenesis. J. Mol. Biol. 3:121-124.
- 10. Burleigh, S.H., and J.O. Dawson. 1991. *In vitro* sporulation of *Frankia* strain HFPCcI3 from *Casuarina cunninghamiana*. Can. J. Microbiol. 37:897-901.
- Cormack, B.P., G. Bertram, M. Egerton, N.A. Gow, S. Falkow, and A.J. Brown. 1997. Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in *Candida albicans*. Microbiology 143:303-311.
- Cournoyer, B., and P. Normand. 1992. Electropermeabilization of *Frankia* intact cells to plasmid DNA. Acta Ecologica 13:369-378.

- 13. Curatti, L., J.A. Hernandez, R.Y. Igarashi, B. Soboh, D. Zhao, and L.M. Rubio. 2007. *In vitro* synthesis of the iron-molybdenum cofactor of nitrogenase from iron, sulfur, molybdenum, and homocitrate using purified proteins. Proc. Natl. Acad. Sci. U. S. A. 104:17626-17631.
- 14. Deguchi, T. 2010. Frankia で機能するレポーター遺伝子の開発. 鹿児島大学, 卒業論文.
- 15. Fay, P. 1992. Oxygen relations of nitrogen fixation in cyanobacteria. Microbiol. Rev. 56:340-373.
- 16. Gentili, F., L.G. Wall, and K. Huss-Danell. 2006. Effects of phosphorus and nitrogen on nodulation are seen already at the stage of early cortical cell divisions in *Alnus incana*. Ann. Bot. 98:309-315.
- Georgiadis, M.M., H. Komiya, P. Chakrabarti, D. Woo, J.J. Kornuc, and D.C. Rees. 1992. Crystallographic structure of the nitrogenase iron protein from *Azotobacter vinelandii*. Science 257:1653-1659.
- Ghelue, M.V., E. Løvaas, E. Ringø, and B. Solheim. 1997. Early interactions between *Alnus glutinosa* and *Frankia* strain ArI3. Production and specificity of root hair deformation factor (s). Physiol. Plant. 99:579-587.
- Ghodhbane-Gtari, F., N. Beauchemin, D. Bruce, *et al.* 2013. Draft genome sequence of *Frankia* sp. strain CN3, an atypical, noninfective (Nod-) ineffective (Fix-) isolate from *Coriaria nepalensis*. Genome Announc. 1:e0008513.
- 20. Harriott, O.T., L. Khairallah, and D.R. Benson. 1991. Isolation and structure of the lipid envelopes from the nitrogen-fixing vesicles of *Frankia* sp. strain CpI1. J. Bacteriol. 173:2061-2067.
- Hiraga, S. 1976. Novel F prime factors able to replicate in Escherichia coli Hfr strains. Proc. Natl. Acad. Sci. U. S. A. 73:198-202.
- 22. Hirsch, A.M. 1992. Developmental biology of legume nodulation. New Phytol. 122:211-237.
- 23. Hocher, V., N. Alloisio, F. Auguy, *et al.* 2011. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. Plant Physiol. 156:700-711.
- 24. Hopwood, D.A. 2006. Soil to genomics: the *Streptomyces* chromosome. Annu. Rev. Genet. 40:1-23.
- 25. Iwashita, M. 2009. コドン使用頻度を最適化したマーカー遺伝子を用いた共生窒素固定細菌 Frankiaの形質転換. 鹿児島大学, 卒業論文.
- Kakoi, K., M. Yamaura, T. Kamiharai, D. Tamari, M. Abe, T. Uchiumi, and K.I. Kucho. 2013. Isolation of Mutants of the Nitrogen-Fixing Actinomycete *Frankia*. Microbes Environ.
- Kamiharai, A. 2012. インテグラーゼと接合を用いたフランキアの形質転換. 鹿児島大学, 卒業 論文.
- 28. Kasap, M., and J.S. Chen. 2005. *Clostridium pasteurianum* W5 synthesizes two NifH-related polypeptides under nitrogen-fixing conditions. Microbiology 151:2353-2362.
- 29. Kavanagh, E.P., and S. Hill. 1993. Oxygen inhibition of nitrogenase activity in *Klebsiella pneumoniae*.J. Gen. Microbiol. 139 Pt 6:1307-1314.
- 30. Kim, B.H., and G.M. Gadd. 2008. Bacterial physiology and metabolism. Cambridge University press. Cambridge.
- 31. Krumholz, G.D., M.S. Chval, M.J. McBride, and L.S. Tisa. 2003. Germination and physiological properties of *Frankia* spores. Plant Soil 254:57-67.

