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Construction of concave shoulder surfaces

ISOKAWA Y ukinao*

(Received 28 October, 2014)

Abstract
A general method of constructing concave shoulder surfaces is presented, and a process of development

of these surfaces is described explicitly.

keywords: shoulder, developable surface, concavity

1 Introduction
An excellent review paper [1] explains the shoulder as follows:

The shoulder of packaging machine is a developable surface that guides the packing mate-
rial without stretching or tearing. The shoulder is traditionally manufactured by bending
a flexible plate along a given bending curve, also without stretching or tearing.

As the shoulder is a developable surface, it is a ruled surface, that is, it can be completely specified
by generating lines.

In this paper, we first review a general method of constructing shoulder surfaces in section 2, and
show several examples of shoulders constructed by the method in section 3.

In the section 4 we make a new attempt to describe the process of development of shoulder surfaces.
Further, in section 5, we study the possibility of constructing concave shouder surfaces.

2 Method of constructing shoulder surfaces

Consider a curve Cy = {rg(¢) : 0 £ ¢ < 7} which lies on the lateral face Sy of a prism, whose base is
defined by {r(¢) : 0 £ ¢ < w} in the polar coordinates. Thus the curve Cj can be expressed as

ro(¢) = (r(¢) cos ¢, 7(¢) sin ¢, 2(¢)). (1)

Now we will develop the curve Cy onto a plane S; without changing both the length of the curve
and the distance of any point on the curve from the fixed point K in space. Denote the developed
curve on the plane S by C1 = {r1(¢) : 0 < ¢ < 7}, which can be expressed as

r1(¢) = (X(9),Y(9)) (2)

in the Cartesian coordinates system in the plane S;.
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X

The first requirement that the length of the curve is preserved in the course of development, can
be formulated as

(0)2 +1(9)° +2(9)* = X' (6)* + Y'(9)%. (3)
The second requirement that the distance of any point on the curve from K is preserved in the course
of development, can be formulated as

(r(9) cosd — ka)? + (r() sin g — ky)* + (2(9) — k2)* = (X (9) — kx)* + (Y(9) —ky)%,  (4)

where we suppose that K = (kg, ky, k.) in space and K = (kx, ky) in the plane S;. In the following
we set
K = (kg, ky, k2) = (ro — ecosa, —etan 3, h 4 esin «)
and
K= (kx,ky) = (—etanf3,e).

Suppose that the lateral face Sy (of the prism), the plane S;, and the fixed point K are given.
Moreover suppose that the start points of the two curves Cy and Cy, ie., the points for ¢ = 0,
coincide each other. In spite of these restrictions, by using (3) and (4), we can not determine Cjy
and C uniquely. In fact there are infinitely many candidates of the two curves that satisfy both the
fundamental equations.

However there is a simple method of constructing the two curves. Suppose that

2(¢) =h—=Y(¢). (5)
Then the fundamental equation (3 implies X'(¢)? = 7/(¢)2 + r(¢)?. Hence we get

X = [ VPR i ()
Then, substituting (5) and (6) into the fundamental equation (4), we obtain
Y(6) = A-hr(0)(1 - cos6) - k(X () — r(¢)sin)
3 X~ r@)06) — o) | ™

where we put 1/\ = e(1 + sina).

Now we reveal several restrictions on parameters h, e, a, 8. First we require the condition z(7) = 0,
which implies that
3X(m)* = r(m)(ro + r(m))
h(1+ sina) — 2r(r) cosa — X () tan 3’

(8)

e =
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Consider a shoulder surface which consists of straight lines, each of which emanates from any point
P on the curve Cy and has the direction specified by the vector KP. Suppose that the shoulder
surface does not overlap with the prism whose base defined by r(¢). Then it is necessary that
—r(m) < ky < r(0), which is equivalent to

0 <e< M
CoS v
Hence, using (8), we can derive
1 X(7)2?cosa
h>m{X(W)tdnﬁ+T(ﬂ)COSa+W}. (9)

Therefore our method to set parameters is as follows:
1. Set a and S arbitrarily so that 0 < o, 8 < /2.
2. Set h so that it satisfies (9).
3. Set e by (8).

