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Abstract 
 

This paper newly presents the recursive least-squares (RLS) fixed-lag smoother using the covariance 

information and then the RLS Wiener fixed-lag smoother in linear discrete-time wide-sense stationary 

stochastic systems. Here, the additional disturbance in the measurement of the signal is white noise. The 

signal is uncorrelated with observed noise. It is assumed that the signal process is fitted to the 

autoregressive (AR) model of order 𝑁𝑁. For this AR model of order 𝑁𝑁, in the proposed fixed-lag smoother, 

the fixed-lag smoothing estimate for the fixed lag 𝐿𝐿, 1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1, can be calculated. The RLS Wiener 

fixed-lag smoother requires information of the system matrix, the autovariance function of the state vector, 

the observation vector, the variance of the observation noise and the coefficients for 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) in (19). 

It is advantageous that the proposed RLS Wiener fixed-lag smoother shows stable and feasible estimation 

characteristics in comparison with the RLS Wiener fixed-lag smoother [9].  

 

Keyword：Discrete-time stochastic systems, RLS Wiener fixed-lag smoother, covariance information, 

Wiener-Hopf equation  

 

 

 

 

 

 

 

 

 

___________________________ 
*  Professor of Kagoshima University, Faculty of Education 

 

Design of RLS Wiener Fixed-Lag Smoother in Linear Discrete-Time Sto-
chastic Systems

NAKAMORI Seiichi*

(Received 28 October, 2014)

Abstract

*　Professor of Kagoshima University, Faculty of Education

51Original Article



1. Introduction 

In control and communication systems, within acceptable delay, the smoothing estimate with improved 

estimation accuracy is preferable to the filtering estimate [1]. Also, it is pointed out that some fixed-lag 

smoothing algorithms in the literature, for example [2], [3], [4], are computationally unstable and therefore 

impractical. In the fixed-lag smoother the estimate 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘), at time 𝑘𝑘 − 𝐿𝐿, of the signal 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) 

uses measurements until 𝑘𝑘. The fixed-lag smoothing algorithm developed in [1] utilizes the augmented 

state equation. In this method, the Kalman filter [5] is applicable to the augmented state equation for 

recursive calculation of the linear least-squares fixed-lag smoothing estimates. Moore [1] proposes various 

stable fixed-lag smothers for the finite-dimensional state-space model.  

From the previous works in the literature, the fixed-point smoother with the following viewpoints might 

be useful. (1) In contrast to the filter, the fixed-lag smoother with improved estimation accuracy is 

advantageous. (2) Contrary to the unstable smoothers, computationally stable fixed-lag smoother is 

indispensable.  

In [6], Nakamori et al., using the covariance information, propose the recursive least-squares (RLS) 

fixed-lag smoother. However, from the restriction that the covariance function of the signal is expressed in 

the degenerate kernel form, the smoother is not suitable for estimating the general stochastic signal 

processes with the autocovariance function in the semi-degenerate kernel form.  

Previously, in linear discrete-time stochastic systems, the RLS Wiener fixed-point smoother [7], the RLS 

Wiener fixed-lag smoother [8], [9] and the RLS fixed-lag smoother [9], [10] using the covariance 

information are proposed. Also, the RLS fixed-lag smoother [11] using the covariance information is 

presented in linear continuous-time stochastic systems.  

To avoid the undesirable instability of the RLS Wiener fixed-lag smoother, the aim of this paper is to 

design the computationally stable RLS Wiener fixed-lag smoother for the signal observed with additive 

white noise. The signal is uncorrelated with the observation noise. It is assumed that the signal process is 

fitted to the autoregressive (AR) model of order 𝑁𝑁. The key idea adopted in this paper is to express the 

autocovariance function 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) of the signal, which appears in (8), by (19) for the fixed lag 𝐿𝐿, 

1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1. Since 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) is expressed as a linear combination of 𝐾𝐾(𝑘𝑘, 𝑠𝑠), 𝐾𝐾(𝑘𝑘 + 1, 𝑠𝑠), ⋯, 

𝐾𝐾(𝑘𝑘 + 𝐿𝐿, 𝑠𝑠), 1 ≤ 𝑠𝑠 ≤ 𝑘𝑘 (see (19)), the invariant imbedding method used in the derivation of the RLS 

Wiener estimators [7] can be applied to the derivations of the current fixed-lag smoothing algorithms. As a 

step for obtaining the RLS Wiener fixed-lag smoothing algorithm in Theorem 2, the fixed-lag smoothing 

algorithm using the covariance information is proposed in Theorem 1. Here, it should be noted that the 

instability of the fixed-lag smoother in Theorem 1 might be caused by Φ−𝑘𝑘, included in 𝐵𝐵𝑇𝑇(𝑘𝑘), for large 

values of 𝑘𝑘 under the condition where more than one eigenvalue is outside of the unit circle. The RLS 
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Wiener fixed-lag smoother requires the information of the system matrix Φ, the autovariance function 

𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)  of the state vector 𝑥𝑥(𝑘𝑘) , the observation vector 𝐻𝐻  and the coefficients 𝑎̄𝑎𝑖𝑖,𝑁𝑁 , 

𝑖𝑖 = 1, 2, ⋯ , 𝐿𝐿 + 1, in (19).  

In section 5, by introducing the fixed-lag smoothing error variance function, it is shown that the current 

RLS Wiener fixed-lag smoother is stable.  

In section 6, two numerical simulation examples are demonstrated to show the stable and feasible 

estimation characteristics of the current RLS Wiener fixed-lag smoother. From the viewpoints of the 

estimation accuracy and the stability, the proposed RLS Wiener fixed-lag smoother is superior to the RLS 

Wiener fixed-lag smoother [9]. In the numerical simulation examples, the signal processes are fitted to the 

AR model of order 𝑁𝑁 = 10.  