- 32. Kucho, K., K. Kakoi, M. Yamaura, S. Higashi, T. Uchiumi, and M. Abe. 2009. Transient transformation of *Frankia* by fusion marker genes in liquid culture. Microbes Environ. 24:231-240.
- Kucho, K., K. Kakoi, M. Yamaura, M. Iwashita, M. Abe, and T. Uchiumi. 2013. Codon-optimized antibiotic resistance gene improves efficiency of transient transformation in *Frankia*. J. Biosci. 38:713-717.
- Kumar, K., R.A. Mella-Herrera, and J.W. Golden. 2010. Cyanobacterial heterocysts. Cold Spring Harb. Perspect. Biol. 2:a000315.
- 35. Liu, Q., and A.M. Berry. 1991. Localization and characterization of pectic polysaccharides in roots and root nodules of *Ceanothus* spp. during intercellular infection by *Frankia*. Protoplasma 163:93-101.
- 36. Miller, I.M., and D.D. Baker. 1986. Nodulation of actinorhizal plants by *Frankia* strains capable of both root hair infection and intercellular penetration. Protoplasma 131:82-91.
- 37. Monz, C.A., and C.R. Schwintzer. 1989. The physiology of spore-negative and spore-positive nodules of *Myrica* gale. Plant Soil 118:75-87.
- 38. Mullin, B.C., and C.S. An. 1990. The molecular genetics of *Frankia*, p. 195-214. *In* Schwintzer CR, Tjepkema JD (ed.), The Biology of *Frankia* and Actinorhizal Plants. Academic Press, San Diego.
- Myers, A.K., and L.S. Tisa. 2003. Effect of electroporation conditions on cell viability of *Frankia* EuI1c. Plant Soil 254:83-88.
- 40. Myers, A.K., and L.S. Tisa. 2004. Isolation of antibiotic-resistant and antimetabolite-resistant mutants of *Frankia* strains Eul1c and Cc1.17. Can. J. Microbiol. 50:261-267.
- Nakanishi, Y. 2009. 共生窒素固定細菌*Frankia*の高転写活性プロモーターの探索. 鹿児島大学, 卒業論文.
- 42. Nalin, R., S.R. Putra, A.M. Domenach, M. Rohmer, F. Gourbiere, and A.M. Berry. 2000. High hopanoid/total lipids ratio in *Frankia* mycelia is not related to the nitrogen status. Microbiology 146:3013-3019.
- Nicolaisen, K., A. Hahn, and E. Schleiff. 2009. The cell wall in heterocyst formation by *Anabaena* sp. PCC7120. J. Basic Microbiol. 49:5-24.
- 44. Normand, P., J.A. Downie, A.W. Johnston, T. Kieser, and M. Lalonde. 1985. Cloning of a multicopy plasmid from the actinorhizad nitrogen-fixing bacterium Frankia sp. and determination of its restriction map. Gene 34:367-370.
- 45. Normand, P., P. Lapierre, L.S. Tisa, *et al.* 2007. Genome characteristics of facultatively symbiotic *Frankia* sp. strains reflect host range and host plant biogeography. Genome Res. 17:7-15.
- Normand, P., C. Queiroux, L.S. Tisa, D.R. Benson, Z. Rouy, S. Cruveiller, and C. Médigue. 2007. Exploring the genomes of *Frankia*. Physiol. Plant. 130:331-343.
- Nouioui, I., N. Beauchemin, M.N. Cantor, *et al.* 2013. Draft Genome Sequence of *Frankia* sp. Strain BMG5.12, a Nitrogen-Fixing Actinobacterium Isolated from Tunisian Soils. Genome Announc. 1.
- 48. Okanishi, M., K. Suzuki, and H. Umezawa. 1974. Formation and reversion of *Streptomycete* protoplasts: cultural condition and morphological study. J. Gen. Microbiol. 80:389-400.

- 49. Oshone, R., S.R. Mansour, and L.S. Tisa. 2013. Effect of salt stress on the physiology of *Frankia* sp strain CcI6. J Biosci 38:699-702.
- Ott, T., J.T. van Dongen, C. Gunther, L. Krusell, G. Desbrosses, H. Vigeolas, V. Bock, T. Czechowski,
 P. Geigenberger, and M.K. Udvardi. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15:531-535.
- 51. Parsons, R., W.B. Silvester, S. Harris, W.T. Gruijters, and S. Bullivant. 1987. *Frankia* vesicles provide inducible and absolute oxygen protection for nitrogenase. Plant Physiol. 83:728-731.
- 52. Phornphisutthimas, S., N. Sudtachat, C. Bunyoo, P. Chotewutmontri, B. Panijpan, and A. Thamchaipenet. 2010. Development of an intergeneric conjugal transfer system for rimocidin-producing Streptomyces rimosus. Lett. Appl. Microbiol. 50:530-536.
- 53. Ratan, A., W. Miller, J. Guillory, J. Stinson, S. Seshagiri, and S.C. Schuster. 2013. Comparison of sequencing platforms for single nucleotide variant calls in a human sample. PLoS One 8:e55089.
- 54. Sabra, W., A.P. Zeng, H. Lunsdorf, and W.D. Deckwer. 2000. Effect of oxygen on formation and structure of *Azotobacter vinelandii* alginate and its role in protecting nitrogenase. Appl. Environ. Microbiol. 66:4037-4044.
- 55. Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. U. S. A. 74:5463-5467.
- Seefeldt, L.C., B.M. Hoffman, and D.R. Dean. 2009. Mechanism of Mo-dependent nitrogenase. Annu. Rev. Biochem. 78:701-722.
- Sen, A., N. Beauchemin, D. Bruce, *et al.* 2013. Draft genome sequence of *Frankia* sp. strain QA3, a nitrogen-fixing actinobacterium isolated from the root nodule of *Alnus nitida*. Genome Announc. 1:e0010313.
- 58. Sharp, P.M., and W.H. Li. 1987. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15:1281-1295.
- 59. Simonet, P., P. Normand, A.M. Hirsch, and A.D.L. Akkermans. 1990. The genetics of the *Frankia*-actinorhizal symbiosis, p. 77-109. *In* Gresshoff PM (ed.), Molecular Biology of Symbiotic Nitrogen Fixation. CRC Press, Boca Raton.
- Simonet, P., M. Bosco, C. Chapelon, A. Moiroud, and P. Normand. 1994. Molecular characterization of *Frankia* microsymbionts from spore-positive and spore-negative nodules in a natural alder stand. Appl. Environ. Microbiol. 60:1335-1341.
- 61. Tisa, L.S., and J.C. Ensign. 1987. Formation and regeneration of protoplasts of the actinorhizal nitrogen-fixing actinomycete *Frankia*. Appl. Environ. Microbiol. 53:53-56.
- 62. Valverde, C., and L.G. Wall. 1999. Regulation of nodulation in *Discaria trinervis* (Rhamnaceae)-*Frankia* symbiosis. Can. J. Bot. 77:1302-1310.
- 63. Vandenbosch, K.A., and J.G. Torrey. 1984. Consequences of sporangial development for nodule function in root nodules of *comptonia peregrina* and *Myrica gale*. Plant Physiol. 76:556-560.
- 64. Wall, L.G., and K. Huss-Danell. 1997. Regulation of nodulation in *Alnus incana-Frankia* symbiosis. Physiol. Plant. 99:594-600.