3 Several examples

3.1 Shoulder surface based on a circle

Suppose that a base curve is a circle of radius rg. Then the developed curve Cy = (X (¢),Y (¢)) has
a simple form,

. 1
X(¢) =rog, Y(¢) =X {karo(l —cos @) — kyro(¢p — sinp) + 57“3(]52} .
Note that the curve C; looks like a parabola in human eye, but it is really not.

3.2 Shoulder surface besed on a kite

Suppose that a base curve is a kite with round vertices. A kite can be parametrized by a,b,w, €,
where w may be positive. A rhombus is a particular case of a kite such that w = 0.

The equation 7(¢) of a kite for 0 < ¢ < 7 — w is given as follows:

acos¢+1/e2 —a?sin®¢  if0< o<y

1
r(p)=¢ ———m— ifdh <p<Z—w-—209 , 10
D=1 eosto—) 1<t | (10
peosd? +[7 B S mS6S T
where we put ¢/ = § —w — ¢ and
a— bsinw b—asinw
tany; = ———, tanyy = ———
bcosw a cosw
Iy =acosyy +€=bcosys + ¢,
tandy = — L pan g, = o002
a+ €ecosyp b+ ecosyo

Note that, since a kite is convex, it is necessary that a —bsinw > 0, b —asinw > 0. If we denote the
function (10) by 7(¢; a,w), then the equation r(¢) for § —w < ¢ < T can be given by (7 — ¢; a, —w).
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Using (6) we get for 0S¢ = 5 —w
€ + earcsin (%sian)) if0<p <6y
X(61) + i1 {tan(¢ — y1) + tan(ys — 01)} ifé1<op<f—w—10
X(9)= X(7/2 —w — &) — €¢’ — earcsin (g sin¢') ’ (11)
“+edy + earcsin (g sinég) iff —w—0S¢p< % —w

Denote the function (11) by X (¢;a,w). Let us introduce a variable ¢ = 7 — ¢ and a function X(w) =

X(7) — X (¢). Then we can see that X (¢)) = X (¢; a, —w), where we have to replace 71, 2,11, 01, d2, w
in (11) by 73,74, l2, 93, 04, —w respectively, i.e., ' = T +w — 1 and

a+bsinw b+ asinw
tanyg = ———, tany = ———
bcosw acosw
lo = acosvys + € =Dbcosyy + €,
€sin - €sin
tan ds = 7%, tandy = _ o
a + €cosys b+ ecosyy

Therefore we see

X(¢) = X(n) — X(r—¢) for ¢ > g —w,
where X (7) can be computed by
X(r) =X(g —w)+ X (gﬂ})l

When the parameters of the base curve are a = 3,b = 2,w = 7/5,¢ = 0.4, it looks like

If the additional parameters are & = 8 = 7/5,h = 10, then e ~ 2.32 and the developped curve is
drawn as

Then the shoulder surface looks like
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3.3 Shoulder surface based on a trapezoid

Suppose that a base curve is a trapezoid with round vertices. The equation of the trapezoid is:

c+e

cos ¢

licos(p —m) + 1/ = Fsin’(¢ — )
la

M@=9 cos(¢ + 72)
—l3cos(¢ +3) + /€2 = [ sin® (¢ + 73)
cte
—cos ¢

where 1, 72,73, 01, d2, 03, d4 are defined by

if0Sp=v —0d
ifyp =01 <@ <y +d2
ify+02 S¢S m—y3—03 (12)

fr—y3—03<op<m—ry3+04

ifr—y+dsSopSw

a 2¢c b
tanvy; = —, tanyy = ——, tany3 = —,
c a— c

b

& .
1 = , lo = asinyy — ccosys, I3 = R
COS Y1 COS 73
a a + esinys
t —01)=——, t 0g) = ———=
an(m — 1) c+e an(y + 2) c—€cosys’
b+ esinyo b
t 03) = ——. t —04) = .
an(ys + d) c+ecosyo’ an(ys = 0) c+e

Hence we have
(c+e€)tan¢

X (v — 01) + €6y + earcsin (% sin61>
l
+e(¢p — 1) + earcsin (:1 sin(¢p — 71))

X(y1 +02) — latan(y1 4 v2 + 02)
+o tan(¢ + 72)