2. Linear least-squares fixed-lag smoothing problem 

Let a scalar observation equation and a state-space model be given by  

 𝑦𝑦(𝑘𝑘) = 𝑧𝑧(𝑘𝑘) + 𝑣𝑣(𝑘𝑘), 𝑧𝑧(𝑘𝑘) = 𝐻𝐻𝑥𝑥(𝑘𝑘),
𝑥𝑥(𝑘𝑘 + 1) = Φ𝑥𝑥(𝑘𝑘) + Γ𝑤𝑤(𝑘𝑘),  (1) 

in linear discrete-time wide-sense stationary stochastic systems. Here, 𝑧𝑧(𝑘𝑘) is signal, 𝐻𝐻 is the 1 × 𝑁𝑁 

observation vector, 𝑥𝑥(𝑘𝑘) is the state vector, 𝑣𝑣(𝑘𝑘) is white observation noise, Φ is the system matrix and 

𝑤𝑤(𝑘𝑘) is the white noise input, which is uncorrelated with the observation noise. It is also assumed that the 

signal and the observation noise are zero mean and mutually independent. Let the autocovariance function 

of 𝑣𝑣(𝑘𝑘) be given by  

 𝐸𝐸[𝑣𝑣(𝑘𝑘)𝑣𝑣𝑇𝑇(𝑠𝑠)] = 𝑅𝑅𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠), 𝑅𝑅 > 0. (2) 

Here, 𝛿𝛿𝐾𝐾(⋅) denotes the Kronecker 𝛿𝛿 function.  

Let 𝐾𝐾(𝑘𝑘, 𝑠𝑠)  represent the autocovariance function of 𝑧𝑧(𝑘𝑘)  and let 𝐾𝐾(𝑘𝑘, 𝑠𝑠)  be expressed in the 

semi-degenerate kernel form of  

 𝐾𝐾(𝑘𝑘, 𝑠𝑠) = �𝐴𝐴(𝑘𝑘)𝐵𝐵𝑇𝑇(𝑠𝑠), 0 ≤ 𝑠𝑠 ≤ 𝑘𝑘,
𝐵𝐵(𝑘𝑘)𝐴𝐴𝑇𝑇(𝑠𝑠), 0 ≤ 𝑘𝑘 ≤ 𝑠𝑠.

 (3) 

Hypothesis of (3) is motivated by the fact that in many applications the covariance function of the signal to 

be estimated admits a semi-degenerate kernel form. Note that when the system matrix Φ in the state-space 

model, the observation vector 𝐻𝐻 in the observation equation and the variance 𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘) of the state vector 

are available, the signal autocovariance function can be expressed as 𝐾𝐾(𝑘𝑘, 𝑠𝑠) = 𝐻𝐻Φ𝑘𝑘−𝑠𝑠𝐾𝐾𝑥𝑥(𝑠𝑠, 𝑠𝑠)𝐻𝐻𝑇𝑇, 𝑠𝑠 ≤ 𝑘𝑘, 

and, consequently, hypothesis (3) is clearly satisfied, taking for example 𝐴𝐴(𝑘𝑘) = 𝐻𝐻Φ𝑘𝑘 and 𝐵𝐵𝑇𝑇(𝑠𝑠) =
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Φ−𝑠𝑠𝐾𝐾𝑥𝑥(𝑠𝑠, 𝑠𝑠)𝐻𝐻𝑇𝑇[9] and clearly, this factorization is not unique. Actually, processes with finite-dimensional 

state-space models, have covariance functions expressed in the semi-degenerate kernel form (3). 

Consequently, since this semi-degenerate kernel form is suitable for expressing autocovariance functions 

of stochastic signals in general, the fixed-lag smoothing algorithm proposed in the paper have a wide 

applicability.  

Let a fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) of 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) be given by  

 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) = �ℎ
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝑦𝑦(𝑖𝑖) (4) 

as a linear transformation of the observed values {𝑦𝑦(𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘}. Here, ℎ(𝑘𝑘, 𝑖𝑖) and 𝐿𝐿 are called the 

impulse response function and the fixed lag.  

The impulse response function, which minimizes the mean-square value of the fixed-lag smoothing error 

𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘),  

 𝐽𝐽 = 𝐸𝐸[‖𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘)‖2], (5) 

satisfies that the estimation error 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) is orthogonal to the observations [2]; that is  

 𝐸𝐸[(𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘))𝑦𝑦𝑇𝑇(𝑠𝑠)] = 0, 1 ≤ 𝑠𝑠 ≤ 𝑘𝑘. (6) 

From (4) and (6), the Wiener-Hopf equation, which the impulse response satisfies, is given by  

 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) = �ℎ
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝐸𝐸[𝑦𝑦(𝑖𝑖)𝑦𝑦𝑇𝑇(𝑠𝑠)]. (7) 

Substituting (1) into (7) and using (2), we obtain  

 ℎ(𝑘𝑘, 𝑠𝑠)𝑅𝑅 = 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) −�ℎ
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝐾𝐾(𝑖𝑖, 𝑠𝑠). (8) 

(8) is the basic equations, which the impulse response function ℎ(𝑘𝑘, 𝑠𝑠) satisfies, for deriving the RLS 

fixed-lag smoothing algorithm using the covariance information and the RLS Wiener fixed-lag smoothing 

algorithm of the signal in linear discrete-time stochastic systems.  

3. AR model for the signal process 

Let us assume that the signal process is fitted to the AR model of order 𝑁𝑁.  

 𝑧𝑧(𝑘𝑘) = −𝑎𝑎1𝑧𝑧(𝑘𝑘 − 1) − 𝑎𝑎2𝑧𝑧(𝑘𝑘 − 2) −⋯− 𝑎𝑎𝑁𝑁𝑧𝑧(𝑘𝑘 − 𝑁𝑁) + 𝑤𝑤(𝑘𝑘). (9) 

It is seen that the 1 × 𝑁𝑁 observation vector 𝐻𝐻 in (1) and the state equation for the state vector 𝑥𝑥(𝑘𝑘) are 

expressed as follows:  
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 𝐻𝐻 = [1 0 0 ⋯ 0], (10) 

 

 
⎣
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑘𝑘 + 1)
𝑥𝑥2(𝑘𝑘 + 1)

⋮
𝑥𝑥𝑁𝑁−1(𝑘𝑘 + 1)
𝑥𝑥𝑁𝑁(𝑘𝑘 + 1) ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

−𝑎𝑎𝑁𝑁 −𝑎𝑎𝑁𝑁−1 −𝑎𝑎𝑁𝑁−2 ⋯ −𝑎𝑎2 −𝑎𝑎1⎦
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎡
𝑥𝑥1(𝑘𝑘)
𝑥𝑥2(𝑘𝑘)
⋮

𝑥𝑥𝑁𝑁−1(𝑘𝑘)
𝑥𝑥𝑁𝑁(𝑘𝑘) ⎦

⎥
⎥
⎥
⎤

+

⎣
⎢
⎢
⎢
⎡
0
0
⋮
0
1⎦
⎥
⎥
⎥
⎤
𝑤𝑤(𝑘𝑘), 

(11) 

 

 𝐸𝐸[𝑤𝑤(𝑘𝑘)𝑤𝑤(𝑠𝑠)] = 𝑄𝑄𝛿𝛿𝐾𝐾(𝑘𝑘 − 𝑠𝑠). (12) 

In (8), the autocovariance function 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠),  1 ≤ 𝑘𝑘 − 𝐿𝐿, 𝑠𝑠 ≤ 𝑘𝑘, 𝐿𝐿 = 1, 2, ⋯ , 𝑁𝑁 − 2, 𝑁𝑁 − 1, 

can not be expressed in the form (3) of the semi-degenerate kernel.  