- 65. Wall, L.G., N. Beauchemin, M.N. Cantor, *et al.* 2013. Draft Genome Sequence of *Frankia* sp. Strain BCU110501, a Nitrogen-Fixing Actinobacterium Isolated from Nodules of *Discaria trinevis*. Genome Announc. 1.
- 66. Weinman, J.J., F.F. Fellows, P.M. Gresshoff, J. Shine, and K.F. Scott. 1984. Structural analysis of the genes encoding the molybdenum-iron protein of nitrogenase in the *Parasponia rhizobium* strain ANU289. Nucleic Acids Res. 12:8329-8344.
- 67. Wong, P.P., and R.H. Burris. 1972. Nature of oxygen inhibition of nitrogenase from *Azotobacter vinelandii*. Proc. Natl. Acad. Sci. U. S. A. 69:672-675.
- 68. Yamaura, M. 2011. Molecular genetics of *Frankia*-actinorhizal plants symbiosis. 鹿児島大学, 博士 論文.
- Yoshizawa, S., D. Fourmy, and J.D. Puglisi. 1998. Structural origins of gentamicin antibiotic action. EMBO. J. 17:6437-6448.
- Yuan, W., S.H. Burleigh, and J.O. Dawson. 2007. Melanin biosynthesis by *Frankia* strain CeI5. Physiol. Plant. 131:180-190.

Table 1 マーカー遺伝子のCA	I	
マーカー遺伝子	耐性を付与する抗生物質	CAI ^a
eGFP		0.855
fgm^R	ゲンタマイシン	0.825
tet^R	テトラサイクリン	0.425
hyg^{R}	ハイグロマイシン	0.356
km^R	カナマイシン	0.348
gm^R	ゲンタマイシン	0.325
sp^{R}	ストレプトマイシン	0.269
cm^{R}	クロラムフェニコール	0.253
amp^{R}	アンピシリン	0.220

^aCodon adaptation index.

頁位	遺伝子名	コードするタンパク質	シグナル強度
1	FRAAL6824	Hypothetical protein	64,344
2	FRAAL3766	Hypothetical protein	63,170
3	FRAAL3775	Putative SAM-dependent methyltransferase	62,587
4	FRAAL4519	Conserved hypothetical protein	60,967
5	FRAAL2938	Putative protein kinase	60,024
6	FRAAL4031	Molecular chaperone Hsp18	59,467
7	FRAAL4623	Hypothetical protein	59,385
8	FRAAL0819	Hypothetical protein	58,723
9	FRAAL0818	Hypothetical protein	57,193
10	FRAAL4030	Hypothetical protein	56,807
11	FRAAL0817	Putative ATPase	53,696
12	FRAAL2699	Hypothetical protein	50,294
13	FRAAL0816	Hypothetical protein	45,358
14	FRAAL0451	Hypothetical protein	44,025
15	FRAAL0815	Hypothetical protein	43,890
16	FRAAL5431	Hypothetical protein	43,695
17	FRAAL3764	Putative sugar transport protein	41,521
18	FRAAL5025	Conserved hypothetical protein	41,473
19	FRAAL6331	Putative Type II restriction enzyme	39,808
20	FRAAL3771	Conserved hypothetical protein	37,687
21	FRAAL2056	GDP-D-mannose dehydratase	37,575
22	FRAAL0514	Hypothetical protein	37,444
23	FRAAL6224	Conserved hypothetical protein	37,314
24	FRAAL0131	Conserved hypothetical protein	34,279
25	FRAAL1720	Hypothetical protein: putative signal peptide	31.528
26	FRAAL3773	Methionine sulfoxide reductase	31.172
27	FRAAL1070	Hypothetical protein	30.430
28	FRAAL5161	Glutamine synthetase	29.548
29	FRAAL4865	Hypothetical protein	28.763
30	FRAAL5441	Hypothetical protein	28.654
31	FRAAL 2023	Hypothetical protein	27.821
32	FRAAL 5353	Putative ATP-dependent DNA helicase II	26.825
33	FRAAL0689	Ptative DNA Modification methylase	26,534
34	FRAAL1304	Putative Protein-sultamate methylesterase	25,542
35	FRAAL 1781	30S ribosomal protein S1	25,312
36	FRAAL 1024	Hypothetical protein	25,510
37	FR A A I 6525	Putative CarD-like transcriptional regulator	24,988
38	FR A A I 3763	Putative sugar transport protein	24,900
30	FRAAL 5938	Hypothetical protein	24,001
<i>4</i> 0	FRAAL 0515	Hypothetical protein	24,790
40 //1	FRAAL0013	Hypothetical protein	24,700
41	FP A AI 1101	Preprotein translocase membrane component	22,882
42	ED A AL 6212	Transocription alongation factor gra	22,808
43	FRAAL0213	Humothatical protain	22,495
-1-1	TRAALJOJ/	· · ·	21,073
61	FRAAL5216	Protein chain initiation factor 3, IF3, InfC	17.169