+e(d + v3) — earcsin (% sin(¢ + 73)>

X(m =73 +64) + (c+€) tan(ys — d4)
+(c+€)tand

f0s¢=mn-—0a

if’71—51<¢<’}/1+52

ify+0SpSm—73—03

X(m—~3 —03) — €(m — d3) + earcsin (l—3 sin53)
€

fr—y3—03<p<m—r3+04

ifr—y3+dsS¢=m
(13)



BEVL R KRB AHNITEALE AR AW 5 66 % (2015)

When the parameters of the base curve are a = 3,0 = 1,¢ = 2,¢ = 0.4, it looks like

If the additional parameters are « = 3 = 7/5,h = 12, then e ~ 4.42 and the developped curve is
drawn as

Then the shoulder surface looks like

3.4 Shoulder surface besed on a regular p-gon

Suppose that a base curve is a regular p-gon with round vertices. For 0 < ¢ < 7/p, its equation is
given by:

cte if0<¢<a,
cos ¢
_ l
MO)=9 L s <d<2 -6, (14)
cos(¢p —m
(27— @) if 271 — 61 = ¢ = 271,
where i
= 57 ly =acosy +¢, tand; = &-
» a + €cosyi
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For ¢ > 7/p, the equation r(¢) is extended periodically with period 27, i.e., since there is an positive
integer k such that
¢ =¢1+2mk, 0= ¢ <271,

we define 7(¢) = r(¢1).
Hence, for 0 < ¢ < 7/p, we have
€p + earcsin (% sin d)) if0< <4
X(51) + L {tan(¢ — v1) + tan(y — 61)} if 01 < b < 271 — &

15
X (271 — 61) — €¢' — earcsin (%sinqﬁ') (15)

X(¢) =

+€d1 + earcsin (E sin 51> if 291 — 01 £ ¢ < 271,
€
For ¢ > 7 /p, the equation X (¢) is extended periodically with period 27;.

The following figures are shoulder surfaceis whose base curves are a hexagon and a pentagon
respectively:

3.5 Shoulder surface besed on an ellipse

Suppose that a base curve is an ellipse. For 0 £ ¢ < 7, its equation is given by

ab
= . 16
(@) Vb2 cos? ¢ + a2 sin? ¢ (16)

Hence

6) = ab /"5 \/b4c0%2cf>+a4sm 1) dé. (17)

(b2 cos? ¢ + a2 sin® ¢)3/2
Unfortunately it is impossible to express the above integral in an elementary way, and thus we need
to integrate numerically. The following figure shows a shoulder surface where a = 3,b =1, h = 10;
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4 Continuous development of shoulder surface

By the requirement imposed on the two curves Cy and Cj, we can introduce functions R(¢) and I(¢)
such that

ROP = (r0(6) ~K)? = (r1(0) ~ K%, (19)
2 2
o = (%52 = (%5¢2) - (19)

where k = (ky, ky, k.). In this section we will interpolate the two curves continuously, that is, to find
a set of curves parametrized by a 'time’ parameter ¢

Cy={r(¢,t): 0< ¢ <7},

such that
I'((b7 0) = I'()((b), r(¢7 1) =T (¢)7 (20)
(r(¢,t) — k)* = R(¢)*, (21)
2
("5) = o (22)

Let us write
R(¢)sin0(¢,t) cos (e, 1)
r(g,t) =k + ( R() sin 6(6, ) sin (6,1 ) .

R(¢) cos0(¢,t)
(%ﬂ;ﬂf))g =R'(¢)* + R(¢)* { (%)2 i (g:i)Z} |

o 1 g2 -R(¢) (09
a_¢‘sin0\/ R(0)? _<a_¢) ' @)

Note that, since ro(¢),r1(¢) are given, 6(¢,0), (¢, 0),01(¢,1),¢1(p, 1) are known. If a function
0(,t) of the variable ¢ is given for each ¢, then the equation (23) can determine the function ¢ (¢, t)
uniquely. Although 6(¢,t) can be defined freely to some extent, one simple way is to define it as

Then we have

Hence

cos0(¢,t) = (1 —t) cosby(¢,0) + tcosbi(o, 1). (24)