In (9), by proceeding the time 𝑘𝑘 by 𝑁𝑁 − 1, the following equation is obtained.  

 𝑧𝑧(𝑘𝑘 + 𝑁𝑁 − 1) = −𝑎𝑎1𝑧𝑧(𝑘𝑘 + 𝑁𝑁 − 2) − 𝑎𝑎2𝑧𝑧(𝑘𝑘 + 𝑁𝑁 − 3) − ⋯− 𝑎𝑎𝑁𝑁𝑧𝑧(𝑘𝑘 − 1) + 𝑤𝑤(𝑘𝑘 + 𝑁𝑁 − 1). (13) 

By postmultiplying 𝑧𝑧(𝑠𝑠) to (13) and taking into considerations of the relationship 𝐾𝐾(𝑘𝑘, 𝑠𝑠) = 𝐸𝐸[𝑧𝑧(𝑘𝑘)𝑧𝑧(𝑠𝑠)],  

 
𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 1, 𝑠𝑠)

= −𝑎𝑎1𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 2, 𝑠𝑠) − 𝑎𝑎2𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 3, 𝑠𝑠) − ⋯− 𝑎𝑎𝑁𝑁𝐾𝐾(𝑘𝑘 − 1, 𝑠𝑠) 
(14) 

is valid. From (14), we see that  

 𝐾𝐾(𝑘𝑘 − 1, 𝑠𝑠) = (𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 1, 𝑠𝑠) + 𝑎𝑎1𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 2, 𝑠𝑠) + 𝑎𝑎2𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 3, 𝑠𝑠)
+⋯+ 𝑎𝑎𝑁𝑁−1𝐾𝐾(𝑘𝑘, 𝑠𝑠))/(−𝑎𝑎𝑁𝑁).  (15) 

Similarly, the equations (16)-(18) are obtained.  

 
𝐾𝐾(𝑘𝑘 − 2, 𝑠𝑠) = (𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 2, 𝑠𝑠) + 𝑎𝑎1𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 3, 𝑠𝑠) + 𝑎𝑎2𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 4, 𝑠𝑠)
+⋯+ 𝑎𝑎𝑁𝑁−1𝐾𝐾(𝑘𝑘 − 1, 𝑠𝑠))/(−𝑎𝑎𝑁𝑁)  (16) 

 

 
𝐾𝐾(𝑘𝑘 − 3, 𝑠𝑠) = (𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 3, 𝑠𝑠) + 𝑎𝑎1𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 4, 𝑠𝑠) + 𝑎𝑎2𝐾𝐾(𝑘𝑘 + 𝑁𝑁 − 5, 𝑠𝑠)
+⋯+ 𝑎𝑎𝑁𝑁−1𝐾𝐾(𝑘𝑘 − 2, 𝑠𝑠))/(−𝑎𝑎𝑁𝑁)  (17) 
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⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ 

 

 𝐾𝐾(𝑘𝑘 − (𝑁𝑁 − 1), 𝑠𝑠) = (𝐾𝐾(𝑘𝑘 + 1, 𝑠𝑠) + 𝑎𝑎1𝐾𝐾(𝑘𝑘, 𝑠𝑠) + 𝑎𝑎2𝐾𝐾(𝑘𝑘 − 1, 𝑠𝑠)
+⋯+ 𝑎𝑎𝑁𝑁−1𝐾𝐾(𝑘𝑘 − (𝑁𝑁 − 2), 𝑠𝑠))/(−𝑎𝑎𝑁𝑁)  (18) 

𝐾𝐾(𝑘𝑘 − 1, 𝑠𝑠) is given by (15) in terms of 𝐾𝐾(𝑘𝑘 + 𝑖𝑖 − 1, 𝑠𝑠), 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. By substituting (15) into (16), 

𝐾𝐾(𝑘𝑘 − 2, 𝑠𝑠) is expressed in terms of 𝐾𝐾(𝑘𝑘 + 𝑖𝑖 − 1, 𝑠𝑠), 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. By successive substitutions, 𝐾𝐾(𝑘𝑘 −

(𝑁𝑁 − 1), 𝑠𝑠) is also expressed in terms of 𝐾𝐾(𝑘𝑘 + 𝑖𝑖 − 1, 𝑠𝑠), 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁.  

From this viewpoint, by introducing the coefficients 𝑎̄𝑎1,𝐿𝐿, 𝑎̄𝑎2,𝐿𝐿, 𝑎̄𝑎3,𝐿𝐿, ⋯ , 𝑎̄𝑎𝑁𝑁,𝐿𝐿 , let us represent 

𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠), 1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1, as follows.  

 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) = 𝑎̄𝑎1,𝐿𝐿𝐾𝐾(𝑘𝑘, 𝑠𝑠) + 𝑎̄𝑎2,𝐿𝐿𝐾𝐾(𝑘𝑘 + 1, 𝑠𝑠) + 𝑎̄𝑎3,𝐿𝐿𝐾𝐾(𝑘𝑘 + 2, 𝑠𝑠) + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐾𝐾(𝑘𝑘 + 𝐿𝐿, 𝑠𝑠) (19) 

In the derivations of the RLS fixed-lag smoother and the RLS Wiener fixed-lag smoother, the relationship 

(19), with regard to the autocovariance functions, is applied to (8). Here, it should be noted, in the 

proposed approach, that the fixed-lag smoothing estimates 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘), 1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1, are calculated for 

the signal process fitted to the AR model of order 𝑁𝑁.  

4. RL Wiener fixed-lag smoothing algorithm 

Based on the estimation problems introduced in sections 2 and 3, in Theorem 1, using the covariance 

information, the discrete-time RLS fixed-lag smoothing algorithm is presented in linear wide-sense 

stationary stochastic systems.  