Table 3 次世代シーケンサーにより検出された変異

Strain	Position (nt) ^a	Mutant base	WT base ^b	Coverage ^c 1	No. WT base ^d	Ratio of WT base ^e	ID^{f}	Annotation
6A1	200831	Т	С	1225	52	0.042	IGR/Francci3 0169-Francci3 0170	
6A1	1011977	т	Ā	11	0	0.000	IGR/Francei3 0868-Francei3 0869	
611	1172492	1	G	170	4	0.000	Eranaai2 0080	aarbamayi nhaanhata gunthaga Lahain ATD hinding
GAI	11/2465	A	0	179	4	0.022	F 2 1017	carbamoyi-phosphate synthase L chain, ATF-binding
0A1	1212043	A	G	397	10	0.040	Franceis_1017	hypothetical protein
6A1	1986198	T	C	891	46	0.052	Francei3_1652	NADPH-dependent FMN reductase
6A1	3340080	Т	С	41	1	0.024	Francci3_2835	protein tyrosine/serine phosphatase
6A1	4262098	A	G	816	23	0.028	IGR Francci3_3562-Francci3_3563	
6A1	4476362	Α	G	91	0	0.000	Francci3_3740	diguanylate cyclase/phosphodiesterase
6A1	4508907	Α	G	420	24	0.057	Francci3_3760	signal transduction histidine kinase
colony1	3444812	Т	С	159	4	0.025	IGR Francci3_2923-Francci3_2924	
colonv1	3610715	Т	С	287	5	0.017	Francci3 3042	acvl-CoA dehvdrogenase-like
colonv1	3809698	С	т	4	0	0.000	Francci3 3216	hypothetical protein
colony1	3016026	т	Ċ	20	2	0.100	Erançoi3 3305	Type IV secretory pathway VirD4 components like
aalonyi	4294199	т	c	20	-	0.100	ICE/Francoi2 2662 Francoi2 2662	Type IV secretory pathway VID+ components like
colony1	4540400	1	c	207	0	0.022	10K 11ance15_5002-11ance15_5005	(1 MIC 11
colony1	4349489	A	G	117	0	0.068	Franceis_3/96	pepudase M16-like
colonyl	4630236	T	C	40	1	0.025	France13_3866	NUDIX hydrolase
colonyl	4649421	Т	С	310	10	0.032	IGR/Francei3_3885-Francei3_3886	
colony1	4814994	Т	С	683	9	0.013	Francci3_4027	LuxR family transcriptional regulator
colony2	113563	Α	С	9	1	0.111	Francci3_0092	hypothetical protein
colony2	214881	Α	G	230	0	0.000	Francci3_0182	glyoxalase/bleomycin resistance protein/dioxygenase
colony2	245012	Α	G	608	8	0.013	IGR Francci3_0205-Francci3_0207	
colony2	755715	Т	С	96	2	0.021	Francci3_0660	geranylgeranyl reductase
colonv2	909997	т	č	31	0	0.000	Francci3 0781	type II secretion system protein
colony?	1116510	т	č	401	5	0.012	Francei3 0947	FHA domain-containing protein
colory2	1251205	Ċ	G	401	5	0.012	Francei3 1052	hypothetical protein
colony2	1231203	C .	G	0	0	0.000	Franceis_1032	nypometical protein
colony2	17/6439	A	G	69	1	0.014	Franceis_1484	cysteine dioxygenase type I
colony2	1991103	С	Т	6	1	0.16/	Francei3_1657	glycerol kinase
colony2	2377470	G	Т	4	0	0.000	Francci3_2022	transcriptional regulator
colony2	2440216	A	G	67	1	0.015	Francci3_2075	aminotransferase
colony2	2801764	Т	С	151	2	0.013	Francci3_2413	major facilitator transporter
colony2	2910081	Α	G	651	11	0.017	IGR Francci3_2466-Francci3_2467	
colony2	4075193	Т	С	244	8	0.033	Francci3_3427	hypothetical protein
colonv2	4217197	т	С	483	6	0.012	IGR/Francci3 3528-Francci3 3530	
colony2	4318977	т	Ċ	286	2	0.007	Francci3 3617	diguanylate cyclase/phosphodiesterase
colony2	4902347	A	Ğ	254	8	0.031	Erançoi3 4093	NUDIX bydrolase
colony2	4902547	т	C	274	4	0.031	France 5_4095	hypothatical protein
colony2	4921010	ſ	с т	3/4	4	0.011	F 2 4170	
colony2	4983255	C	1	4	1	0.250	France13_4179	nypotnetical protein
colony2	5290936	G	С	4	1	0.250	Francei3_4425	serine/threonine protein kinase
colony3	755715	Т	С	161	6	0.037	Francei3_0660	geranylgeranyl reductase
colony3	1116519	Т	С	769	10	0.013	Francci3_0947	FHA domain-containing protein
colony3	1776439	Α	G	128	2	0.016	Francci3_1484	cysteine dioxygenase type I
colony3	1993126	Α	G	131	0	0.000	Francci3_1658	hypothetical protein
colony3	2195005	G	Т	78	3	0.038	Francei3_1861	2-dehydropantoate 2-reductase
colony3	2318177	Т	С	54	3	0.056	Francci3 1976	amino acid adenylation
colony3	2553579	т	C	1549	37	0.024	Francei3 2179	hypothetical protein
colony3	2801764	Ť	c	179	5	0.021	Francei3 2413	major facilitator transporter
colony3	2001704	т	c	1051	22	0.020	ICB/Eroposi2 2472 Eroposi2 2474	hujoi tuemutoi uunsporter
colony5	2918202	I C	c	1051		0.051	IOR Francei5_24/3-Francei5_24/4	
colony3	3425853	C	G	4	1	0.250	Franceis_2909	peptidase S9, prolyl oligopeptidase active site region
colony3	3999160	A	G	69	2	0.029	France13_3370	cobalamin B12-binding
colony3	4318977	Т	С	539	13	0.024	Francci3_3617	diguanylate cyclase/phosphodiesterase
colony3	4425344	Т	С	76	2	0.026	Francci3_3688	hypothetical protein
colony3	4631958	Т	С	97	3	0.031	Francci3_3869	hypothetical protein
colony3	5322012	А	G	134	2	0.015	Francci3_4451	acetyl-CoA acetyltransferase
colony4	140311	Т	С	102	1	0.010	Francci3_0114	phage integrase
colonv4	424544	G	С	5	1	0.200	Francci3 0362	hypothetical protein
colonv4	755715	т	č	86	6	0.070	Francci3 0660	geranvlgeranvl reductase
colony4	887550	т	Č	7	1	0.1/3	Francei3 0762	nutative integral membrane protein
colony4	1116510	т	c	570	11	0.145	Francei3 0947	FHA domain_containing protein
colony4	1177025	1	c	570	21	0.019	France 5_094/	THA domain-containing protein
colony4	1177023	A	G	575	21	0.037	Franceis_0991	acyi transferase region
colony4	1446690	T	C	447	19	0.043	France13_1211	rod snape-determining protein MreB
colony4	1752341	С	G	4	1	0.250	Francei3_1460	peptidase C60, sortase A and B
colony4	1776439	Α	G	62	4	0.065	Francci3_1484	cysteine dioxygenase type I
colony4	1790485	Т	С	182	4	0.022	IGR Francci3_1495-Francci3_1496	
colony4	2078892	Α	G	1025	21	0.020	Francci3_1745	hypothetical protein
colony4	2206561	Т	С	230	7	0.030	Francci3_1871	hypothetical protein
colonv4	2247733	С	Т	23	2	0.087	Francci3 1913	OmpA/MotB
colonv4	2801764	т	c	127		0.039	Francci3 2413	major facilitator transporter
colony4	3148274	Δ	G	130	1	0.007	Francei3 2666	MMPL
colory4	21402/4	G	c	159	1	0.007	Francei3 2040	protain of unknown function DUE1524 Plac
colony4	34/308/			242	1	0.200	France 2 2509	protein of unknown function DUF1324 Klop
colony4	41931/6	A	G	242	7	0.029	Franceis_3508	transcriptional regulator inrok
colony4	4318977	Т	С	358	10	0.028	Francei3_3617	diguanylate cyclase/phosphodiesterase
colony4	4634847	С	А	4	1	0.250	Francci3_3872	hypothetical protein