In the below we give details of how to construct the interpolating curves in the simplest case, i.e.,
the case that a base curve is a circl of radius rg = 1.
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1. Recall ro(¢) = (cos ¢, sin ¢, z(¢)), where

2(6) = h = M—ky (1 — cos &) — ky (6 — sin 6) + %¢2}.
Hence we have

R(¢)? (cos ¢ — kz)? + (sing — ky)* + (2(8) — k2)?,
R(p)R (¢) = kysing —kycosg+ (2(¢) — k)" (),

where
2(¢) = Mkysing + ky (1 — cos ¢) — ¢}.
Moreover, since
Jro(9)
o

= (_ sin ¢a COs ¢7 Zl(¢))7
we see

() =1+2(9)*
Consequently we can compute the quantity

1(¢)? — R'(9)?
R(¢)*

2. By the definition
ro(¢) —k =r(¢,0) —k = (Rsinf cos, Rsinfsin, Rcosb),

we have o3 0(6.0) 2(¢) —k.  —(h—2(¢)) —esina
" R(9) R(¢) '

Note that
r1(¢) = (ro — Y(¢) cosa, X(¢), h + Y (¢) sin ).

Hence, recalling Y (¢) = h — z(¢), we have

_ h+Y(¢p)sina—k, (h—2(¢)—e)sina

R(¢) - R(¢)

cosf(¢, 1)
Consequently, by (32), we get

cosf(op,t) = % {1+ cosa) —1)(h — 2(¢)) — esina}.

3. From the above expression of cos (¢, t), we can compute

sinf(¢,t), and % cos0(o,t) = sin (¢, t) Crwgz;, t).

Accordingly the right hand side of (23) can be computed because it equals

1 U$)2 — RI($)2 . B 2
sin20\/( )R(¢)2( ) s11120—(6—¢cos€> .

4. Integrating (23), we have

¢ p
6.0 =v0.0+ [ I
0



10 BEVL R KRB AHNITEALE AR AW 5 66 % (2015)

Here (0, ) can be obtained because we have assumed that the starting points of the interpo-
lating curves remains to be the starting point of Cjy. Explicitly we proceed as

R(0) = e2sec?p,
cosf(0,t) = hR;TOk)Z = —sinacos f3,
sinf(0,t) = +/1—cos?6(0,t) = \/sin2 B+ cos? accos? 3,
ro — kg cos acos 3

cosp(0.) = R(0)sin0(0,1) - \/sin2,8+0032ac0326.

5. Since the above procedures give both 6(¢,t) and ¥(¢,t), we have obtained the interpolating
curves.

5 Concavity of shoulder surfaces

Let C = {r(¢) : 0 < ¢ < 7} be a curve in space and consider a cone that is made of straight lines
combining a fixed point k and every point on the curve C'. A shoulder surface S is defined to be a
subset of the cone. We ask when the surface S is concave.

Let t(¢) be the tangent vector of unit length at the point r(¢) of C. It can be computed as
t(¢) = r'(¢)/|r'(¢)|. Then the tangent plane that passes through k and r(¢), which we denote by
TP(¢), is spanned by two vectors r(¢) —k and t(¢). The surface S is concave if and only if any point
r(¢') of C that lies in the neighbourhood of the point r(¢) is below or on the tangent plane T'P(¢).
Thus we have

A= (r(¢) = k) ((x(¢) — k) x t(¢)) = 0.

Hence, setting ¢’ = ¢ + d¢, where d¢ is an infinitesimal, and neglecting infinitesimals of higher order,
we can deduce

A =~ {r(¢)—K)+dor(s) +
d¢*
TI‘
_ %dew(w — k. t(¢), ().

r(9)} - ((x(¢) — k) x t(¢))
(@) - ((x(9) — k) x t(9))

do*
2

where the symbol det(:, -, -) denotes the determinant of the matrix made of three column vectors.
Therefore the surface S is concave if and only if

det(r(¢) —k, r'(¢), "(¢)) =0 (25)
for all ¢.