Theorem 1 Let the observation equation be given by (1). Let the autocovariance function of the signal 

𝑧𝑧(𝑘𝑘) be given by (3) in the semi-degenerate kernel form. Let the variance of white observation noise 𝑣𝑣(𝑘𝑘) 

be 𝑅𝑅. Let the signal process be fitted to the AR model of order 𝑁𝑁. Let the autocovariance function 

𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) be expressed by (19). Then the algorithm for the RLS fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 −

𝐿𝐿, 𝑘𝑘) of 𝑧𝑧(𝑘𝑘 − 𝐿𝐿), 1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1, based on the observed values 𝑦𝑦(𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘, consists of (20)-(24) 

in the linear discrete-time wide-sense stationary stochastic systems.  

Fixed-lag smoothing estimate of 𝑧𝑧(𝑘𝑘 − 𝐿𝐿): 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘)  

 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) = (𝑎̄𝑎1,𝐿𝐿𝐴𝐴(𝑘𝑘) + 𝑎̄𝑎2,𝐿𝐿𝐴𝐴(𝑘𝑘 + 1) + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐴𝐴(𝑘𝑘 + 𝐿𝐿))𝑒𝑒(𝑘𝑘) (20) 

Filtering estimate of 𝑧𝑧(𝑘𝑘): 𝑧̂𝑧(𝑘𝑘, 𝑘𝑘)  

 𝑧̂𝑧(𝑘𝑘, 𝑘𝑘) = 𝐴𝐴(𝑘𝑘)𝑒𝑒(𝑘𝑘) (21) 
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 𝑒𝑒(𝑘𝑘) = 𝑒𝑒(𝑘𝑘 − 1) + 𝐽𝐽(𝑘𝑘, 𝑘𝑘)(𝑦𝑦(𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝑒𝑒(𝑘𝑘 − 1)), 𝑒𝑒(0) = 0 (22) 

 

 𝑟𝑟(𝑘𝑘) = 𝑟𝑟(𝑘𝑘 − 1) + 𝐽𝐽(𝑘𝑘, 𝑘𝑘)(𝐵𝐵(𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1)), 𝑟𝑟(0) = 0 (23) 

 

 𝐽𝐽(𝑘𝑘, 𝑘𝑘) = (𝐵𝐵𝑇𝑇(𝑘𝑘) − 𝑟𝑟(𝑘𝑘 − 1)𝐴𝐴𝑇𝑇(𝑘𝑘))(𝑅𝑅 + 𝐾𝐾(𝑘𝑘, 𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1)𝐴𝐴𝑇𝑇(𝑘𝑘))−1 (24) 

Proof of Theorem 1 is deferred to the Appendix 1.  

Similarly, based on the RLS fixed-lag smoothing algorithm in Theorem 1, using the covariance 

information, the RLS Wiener fixed-lag smoothing algorithm is proposed in Theorem 2.  

Theorem 2 Let the observation equation be given by (1). Let the state equation for the state vector be 

given by (1). Let the variance of white observation noise 𝑣𝑣(𝑘𝑘) be 𝑅𝑅. Let the signal process be fitted to the 

AR model of order 𝑁𝑁. Let the autocovariance function 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) be expressed by (19). Then the 

algorithm for the RLS Wiener fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) of 𝑧𝑧(𝑘𝑘 − 𝐿𝐿), 1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1, 

based on the observed values 𝑦𝑦(𝑖𝑖), 1 ≤ 𝑖𝑖 ≤ 𝑘𝑘,  consists of (25)-(28) in the linear discrete-time 

wide-sense stationary stochastic systems.  

Fixed-lag smoothing estimate of 𝑧𝑧(𝑘𝑘 − 𝐿𝐿): 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘)  

 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) = (𝑎̄𝑎1,𝐿𝐿𝐻𝐻 + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻𝐻𝐻 + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻𝐻𝐻𝐿𝐿))𝑥𝑥�(𝑘𝑘, 𝑘𝑘) (25) 

Filtering estimate 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) of 𝑥𝑥(𝑘𝑘) 

 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) = 𝐻𝐻𝑥𝑥�(𝑘𝑘 − 1, 𝑘𝑘 − 1) + 𝐺𝐺(𝑘𝑘)(𝑦𝑦(𝑘𝑘) − 𝐻𝐻𝐻𝐻𝑥𝑥�(𝑘𝑘 − 1, 𝑘𝑘 − 1)), 𝑥𝑥�(0,0) = 0 (26) 

Filter gain: 𝐺𝐺(𝑘𝑘)  

 𝐺𝐺(𝑘𝑘) = (𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)𝐻𝐻𝑇𝑇 − 𝐻𝐻𝛷𝛷(𝑘𝑘 − 1)𝐻𝐻𝑇𝑇)(𝑅𝑅 + 𝐻𝐻𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)𝐻𝐻𝑇𝑇 − 𝐻𝐻𝛷𝛷(𝑘𝑘 − 1)𝐻𝐻𝑇𝑇)−1 (27) 

 𝛷𝛷(𝑘𝑘) = 𝐻𝐻𝛷𝛷(𝑘𝑘 − 1)𝐻𝐻𝑇𝑇 + 𝐺𝐺(𝑘𝑘)(𝐻𝐻𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘) − 𝐻𝐻𝐻𝐻𝛷𝛷(𝑘𝑘 − 1)𝐻𝐻𝑇𝑇)−1, 𝛷𝛷(0) = 0 (28) 

Proof of Theorem 2 is deferred to the Appendix 2.  

In section 5, the algorithm for the fixed-lag smoothing error variance function is derived from the 

viewpoints of the estimation accuracy and the stability of the proposed RLS Wiener fixed-lag smoothing 

algorithm.  

5. Fixed-lag smoothing error variance function 

The variance function of the fixed-lag smoothing error 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) is formulated as  
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 𝑃𝑃(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) = 𝐸𝐸[(𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘))(𝑧𝑧(𝑘𝑘 − 𝐿𝐿) − 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘))𝑇𝑇]. (29) 

The variance of the filtering estimate 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) equals 𝛷𝛷(𝑘𝑘). Hence, from (25), (29) might be written as  

 
𝑃𝑃(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) = 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘 − 𝐿𝐿)
−(𝑎̄𝑎1,𝐿𝐿𝐻𝐻 + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻Φ + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻Φ𝐿𝐿−1))𝛷𝛷(𝑘𝑘)(𝑎̄𝑎1,𝐿𝐿𝐻𝐻 + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻Φ + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻Φ𝐿𝐿−1))𝑇𝑇. (30) 

Since 𝑃𝑃(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) ≥ 0 and  

(𝑎̄𝑎1,𝐿𝐿𝐻𝐻 + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻Φ + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻Φ𝐿𝐿−1))𝛷𝛷(𝑘𝑘)(𝑎̄𝑎1,𝐿𝐿𝐻𝐻 + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻Φ + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻Φ𝐿𝐿−1))𝑇𝑇 ≥ 0, 

it is found that  

 0 ≤ 𝑃𝑃(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) ≤ 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘 − 𝐿𝐿) (31) 

is valid. (31) shows that the variance of the fixed-lag smoothing error is upper bounded by the variance of 

the signal and lower bounded by the zero matrix. Hence, it is seen that the proposed RLS Wiener fixed-lag 

smoothing algorithm in Theorem 2 is stable. As for the estimation accuracy of the proposed RLS Wiener 

fixed-lag smoother with relation to the fixed lag 𝐿𝐿 is examined in section 6 from the numerical aspects.  