Strain	Position (nt) ^a	Mutant base	WT base	^o Coverage ^c	No. WT base ^d	Ratio of WT base ^e	ID^{f}	Annotation
colony5	54308	А	G	103	10	0.097	Francci3_0044	serine/threonine protein kinase
colony5	141500	А	G	1675	67	0.040	Francci3_0114	phage integrase
colony5	498466	А	G	812	6	0.007	IGR Francci3_0419-Francci3_R0012	
colony5	629808	Т	С	193	6	0.031	Francci3_0543	NADH-quinone oxidoreductase, F subunit
colony5	1450426	Т	С	15	2	0.133	Francci3_1214	peptidoglycan glycosyltransferase
colony5	1515535	Т	С	31	1	0.032	Francei3_1269	CBS
colony5	1943172	I	c	123	3	0.024	Franceis_1619	extracentiar ligand-binding receptor
colony5	1960376	r C	т	1090	43	0.059	Francei3 1633	excinuclease ABC subunit A
colony5	2106877	A	G	147	9	0.061	IGB Francei3 1770-Francei3 1771	exemuclease ABC submit e
colony5	2195005	G	T	28	4	0.143	Francci3 1861	2-dehydropantoate 2-reductase
colony5	2316337	А	G	985	46	0.047	IGR Francci3_1975-Francci3_1976	
colony5	2458991	А	G	110	8	0.073	Francci3_2090	3-oxoacyl-(acyl carrier protein) synthase III
colony5	2930887	А	G	1865	43	0.023	IGR Francci3_2484-Francci3_2485	
colony5	2959308	Т	С	1266	24	0.019	Francci3_2506	hydantoinase B/oxoprolinase
colony5	3211711	А	G	157	6	0.038	Francci3_2727	hypothetical protein
colony5	3717464	Α	G	242	4	0.017	Francci3_3143	L-glutamine synthetase
colony5	5202265	Т	С	6	1	0.167	Francei3_4356	ATPase AAA-2
colony6	1/126/9	A	G	90	1	0.011	Francei3_1421	hypothetical protein
colony6	2440561	A	G	14/	3	0.020	Francei3_20/5	aminotransferase
colony6	3302330	т	C	221	4	0.018	Francei3 2023 Francei3 2024	octa-ketoacyi syntnase
colony6	3610715	т	C	205	13	0.047	Francei3 3042	acyl-CoA dehydrogenase-like
colony6	3729412	A	G	255	1.5	0.044	Francei3 3150	hypothetical protein
colony6	3937737	Ċ	G G	33	1	0.029	Francei3 3323	hypothetical protein
colonv6	4384188	T	c	369	9	0.024	IGR/Francei3 3662-Francei3 3663	
colonv6	4511418	G	A	5	1	0.200	Francei3 3762	dithiobiotin synthetase
colony6	4630236	Т	С	49	0	0.000	Francei3_3866	NUDIX hydrolase
colony6	4649421	Т	С	315	15	0.048	IGR Francci3_3885-Francci3_3886	-
colony6	4814994	Т	С	666	7	0.011	Francci3_4027	LuxR family transcriptional regulator
colony7	230604	А	G	114	0	0.000	Francci3_0194	hypothetical protein
colony7	491327	Т	С	64	1	0.016	Francci3_0412	cell divisionFtsK/SpoIIIE
colony7	755715	Т	С	78	0	0.000	Francci3_0660	geranylgeranyl reductase
colony7	948422	А	G	167	0	0.000	Francci3_0815	NUDIX hydrolase
colony7	1116519	Т	С	87	2	0.023	Francci3_0947	FHA domain-containing protein
colony7	1431150	A	G	3	1	0.333	Francci3_1199	putative ATP-binding protein
colony7	1703462	A	G	31	0	0.000	Francci3_1413	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate synthetase
colony7	1776439	A	G	43	1	0.023	Francei3_1484	cysteine dioxygenase type I
colony/	1853798	A	G	231	2	0.009	IGR Francei3_1543-Francei3_1544	
colony/	2801764	1	G	23	0	0.000	Franceis_2413	major facilitator transporter
colony7	3021843	A	G	8	0	0.000	IGR/Francei3_3140 Francei3_3141	
colony7	3816051	т	C	83	0	0.000	Francei3 3221	hypothetical protain
colony7	4318977	Т	c	155	2	0.012	Francei3 3617	diguanylate cyclase/phosphodiesterase
colony8	498466	A	G	167	0	0.000	IGR/Francei3 0419-Francei3 R0012	ulgutifyitte eyeitise/phosphodiesterase
colony8	550578	G	c	10	1	0.100	Francei3 0470	histidine kinase
colonv8	629808	Т	C	43	0	0.000	Francci3 0543	NADH-quinone oxidoreductase, F subunit
colony8	1132805	А	G	121	2	0.017	Francci3 0959	hypothetical protein
colony8	1301931	А	Т	12	0	0.000	Francci3_1089	transposase, IS4
colony8	2316337	А	G	168	1	0.006	IGR Francci3_1975-Francci3_1976	
colony8	2424161	Т	С	56	2	0.036	IGR Francci3_2059-Francci3_2060	
colony8	2424201	Т	С	9	1	0.111	Francci3_2060	hypothetical protein
colony8	2930887	А	G	397	2	0.005	IGR Francci3_2484-Francci3_2485	
colony8	3211711	Α	G	59	1	0.017	Francci3_2727	hypothetical protein
colony8	4381115	Т	С	8	1	0.125	Francci3_3660	putative transcriptional regulator
colony8	4457541	С	G	6	1	0.167	Francei3_3723	homoserine kinase
colony8	4903846	A	G	71	6	0.085	IGR Francei3_4094-Francei3_4095	
colony8	5391784	G	C	6	1	0.167	Francei3_4516	hypothetical protein
colony9	498466	A	G	516	1	0.002	IGK Francci3_0419-Francci3_R0012	NADH guinone ovidere duotoge E suburit
colory9	029808	1	G	200	0	0.000	Francei3 0757	avtracellular solute hinding protein
colory	1564049	т	G C	41/	2	0.005	Francei3 1306	ovidoreductase like
colony ⁰	1504048	Δ	G	239	0	0.000	Francei3 1319	hypothetical protein
colonv9	2316337	A	G G	662	5	0.000	IGR/Francei3 1975-Francei3 1976	appointent proton
colonv9	2930887	A	G	1121	12	0.011	IGR Francci3 2484-Francci3 2485	
colonv9	3042202	A	G	124	3	0.024	Francci3 2576	hypothetical protein
colony9	3211711	A	Ğ	140	0	0.000	Francci3_2727	hypothetical protein
colony9	3425584	С	G	5	0	0.000	Francci3_2909	peptidase S9, prolyl oligopeptidase active site region
colony9	4823021	С	А	6	0	0.000	Francci3_4037	molybdopterin adenylyltransferase
colony9	5129264	С	G	12	0	0.000	Francci3_4298	type II secretion system protein
shiro1	498466	А	G	427	0	0.000	IGR Francci3_0419-Francci3_R0012	
shiro1	1208408	Т	С	217	9	0.041	Francci3_1014	hypothetical protein
shiro1	2316337	А	G	511	6	0.012	IGR Francci3_1975-Francci3_1976	
shiro1	2930887	А	G	851	10	0.012	IGR Francci3_2484-Francci3_2485	
shiro1	3026410	А	G	256	4	0.016	Francci3_2567	putative hydrolase
shiro1	3211711	Α	G	98	3	0.031	Francci3_2727	hypothetical protein
shiro1	3235654	А	G	35	0	0.000	Francci3_2745	hypothetical protein