Now we recall that

2. 2o 2
Y(6) = ir’(g{)) d (dst(¢)) d5t+dsdt_d5t+(ds> dt

o " dp \ do T dg? T dgdo de? T \do) do
_ dzst ds\?
- fw*(%)

where n = n(¢) is the principal normal vector of unit length and x = k(¢) is the curvature at the
point r(¢). Accordingly we have

ds

d_¢) k(¢) det(r — k, t, n).

det(r(6) — k, (@), 1"(9)) = (
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Thus, urther recalling that the bi-normal vector b of unit length is given by b =t x n, we get

det(r(¢) -k, t(¢), "(¢)) = (x(¢) — k) - b(¢).

Therefore we obtain the following lemma.

Lemma 1. The shoulder surface is concave if and only if

det(r(¢) —k, 1'(¢), r"(¢)) =0

for all ¢; in other words,

(r(¢) —k)-b(¢) =0
for all ¢.
Let us consider the set
D = {k : det(r(¢) — k, r'(¢), r"(¢)) £0 for all ¢}.
Since it can be written as

D =(\{k:k b(¢) Zr(¢) b(¢)}.
[

it is an intersection of half-spaces and thus a convex set. However note that it may be empty. We
shall give a sufficient condition that it becomes non-empty.
Let us express the curve C' as

z() 7(¢) cos ¢
r(p)=| y(@) | = r(¢)sing
#(¢) z(¢)
Then, since
ylZN _ z’y”
r/(¢) % r//(d)) — Z/x,, _ ZJZ// ,
I,y” o y/CE”
we have

det(r(¢),1'(¢),x"(¢))
— :I:(ylzll _ Zly//) +y(zlm// _ x/z//) + Z(xly// _ le//)

_ (xy’ _ yx')z” + (yx" _ xy")z' ¥ (x/y// - y’x”)z
P22 =2 4 (r? 27— )z
Similarly we have
det(k, v'(6), v (#)) = ku(y'2" — 2'y") + ky(2'a" — 2'2") + ko (% + 202 — 11"").
Thus the condition stated in Lemma 1 reduces to

722" =2’y — (P2 4 272 — ") (h - 2)

Z//
S k(2 =2y k(P —2'2) (R — R)(r? 20 — ). (26)

Now suppose that
Z(¢) =h- /\Sn7

where s = s(¢) denotes the length of the curve C from ¢ = 0 to ¢, n is a positive exponent, and X a
positive coefficient. For a while we assume thatn # 1. Then the left-hand side of (26) becomes to

As" 2 [nrs(2r's’ —rs") — (r? + 27" —1")s* — n(n — 1)7‘25/2] .
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Now note that

/ 1

r(r’+nr
s = /74,24_7,27 s = ( )

V2 4 r?

r2 42072 —pp!!
(172 +12)%
where k denotes the curvature of the plane curve r = r(¢). Then the left-hand side of (26) further
reduces to
As"2 (1" 4 r?) [m(nrr's — V12 4287 —n(n — 1)7“2] . (27)

Note that (27) remains to hold even if n = 1.

and

)

On the other hand,

y/Z// o Z/y// — ’I’L>\8n72 [_y/(ss// + (TL _ 1)8/2) + y”SSI]

7 /2]4

nAs" 2 [(y"'s' —y's")s — (n—1)y's
and

y's —y's" = (r"sing+ 21" cosp — rsing)\/r2 + r2
r'(r" + 1)

/r'2 +7"2

1
= ——— [cosp {20 (+" +1%) — ' (" +7)}
Ve |
+sing {(r” —r)(r"? +1%) =12 (" +1)}]
2 2 2 "

= % (r' cos ¢ — rsin ¢)

= (" +rH)ra.

—(r'sin ¢ + 7 cos @)

Hence we have

Y2 — 2y = nXs" 2" 4+ 12) (ks — (n — 1)y). (28)
Similarly
22— = " [=a(ss" + (n— 1)) + 2”58
= axs" 2 [(a"s —a's")s — (n — 1)2’s"?].
and

2’ —a's" = (r"cos¢ —2r'sing — rcosd)\/r'2 +r2
r(r" + )
1
= = — [cos o {(r" — ) ) =2 )}
+sin¢{—2r"(r"% + 1) + /(" 4+ 1)}]

24202 — ppt

—(r' cos ¢ — 7sin @)

= e (r' sin ¢ + r cos ¢)
= (" +r)ry.
Hence we have
22— 1" = —nAs" T (" 4 r?) (ksy' + (n— 1)a'). (29)

Substitute (27), (28), and (29) into (26). Then we see that the surface S is concave if and only if

90 = kg1 — kyga + (k2 — h)g3
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for all ¢, where we define

g = r(nrr's — /12 4+r2s%) —n(n — 1)r?,

g1 = ks’ —(n—-1)y,

g2 = ksy +(n—1)2,
RVT2+ 712

9= nisn—2

Hence we obtain the following proposition.