6. Numerical simulation examples 

6.1. Example 1 

Let the scalar observation equation be given by (1), where the observation noise 𝑣𝑣(𝑘𝑘) is the zero-mean 

white noise sequence.  

Let us consider to estimate a vowel signal spoken by the author. Its phonetic symbol is expressed as “/

𝑖𝑖:/”. The sampling frequency of the voice signal is 11.025 [kHz]. The autocovariance data of the signal is 

calculated in terms of 5,000 sampled signal data.  

Let the signal process is fitted to the AR model of order 𝑁𝑁 = 10 in (9). The 1 × 10 observation vector 

is expressed as (10). The state equation for the state vector is given by (11). Here, the system matrix Φ is 

given by  

Φ =

⎣
⎢
⎢
⎢
⎡

0 1 0 ⋯ 0 0
0 0 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 0 1

−a10 −a9 −a8 ⋯ −a2 −a1⎦
⎥
⎥
⎥
⎤
, 

𝑎𝑎1 = −0.6135, 𝑎𝑎2 = 0.1635, 𝑎𝑎3 = −1.2912, 𝑎𝑎4 = 0.4335, 𝑎𝑎5 = −0.6697,
𝑎𝑎6 = 0.7693, 𝑎𝑎7 = 0.0800, 𝑎𝑎8 = 0.6141, 𝑎𝑎9 = −0.1770, 𝑎𝑎10 = −0.3007.  
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Also, the autovariance function 𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘) of the state vector 𝑥𝑥(𝑘𝑘) is calculated as 

𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1.0889 1.0758 1.0719 1.0745 1.0597 1.0521 1.0421 1.0251 1.0105 0.9948
1.0758 1.0889 1.0758 1.0719 1.0745 1.0597 1.0521 1.0421 1.0251 1.0105
1.0719 1.0758 1.0889 1.0758 1.0719 1.0745 1.0597 1.0521 1.0421 1.0251
1.0745 1.0719 1.0758 1.0889 1.0758 1.0719 1.0745 1.0597 1.0521 1.0421
1.0597 1.0745 1.0719 1.0758 1.0889 1.0758 1.0719 1.0745 1.0597 1.0521
1.0521 1.0597 1.0745 1.0719 1.0758 1.0889 1.0758 1.0719 1.0745 1.0597
1.0421 1.0521 1.0597 1.0745 1.0719 1.0758 1.0889 1.0758 1.0719 1.0745
1.0251 1.0421 1.0521 1.0597 1.0745 1.0719 1.0758 1.0889 1.0758 1.0719
1.0105 1.0251 1.0421 1.0521 1.0597 1.0745 1.0719 1.0758 1.0889 1.0758
0.9948 1.0105 1.0251 1.0421 1.0521 1.0597 1.0745 1.0719 1.0758 1.0889⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

By substituting the system matrix Φ , the autovariance function 𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)  of the state vector, the 

observation vector 𝐻𝐻  and the parameters 𝑎̄𝑎𝑖𝑖,𝑁𝑁 , 𝑖𝑖 = 1, 2, ⋯ , 𝐿𝐿 + 1,  in (19) into the fixed-lag 

smoothing algorithm in Theorem 2, the RLS Wiener fixed-lag smoothing estimates 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) of the 

signal 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) are calculated recursively. 

 
Fig. 1 Signal 𝑧𝑧(𝑘𝑘 − 9) and the fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 9, 𝑘𝑘) by the RLS Wiener fixed-lag 

smoother in Theorem 2 vs. 𝑘𝑘, 10 ≤ 𝑘𝑘 ≤ 259, for 𝛷𝛷𝛷𝛷𝛷𝛷 = 10[𝑑𝑑𝐵𝐵].  
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Fig.1 illustrates the signal 𝑧𝑧(𝑘𝑘 − 9) and the fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 9, 𝑘𝑘) by the RLS 

Wiener fixed-lag smoother in Theorem 2 vs. 𝑘𝑘 , 10 ≤ 𝑘𝑘 ≤ 259 , for the signal-to-noise ratio 

𝛷𝛷𝛷𝛷𝛷𝛷 = 10 [𝑑𝑑𝐵𝐵] . Fig.2 illustrates the mean-square values (MSVs) of the filtering and fixed-lag 

smoothing errors by the RLS Wiener fixed-lag smoother in Theorem 2 for 𝛷𝛷𝛷𝛷𝛷𝛷 = 0, 5, 10, 20[𝑑𝑑𝐵𝐵]. For 

𝐿𝐿 = 0 , the MSVs of the filtering errors are plotted. In Fig.2, particularly for 𝛷𝛷𝛷𝛷𝛷𝛷 = 0[𝑑𝑑𝐵𝐵]  and 

𝛷𝛷𝛷𝛷𝛷𝛷 = 5[𝑑𝑑𝐵𝐵], as the fixed lag 𝐿𝐿 increases, the MSVs of the fixed-lag smoothing errors decrease. For 

𝛷𝛷𝛷𝛷𝛷𝛷 = 10[𝑑𝑑𝐵𝐵], as the fixed lag increases, the MSV of the fixed-lag smoothing errors decreases gradually. 

The larger the value of the 𝛷𝛷𝛷𝛷𝛷𝛷 becomes, the smaller the MSVs of the filtering and smoothing errors 

become. Under the same stochastic assumptions for the signal and the observation noise, for each value of 

the 𝛷𝛷𝛷𝛷𝛷𝛷, the fixed-lag smoothing estimates by the fixed-lag smoother [9] diverge. 