Strain	Position (nt) ^a	Mutant base	WT base ^b	Coverage ^c	No. WT base ^d	Ratio of WT base ^e	ID^{f}	Annotation
shiro2	498466	Α	G	564	1	0.002	IGR Francci3_0419-Francci3_R0012	
shiro2	629808	Т	С	121	2	0.017	Francci3_0543	NADH-quinone oxidoreductase, F subunit
shiro2	1423887	G	С	3	1	0.333	Francci3_1190	hypothetical protein
shiro2	2285845	С	G	11	0	0.000	Francci3_1945	(NiFe) hydrogenase maturation protein HypF
shiro2	2316337	Α	G	628	7	0.011	IGR Francci3_1975-Francci3_1976	
shiro2	2768445	Α	G	135	1	0.007	Francci3_2390	glycosyl transferase family protein
shiro2	2930887	Α	G	1213	10	0.008	IGR Francci3_2484-Francci3_2485	
shiro2	3211711	Α	G	114	0	0.000	Francci3_2727	hypothetical protein
shiro2	3235654	Α	G	45	2	0.044	Francci3_2745	hypothetical protein
shiro2	3714154	Α	G	9	0	0.000	IGR Francci3_3140-Francci3_3141	
shiro2	4949435	G	Т	5	0	0.000	Francci3_4149	integrase
shiro3	398331	Α	G	586	18	0.031	Francci3_0343	inner-membrane translocator
shiro3	755715	Т	С	127	2	0.016	Francci3_0660	geranylgeranyl reductase
shiro3	1049059	Α	С	135	2	0.015	Francci3_0906	Type IV secretory pathway VirD4 components-like
shiro3	1116519	Т	С	398	4	0.010	Francci3_0947	FHA domain-containing protein
shiro3	1183365	Α	G	1059	29	0.027	Francci3_0994	hypothetical protein
shiro3	1408614	Т	С	137	6	0.044	Francci3_1178	AMP-dependent synthetase and ligase
shiro3	1868217	G	Т	6	1	0.167	Francci3_1558	cell envelope-related transcriptional attenuator
shiro3	2145810	Α	G	232	5	0.022	Francci3_1810	uncharacterized FAD-dependent dehydrogenase
shiro3	2161726	Т	С	139	2	0.014	Francci3_1823	putative O-methyltransferase
shiro3	2801764	Т	С	146	1	0.007	Francci3_2413	major facilitator transporter
shiro3	3174296	Α	G	360	9	0.025	Francci3_2688	Rieske (2Fe-2S) protein
shiro3	3267212	Т	С	124	1	0.008	Francci3_2770	4-hydroxyphenylacetate 3-hydroxylase
shiro3	4309260	Т	С	269	5	0.019	Francci3_3607	DEAD/DEAH box helicase-like
shiro3	4318977	Т	С	355	2	0.006	Francci3_3617	diguanylate cyclase/phosphodiesterase
shiro3	4672005	А	G	641	9	0.014	IGR Francci3_3903-Francci3_3904	