Proposition 1. Suppose that z(¢) = h—As™. If go £ 0,92 = 0 for all ¢ and ky =0,k, < 0,k. = h,
then k = (ky, ky, k) € D. In general, even if go > 0 for some ¢, it holds that k = (0,0,k.) € D for
any sufficiently large k..

6 Method of constructing concave shoulder surfaces

Suppose that the space curve r(¢) will be developed to a plane curve {(X(¢),Y(¢)) : 0 < ¢ < 7}
while both the fixed point k and the start point r(0) remain to stay at the original positions and the
lengths r(¢) — k remain to be constants during development. Suppose the fixed point k is situated
at (kx,ky) on the plane that contains the developed curve. We can formulate the above manner of
the development as

(@) = VX'(¢)*+Y(¢) (30)
r(0) —k = V(X(0) —kx)?+ (Y (9) — ky)%. 31

Denote the above quantities, that are preserveed during the development, by s'(¢) and I(¢) respec-
tively. By (31) we can write

X(¢) = kx +1(¢) cos (), Y(¢) = ky +1(¢) sinb(¢).
Then, from (30), it follows that

s"(¢) = U'(9) +1(9)*0' ()"

Consequently we get

¢ 2 7/ 2
6(6) — 6(0) = / %dq& (32)

Note that the equation (32) is valid, because
Up)*(s?(¢) = U'(¢)*) =1 (r —k)* — (x'(r — k))* = 0.

6.1 An example

Suppose that a base curve is a circle of radius rg. In the below, to simplify computation, we consider
a particular case that n = 2, although we can construct concave shoulder surfaces for other values of
n. Then, since s = ro¢p and k = 1/ry, we have

go = —13(¢* +2), g1 = —ro(¢sing + cos ¢), go = ro(¢$cos ¢ +sing).

It can be easily seen that g» < 0 always, and go < kp g1 if |ky| < ro. Therefore, when |k | < 7o, ky =
0,k, = h, the surfaces S, that are constructed by the method stated in the previous section, are
concave.

Now, supposing that k, = k, = 0, we shall derive an explicit expression for the developed curve.
In this case we have
1(¢)* = a® +2(k: — W)AG” + N¢*,
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where a = /13 + (k. — h)?. Furthermore, since 2’ = —2\¢, we see that
$'(6)2 = 18+ 4322,

Hence

VU2 (9)2 — (U (9)2 = rov/a? +2((k: — h)A +2X2)¢* + A2,
To simplyfy computation, we consider the case that the expression inside the square root is a square
of a quadratic polynomial of ¢. Thus it is necessary that

(k. — W)X +22%)2 —a®A2 =0,

which implies that
a— (ks —h)
5 .

A —
Then

VI(9)25'(6)2 — (1(9)l'(¢))? = roa + A?)

and moreover,
19)? = (a+Ap")" —4r%¢?
= (a—2Xp+ A% (a +2)¢ + \¢?)
Accordingly we get

¢ a+ \p?

0(9) - 6(0) =79 (a—2X¢ + Ap?)(a + 2)¢ + Ap?)

do.

Hence
0(¢) —0(0) = arctan \/L (¢ +1) | + arctan \/L (p—1)
a— A a— A
= arctan ( rod ) .
a — \gp?
Consequently, since #(0) = —%, we have
_ _r ro¢
cosfO(¢p) = cos ( 5 + arctan (a — /\(1)2))
= sin (arctan ( U >)
a — \@?
_ rog
V(@ =22 + (rod)?
_ g
I(¢)
Similarly wee see
. _a— \¢p?
sinf(¢) = @)

Therefore we obtain
X(¢) =rod, Y() = Mg,
Thus the developed curve is a parabola whose equation is given by
Yy — VT(%‘F(kz*hP*(kz*h)Xz_

2
7o
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