 

Fig. 2 Mean-square values of the filtering and fixed-lag smoothing errors by the RLS Wiener fixed-lag 

smoother in Theorem 2 for 𝛷𝛷𝛷𝛷𝛷𝛷 = 0, 5, 10, 20[𝑑𝑑𝐵𝐵].  

Here, the MSVs of the fixed-lag smoothing and filtering errors are evaluated by ∑ (1000+𝐿𝐿
𝑘𝑘=𝐿𝐿+1 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) −

𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘))2/1000 and ∑ (1000
𝑘𝑘=1 𝑧𝑧(𝑘𝑘) − 𝑧̂𝑧(𝑘𝑘, 𝑘𝑘))2/1000 respectively.  
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6.2. Example 2 

As the second example, let us adopt the sound signal ”Laughter” which is usable in the MATLAB 

program. The sampling frequency of the voice signal is 8.192 [kHz]. The autocovariance data of the 

signal is calculated in terms of 5,000 sampled signal data.  

Suppose that the signal process is modeled in terms of the AR model of order 10 in (9). The 1 × 10 

observation vector is expressed as (10). The state equation is given by (11). The parameters in the system 

matrix Φ are as follows:  

𝑎𝑎1 = −0.9372, 𝑎𝑎2 = 0.9500, 𝑎𝑎3 = −0.1625, 𝑎𝑎4 = 0.4429, 𝑎𝑎5 = −0.1555,
𝑎𝑎6 = 0.3668, 𝑎𝑎7 = 0.0207, 𝑎𝑎8 = 0.3125, 𝑎𝑎9 = −0.2216, 𝑎𝑎10 = 0.3069.  

Also, the autovariance function 𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘) of the state 𝑥𝑥(𝑘𝑘) is calculated as 

𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

0.1418 0.0800 −0.0256 −0.0809 −0.0653 −0.0152 0.0148 0.0114 −0.0005 −0.0002
0.0800 0.1418 0.0800 −0.0256 −0.0809 −0.0653 −0.0152 0.0148 0.0114 −0.0005

−0.0256 0.0800 0.1418 0.0800 −0.0256 −0.0809 −0.0653 −0.0152 0.0148 0.0114
−0.0809 −0.0256 0.0800 0.1418 0.0800 −0.0256 −0.0809 −0.0653 −0.0152 0.0148
−0.0653 −0.0809 −0.0256 0.0800 0.1418 0.0800 −0.0256 −0.0809 −0.0653 −0.0152
−0.0152 −0.0653 −0.0809 −0.0256 0.0800 0.1418 0.0800 −0.0256 −0.0809 −0.0653

0.0148 −0.0152 −0.0653 −0.0809 −0.0256 0.0800 0.1418 0.0800 −0.0256 −0.0809
0.0114 0.0148 −0.0152 −0.0653 −0.0809 −0.0256 0.0800 0.1418 0.0800 −0.0256

−0.0005 0.0114 0.0148 −0.0152 −0.0653 −0.0809 −0.0256 0.0800 0.1418 0.0800
−0.0002 −0.0005 0.0114 0.0148 −0.0152 −0.0653 −0.0809 −0.0256 0.0800 0.1418⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. 

By substituting the system matrix Φ , the autovariance function 𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)  of the state vector, the 

bservation vector 𝐻𝐻  and the coefficients 𝑎̄𝑎𝑖𝑖,𝑁𝑁 , 𝑖𝑖 = 1, 2, ⋯ , 𝐿𝐿 + 1,  in (19) into the fixed-lag 

smoothing algorithm in Theorem 2, the RLS Wiener fixed-lag smoothing estimates 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) of the  

signal 𝑧𝑧(𝑘𝑘 − 𝐿𝐿) are calculated recursively.  
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Fig. 3 Signal 𝑧𝑧(𝑘𝑘 − 9) and the fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 9, 𝑘𝑘) by the RLS Wiener fixed-lag 

smoother in Theorem 2 vs. 𝑘𝑘, 10 ≤ 𝑘𝑘 ≤ 259, for 𝛷𝛷𝛷𝛷𝛷𝛷 = 10[𝑑𝑑𝐵𝐵].  

Fig.3 illustrates the signal 𝑧𝑧(𝑘𝑘 − 9) and the fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 9, 𝑘𝑘) by the RLS 

Wiener fixed-lag smoother in Theorem 2 vs. 𝑘𝑘, 10 ≤ 𝑘𝑘 ≤ 259, for 𝛷𝛷𝛷𝛷𝛷𝛷 = 10 [𝑑𝑑𝐵𝐵]. Fig.4 illustrates 

the MSVs of the filtering and fixed-lag smoothing errors by the RLS Wiener fixed-lag smoother in 

Theorem 2 for 𝛷𝛷𝛷𝛷𝛷𝛷 = 0, 5, 10, 20[𝑑𝑑𝐵𝐵] and the RLS Wiener fixed-lag smoother [9] for 𝛷𝛷𝛷𝛷𝛷𝛷 = 0, 

5[𝑑𝑑𝐵𝐵]. For 𝐿𝐿 = 0, the MSVs of the filtering errors are plotted. In Fig.4, it is shown that the proposed RLS 

Wiener fixed-lag smoother shows better estimation accuracy than the fixed-lag smoother [9]. For 

𝛷𝛷𝛷𝛷𝛷𝛷 = 10[𝑑𝑑𝐵𝐵], the MSVs of the fixed-lag smoothing errors by the fixed-lag smoother [9] are fairly larger 

than those by the proposed RLS Wiener fixed-lag smoother. Actually, these MSVs are 0.2704, 2.4815, 

2.9695, 2.0858, 5.3556, 3.1665, 2.6676, 3.1021 and 2.7873 for 𝐿𝐿 = 0, 1, 2,⋯ , 9.respectively. 

Also, for 𝛷𝛷𝛷𝛷𝛷𝛷 = 20[𝑑𝑑𝐵𝐵], the fixed-lag smoothing estimates by the fixed-lag smoother [9] diverge. 
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Fig. 4 Mean-square values of the filtering and fixed-lag smoothing errors by the RLS Wiener fixed-lag 

smoother in Theorem 2 for 𝛷𝛷𝛷𝛷𝛷𝛷 = 0, 5, 10, 20[𝑑𝑑𝐵𝐵] and the RLS Wiener fixed-lag smoother [9] for 

𝛷𝛷𝛷𝛷𝛷𝛷 = 0, 5 [𝑑𝑑𝐵𝐵].  