^aPosition of the base in the reference genome sequence of *Frankia* CcI3 in public database (NC_007777).

^bBase reported in the reference genome sequence.

^cTolal number of reads mapped on the base.

^dThe number of reads that showed WT base.

^eNo. WT base / Coverage.

^fIGR represents ingergenic region.

Fig. 1 Frankia細胞の形態

Figures

(A) *Frankia*の細胞は菌糸(H)、胞子嚢(S)、ベシクル(V)3種の形態をとる。バーは10 μmを示す。
 (B) *Frankia*. sp CcI3株の菌糸の電子顕微鏡写真。黒い矢印は隔壁を示す。黒いバーは1 μmを、白い両矢印は1細胞の長さ(約2.4 μm)を示す。

Fig.2 プロモーターの概要

形質転換用コンストラクトに用いた2種類のプロモーターを示す。P_{infC-s}は上流のhypothetical protein (Francci3_3183)の終止コドンの直後から*infC*(Francci3_3182)の1つ目の開始コドンと思われる配列 直前までの316 bpの、P_{infC-1}は27 bp下流の2つ目の開始コドンと思われる配列直前までの343 bpの領域で ある。

Fig. 3 eGFP ØRT-PCR

(A) *eGFP*特異的プライマーを用いたRT-PCR。(B) *eGFP*特異的プライマーを用いた逆転写なしの PCR。(C) *infC*特異的プライマーを用いたRT-PCR。KKF1はpKKF1を用いてエレクトロポレーション を行った細胞のRNA。KKF2はpKKF2を用いてエレクトロポレーションを行った細胞のRNA。no DNA は形質転換コンストラクトDNAを加えずにエレクトロポレーションを行った細胞のRNA。PCでは pKKF2を鋳型として使用した。NCは鋳型RNAの代わりに滅菌水を用いた。

Fig.5 染色体への相同組換えによるマーカー遺伝子の挿入の確認

(A)相同組換え部位の模式図。斜線は相同組換え領域。赤の矢印はプライマーLAoutのアニール部位 を、青の矢印はプライマーTet-f2もしくはGm-f2のアニール部位を示す。LAはleft armの略で、上流の 相同組換え領域(4 kb)を示す。RAはright armの略で下流の相同組換え領域(4 kb)を示す。Pはプロ モーターを、Mはマーカー遺伝子を、Tはターミネーターを示す。太い波線は相同組換え領域の外側の Ccl3株の染色体を示す。(B) KKF3、KKF4およびno DNAのゲノムDNAを用いたPCR。(C) KKF5お よびno DNAのゲノムDNAを用いたPCR。

Fig.7 KKF4のサザンブロット解析

KKF4とWTのゲノムDNAとpKKF4を各種酵素で消化しサザンブロットを行った。(A)相同組換えに よるマーカー遺伝子の挿入が起こった場合のKKF4染色体模式図。上段はAscI、中段はPstIとKpnI、下 段はPvuIIの認識部位の位置を示す。(B) tet^R断片をプローブとしてサザンブロットを行った写真。数 値はバンドのサイズ (kb) を示す。

 gm^{R} 1: ATGTTACGCAGCAGCAGCAGCATGTTACGCAGCAGGGCAGTCGCCCTAAAACAAAGTTAGGTGGCTCAAGTATGGGCATCATTCGCACATGTAGGCTCGGCC 100 fgm^{R} 1:ATGCTGCGGTCCTCGAACGACGTCACCCAGCAGGGGTCCCCGCCCAAGACGAAGCTCGGGGGCTCCTCGATGGGCATCATCCGGACGTGCCGCCCGGGCC 100 ***** ** ** *** * ** ** *** * ** * ***** ** ** ****** ***** 101: CTGACCAAGTCAAATCCATGCGGGCTGCTCTTGATCTTTTCGGTCGTGAGTTCGGAGACGTAGCCACCTACTCCCAACATCAGCCGGACTCCCGATTACCT 200 101: CGGATCAGGGTCAAGAGCATGCGCGCGCGCGGGATCTGTTCGGCCGCGAGTTCGGGGGACGTCGCCACGTACTCCCAGCACCAGCCGGACTCGGACTACCT 200 * ** ** **** 201: CGGGAACTTGCTCCGTAGTAAGACATTCATCGCGCTTGCTGCCTCCAACAAGAAGCGGTTGTTGGCGCTCTCGCGGCTTACGTTCGCCCAAGTTTGAG 300 201: CGGGAACCTCCTGCGGAGCAAGACCTTCATCGCCCTCGCGGCCTTCGACCAGGAGGCCGTCGTGGGGGCGCTGGCCGCGTACGTCCTGCCCAAGTTCGAG 300 301: CAGCCGCGTAGTGAGATCTATATCTATGATCTCGCAGTCTCCGGCGAGCACCGGAGGCAGGGCATTGCCACCGCGCTCATCAATCTCCTCAAGCATGAGG 400 301: CAGCCCCGGAGCGAGATCTACATCTACGACCTGGCCGTGTCGGGCGAGCACCGGCGCCAGGGCATCGCGACGGCCCTCATCAACCTCCTCAAGCACGAGG 400 401: CCAACGCGCTTGGTGCTTATGTGATCTACGTGCAAGCAGATTACGGTGACGATCCCGCAGTGGCTCTCTATACAAAGTTGGGCATACGGGAAGAAGTGAT 500 401: CGAACGCCCTGGGGGCCTACGTGATCTACGTCCAGGCCGACTACGGCGACGACCGCCGCGGTGGCCCTCTACACCAAGCTCGGGATCCGCGAGGAGGTCAT 500 501 : GCACTTTGATATCGACCCAAGTACCGCCACCTAA 534 501 : GCACTTCGACATCGACCCGAGCACCGCGACGTAA 534 ****** ** ******* ** ***** Fig.9 コドンを最適化したゲンタマイシン耐性遺伝子の配列

通常のゲンタマイシン耐性遺伝子 (gm^R) と、コドン使用頻度をCcI3株に最適化したゲンタマイシン耐性遺伝子 (fgm^R) の塩基配列。*は同じ塩基であることを示す。

Fig. 10 ゲンタマイシン耐性遺伝子とコドンを最適化したゲンタマイシン耐性遺伝子を用いた形質転換

棒グラフは選択培地中での細胞濃度を示す。バーは標準偏差を示す。KKF6はpKKF6を用いた形質転換 細胞を、KKF9はpKKF9を用いた形質転換細胞を示す。controlはプラスミドを用いずエレクトロポレー ションを行った結果を示す。

Fig. 13 CcI3株の菌糸の形態に対するグリシンの影響

(A) BAP-T培地で10日間培養したCcI3株、(B) 0.1%のグリシンを含むBAP-T培地で10日間培養した CcI3株。バーは20 μmを示す。

Fig. 14 細胞壁溶解酵素の種類による菌糸の分解の比較

(A) Lysozymeで処理したCcI3株菌糸、(B) Labiaseで処理したCcI3株菌糸、(C) Achromopeptidase で処理したCcI3株菌糸、(D) 酵素処理を行わなかったCcI3株菌糸。各酵素は250 μg/mLの終濃度で用いた。菌糸は0.1%のグリシンを含むBAP-T液体培地で12日間培養したものを用いた。バーは50 μmを示す。

Fig. 15グリシンを含まないBAP-T培養液を用いたプロトプラスト化

各細胞はそれぞれ100 μg/mLの酵素で処理した。CcI3株菌糸はBAP-T液体培地で8日間培養したものを 用いた。左列は明視野像を、右列はDAPIの蛍光像を示す。バーは50 μmを示す。LaはLabiaseを、Lyは lysozymeをcontrolは酵素なしの対照実験を示す。

Fig. 16 グリシン濃度が各酵素の分解作用に与える影響

各酵素は100 µg / mLの終濃度で用いた。CcI3株菌糸はBAP-T液体培地で8日間培養したものを用いた。 左列は0.1%のグリシンを含むBAP-T培地で培養した細胞。右列は0.3%のグリシンを含むBAP-T培地で 培養した細胞。バーは50 µmを示す。LaはLabiaseで処理したCcI3株菌糸を、LyはLysozymeで処理した CcI3株菌糸を、AcはAchromopeptidaseで処理したCcI3株菌糸を示す。

Fig.17 変異体コロニーで検出された変異の数

白色のバーは一つの変異株でのみ観察された、その変異株特有の変異の数を示す。斜線のバーは2つの 株で重複して検出された変異の数を示す。点描のバーは3つの株で重複して検出された変異の数を示 す。黒色のバーは5つの株で重複して検出された変異の数を示す。