Here, the MSVs of the fixed-lag smoothing and filtering errors are evaluated by 

∑ (z(k − L) − z�(k − L, k))2/Ni
Ni+L
k=L+1  and ∑ (z(k) − z�(k, k))2/Ni

Ni
k=1 , i = 1,  2 , respectively, where 

N1 = 1000 for the current fixed-lag smoother and N2 = 250 for the previous fixed-lag smoother [9].  

7. Conclusions 

In this paper, the RLS fixed-lag smoother using the covariance information and the RLS Wiener fixed-lag 

smoother have been newly devised in linear discrete-time wide-sense stationary stochastic systems.  

In the proposed RLS Wiener fixed-lag smoother, for the signal process fitted to the AR model of order 𝑁𝑁, 

the fixed-lag smoothing estimate 𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘), 1 ≤ 𝐿𝐿 ≤ 𝑁𝑁 − 1, can be calculated. The key idea suggested 

in the current approach is that the autocovariance function 𝐾𝐾(𝑘𝑘 − 𝐿𝐿, 𝑠𝑠) in the Wiener-Hopf equation is 

expressed by (19) as the linear combination of 𝐾𝐾(𝑘𝑘, 𝑠𝑠) , 𝐾𝐾(𝑘𝑘 + 1, 𝑠𝑠) , ⋯ , 𝐾𝐾(𝑘𝑘 + 𝐿𝐿 − 1, 𝑠𝑠)  and 

𝐾𝐾(𝑘𝑘 + 𝐿𝐿, 𝑠𝑠).  

In the numerical simulation examples, for the two kinds of stochastic signal processes, fitted to the AR 

model of the order 𝑁𝑁 = 10, it has been shown that the proposed RLS Wiener fixed-lag smoother has the 

stable and superior estimation characteristics in comparison with the fixed-lag smoother [9].  
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Appendix 1 (Proof of Theorem 1) 

Let us introduce the function 𝐽𝐽(𝑘𝑘, 𝑠𝑠), which satisfies 

 𝐽𝐽(𝑘𝑘, 𝑠𝑠)𝑅𝑅 = 𝐵𝐵𝑇𝑇(𝑠𝑠) −�𝐽𝐽
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝐾𝐾(𝑖𝑖, 𝑠𝑠). (A-1) 

From (3), (8) and (19), it is seen that  

 ℎ(𝑘𝑘, 𝑠𝑠) = (𝑎̄𝑎1,𝐿𝐿𝐴𝐴(𝑘𝑘) + 𝑎̄𝑎2,𝐿𝐿𝐴𝐴(𝑘𝑘 + 1) + 𝑎̄𝑎3,𝐿𝐿𝐴𝐴(𝑘𝑘 + 2) + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐴𝐴(𝑘𝑘 + 𝐿𝐿))𝐽𝐽(𝑘𝑘, 𝑠𝑠). (A-2) 

Subtracting the equation by putting 𝑘𝑘 → 𝑘𝑘 − 1 in (A.1) from (A-1), we have  
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(𝐽𝐽(𝑘𝑘, 𝑠𝑠) − 𝐽𝐽(𝑘𝑘 − 1, 𝑠𝑠))𝑅𝑅

= −𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝐾𝐾(𝑘𝑘, 𝑠𝑠) −�(
𝑘𝑘−1

𝑖𝑖=1

𝐽𝐽(𝑘𝑘, 𝑖𝑖) − 𝐽𝐽(𝑘𝑘 − 1, 𝑠𝑠))𝐾𝐾(𝑖𝑖, 𝑠𝑠). 
(A-3) 

From (A-1) and (A-3), it follows that  

 𝐽𝐽(𝑘𝑘, 𝑠𝑠) − 𝐽𝐽(𝑘𝑘 − 1, 𝑠𝑠) = −𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝐴𝐴(𝑘𝑘)𝐽𝐽(𝑘𝑘 − 1, 𝑠𝑠). (A-4) 

Substituting (A-2) into (4), we have  

 

𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘)

= (𝑎̄𝑎1,𝐿𝐿𝐴𝐴(𝑘𝑘) + 𝑎̄𝑎2,𝐿𝐿𝐴𝐴(𝑘𝑘 + 1) + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐴𝐴(𝑘𝑘 + 𝐿𝐿))�𝐽𝐽
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝑦𝑦(𝑖𝑖). 
(A-5) 

Introducing  

 𝑒𝑒(𝑘𝑘) = �𝐽𝐽
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝑦𝑦(𝑖𝑖), (A-6) 

we obtain (20).  

Subtracting the equation obtained by putting 𝑘𝑘 → 𝑘𝑘 − 1 in (A-6) from (A-6), we have  

 

𝑒𝑒(𝑘𝑘) − 𝑒𝑒(𝑘𝑘 − 1) = 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝑦𝑦(𝑘𝑘) + �(
𝑘𝑘−1

𝑖𝑖=1

𝐽𝐽(𝑘𝑘, 𝑖𝑖) − 𝐽𝐽(𝑘𝑘 − 1, 𝑖𝑖))𝑦𝑦(𝑖𝑖)

= 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝑦𝑦(𝑘𝑘) − 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝐴𝐴(𝑘𝑘)� 𝐽𝐽
𝑘𝑘−1

𝑖𝑖=1

(𝑘𝑘 − 1, 𝑖𝑖)𝑦𝑦(𝑖𝑖).

 (A-7) 

Here, the initial condition on the difference equation for 𝑒𝑒(𝑘𝑘) at 𝑘𝑘 = 0 is given by 𝑒𝑒(0) = 0 from 

(A-6). From (A-6) and (A-7), (22) is obtained.  

Putting 𝑠𝑠 = 𝑘𝑘 in (A-1), we have  

 

𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝑅𝑅 = 𝐵𝐵𝑇𝑇(𝑘𝑘) −�𝐽𝐽
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝐾𝐾(𝑖𝑖, 𝑘𝑘)

= 𝐵𝐵𝑇𝑇(𝑘𝑘) −�𝐽𝐽
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝐵𝐵(𝑖𝑖)𝐴𝐴𝑇𝑇(𝑘𝑘).

 (A-8) 

Introducing the function  

 𝑟𝑟(𝑘𝑘) = �𝐽𝐽
𝑘𝑘

𝑖𝑖=1

(𝑘𝑘, 𝑖𝑖)𝐵𝐵(𝑖𝑖), (A-9) 

(A-8) is written as  

 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝑅𝑅 = 𝐵𝐵𝑇𝑇(𝑘𝑘) − 𝑟𝑟(𝑘𝑘)𝐴𝐴𝑇𝑇(𝑘𝑘). (A-10) 

Subtracting the equation obtained by putting 𝑘𝑘 → 𝑘𝑘 − 1 in (A-9) from (A-9), and using (A-4), we have  
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 𝑟𝑟(𝑘𝑘) − 𝑟𝑟(𝑘𝑘 − 1) = 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝐵𝐵(𝑘𝑘) + �(
𝑘𝑘−1

𝑖𝑖=1

𝐽𝐽(𝑘𝑘, 𝑖𝑖) − 𝐽𝐽(𝑘𝑘 − 1, 𝑖𝑖))𝐵𝐵(𝑖𝑖)

= 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝐵𝐵(𝑘𝑘) − 𝐽𝐽(𝑘𝑘, 𝑘𝑘)𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1).

 (A-11) 

From (A-10) and (A-11), (24) is obtained. Here, the initial condition on the difference equation for 𝑟𝑟(𝑘𝑘) 

at 𝑘𝑘 = 0 is given by 𝑟𝑟(0) = 0 from (A-9).  

(Q.E.D.)  

Appendix 2 (Proof of Theorem 2) 

From (20) and (21), with the relation 𝐴𝐴(𝑘𝑘) = 𝐻𝐻Φ𝑘𝑘, it is seen that  

𝑧̂𝑧(𝑘𝑘 − 𝐿𝐿, 𝑘𝑘) = 𝑎̄𝑎1,𝐿𝐿𝐻𝐻Φ𝑘𝑘𝑒𝑒(𝑘𝑘) + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻ΦΦ𝑘𝑘𝑒𝑒(𝑘𝑘) + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻ΦΦ𝑘𝑘+𝐿𝐿𝑒𝑒(𝑘𝑘)
= 𝑎̄𝑎1,𝐿𝐿𝐻𝐻𝑥𝑥�(𝑘𝑘, 𝑘𝑘) + 𝑎̄𝑎2,𝐿𝐿𝐻𝐻Φ𝑥𝑥�(𝑘𝑘, 𝑘𝑘) + ⋯+ 𝑎̄𝑎𝑁𝑁,𝐿𝐿𝐻𝐻Φ𝐿𝐿𝑥𝑥�(𝑘𝑘, 𝑘𝑘).

 

Here, the filtering estimate 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) of the state vector 𝑥𝑥(𝑘𝑘) is given by 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) = Φ𝑘𝑘𝑒𝑒(𝑘𝑘). Substitution 

of (22) into 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) = Φ𝑘𝑘𝑒𝑒(𝑘𝑘) yields  

 

 

𝑥𝑥�(𝑘𝑘, 𝑘𝑘) = Φ𝑥𝑥�(𝑘𝑘 − 1, 𝑘𝑘 − 1) + Φ𝑘𝑘𝐽𝐽(𝑘𝑘, 𝑘𝑘)�𝑦𝑦(𝑘𝑘) − 𝐻𝐻Φ𝑥𝑥�(𝑘𝑘 − 1, 𝑘𝑘 − 1)�,  

𝑥𝑥�(0,0) = 0. 

 

(A-12) 

Here, the initial condition on the difference equation for the filtering estimate 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) at 𝑘𝑘 = 0 is given 

by 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) = 0  from 𝑥𝑥�(𝑘𝑘, 𝑘𝑘) = Φ𝑘𝑘𝑒𝑒(𝑘𝑘)  with (A-6). Putting the filter gain in (A-12) as 𝐺𝐺(𝑘𝑘) =

Φ𝑘𝑘𝐽𝐽(𝑘𝑘, 𝑘𝑘), we obtain (26). From (24), 𝐽𝐽(𝑘𝑘, 𝑘𝑘) is given by  

𝐽𝐽(𝑘𝑘, 𝑘𝑘) = (𝐵𝐵𝑇𝑇(𝑘𝑘) − 𝑟𝑟(𝑘𝑘 − 1)𝐴𝐴𝑇𝑇(𝑘𝑘))(𝑅𝑅 + 𝐻𝐻𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)𝐻𝐻𝑇𝑇 − 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1)𝐴𝐴𝑇𝑇(𝑘𝑘))−1. 

Putting 𝛷𝛷(𝑘𝑘) = 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘)𝐴𝐴𝑇𝑇(𝑘𝑘) = Φ𝑘𝑘𝑟𝑟(𝑘𝑘)(Φ𝑇𝑇)𝑘𝑘, the filter gain is expressed as  

𝐺𝐺(𝑘𝑘) = (𝐴𝐴(𝑘𝑘)𝐵𝐵𝑇𝑇(𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1)𝐴𝐴𝑇𝑇(𝑘𝑘))(𝑅𝑅 + 𝐻𝐻𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)𝐻𝐻𝑇𝑇 − 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1)𝐴𝐴𝑇𝑇(𝑘𝑘))−1

= (𝐾𝐾(𝑘𝑘, 𝑘𝑘) − Φ𝛷𝛷(𝑘𝑘 − 1)Φ𝑇𝑇)(𝑅𝑅 + 𝐻𝐻𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘)𝐻𝐻𝑇𝑇 − Φ𝛷𝛷(𝑘𝑘 − 1)Φ𝑇𝑇)−1.
 

Finally, substituting (23) into 𝛷𝛷(𝑘𝑘) = 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘)𝐴𝐴𝑇𝑇(𝑘𝑘), we obtain  

𝛷𝛷(𝑘𝑘) = 𝐴𝐴(𝑘𝑘)(𝑟𝑟(𝑘𝑘 − 1) + 𝐽𝐽(𝑘𝑘, 𝑘𝑘)(𝐵𝐵(𝑘𝑘) − 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘 − 1)))𝐴𝐴𝑇𝑇(𝑘𝑘)
= Φ𝛷𝛷(𝑘𝑘 − 1)Φ𝑇𝑇 + 𝐺𝐺(𝑘𝑘)(𝐻𝐻𝐾𝐾𝑥𝑥(𝑘𝑘, 𝑘𝑘) − 𝐻𝐻Φ𝛷𝛷(𝑘𝑘 − 1)Φ𝑇𝑇).

 

Here, the initial condition on the difference equation for 𝛷𝛷(𝑘𝑘) at 𝑘𝑘 = 0 is given by 𝛷𝛷(0) = 0 from 

𝛷𝛷(𝑘𝑘) = 𝐴𝐴(𝑘𝑘)𝑟𝑟(𝑘𝑘)𝐴𝐴𝑇𝑇(𝑘𝑘) with (A-9).          (Q.E.D.)  
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