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Abstract. In this article we will compute the numbers of periodic points and the zeta functions of RLL(m,n)
shift dynamical systems to obtain a formula in combinatorics. We will generalize this formula and prove
it directly. It will turn out that the generalized formula is related to the numbers of periodic points of
RLL(a1, · · · , as) shift dynamical systems which is a generalization of RLL(m,n) shift dynamical systems.
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1 Preliminaries

Throughout this paper we will use the notation and terminology in [1]. We begin with recalling a minimum
of them. Let A be a finite set of symbols which are called the alphabet. Elements of alphabet are also
called letters, and they will typically be donoted by a, b, c, · · · , or sometimes by digits like 0, 1, 2, · · · .

Definition 1.1 If A is a finite alphabet, then the full A-shift AZ is the collection of all bi-infinite sequences
of symbols from A, i.e.,

AZ = { x = (xi)i∈Z | xi ∈ A for all i ∈ Z }.

The full r-shift (or simply r-shift) is the full shift over the alphabet {0, 1, · · · , r− 1}.

When writting a specific sequence in AZ, we need to specify which is the 0-th coordinate. This is
conveniently done with a decimal point to separate the xi with i ≥ 0 from those with i < 0. For example,

x = · · · 010.1101 · · ·

means that x−3 = 0, x−2 = 1, x−1 = 0, x0 = 1, x1 = 1, x2 = 0, x3 = 1, and so on.

Definition 1.2 The shift map σ on the full shift AZ maps a point x to the point y = σ(x) whose i-th
coordinate is yi = xi+1.

A block (or word) over A is a finite sequence of symbols from A. It is convenient to include the sequence
of no symbols, called the empty block (or empty word) and denoted ε. The length of a block u is the
number of symbols it contains, and is denoted by |u|. Thus if u = a1a2 · · ·ak is a nonempty block, then
|u| = k, while |ε| = 0. A k-block is simply a block of length k. The set of all k-blocks over A is denoted by
Ak. If x is a point in AZ and i<j, then the block of coordinates in x from position i to position j is denoted
by

x[i,j] = xixi+1 · · · xj

If i > j, define x[i,j] to be ε. If x ∈ AZ and w is a block over A, it is said that w occurs in x if there
are indices i and j so that w = x[i,j]. Note that the empty block ε in every x, since ε = x[1,0]. Let F be a
collection of blocks over A, which is thougut of as being the forbidden blocks. For any such F, define XF

to be the set of subsequences in AZ which do not contain any block in F.
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Definition 1.3 A shift space (or simply shift) over A is a subset X of a full shift AZ such that X = XF

for some collection F of forbidden blocks over A. If F is a finite set, then we call X = XF a shift of finite
type. When a shift space X is contained in a shift space Y, we say that X is a subshift of Y.

Definition 1.4 Let X be a subset of a full shift, and let Bn(X) denote the set of all n-blocks that occure in
points in X. The language of X is the collection

B(X) = ∪1
n=0Bn(X)

We consider a map φ from a shift space X over A to a shift space Y over another alphabet A described
as follows. Fix integer m and n with −m<n. Let Φ : Bm+n+1(X) → A be a fixed map from Bm+n+1(X),
the set of all (m+n+ 1)-blocks to the alphabet A, which is called an (m+n+1)-block map from allowed
(m+ n+ 1)-blocks in X to symbols in A.

Definition 1.5 The map φ : X → AZ defined by y = φ(x) with yi given by

yi = Φ(xi−mxi−m+1 · · · xi+n) = Φ(x[i−m,i+n])

is called the sliding block code with memory m and anticipation n induced by Φ. We will denote
the formation of φ from Φ by φ = Φ

[−m,n]
1 , or simply by φ = Φ1 if the memory and anticipation of φ are

understood. If not specified, the memory is taken to be 0. If Y is a shift space contained in AZ and φ(X) ⊂ Y,
we write φ : X → Y.

Obviously, if φ : X → Y is a sliding block code between shift spaces, then φ ◦ σX = σY ◦ φ, i.e., the
following diagram commutes:

X
σX−−−−→ X

φ

⏐⏐� ⏐⏐�φ

Y
σY−−−−→ Y,

where σX and σY are the shfts maps of X and Y, respectively. If a sliding block code φ : X → Y has an
inverse, i.e., a sliding block code ψ : Y → X such that ψ(φ(x)) = x for all x ∈ X and φ(ψ(y)) = y for all
y ∈ Y, we call φ invertible. If φ is invertible, its inverse ψ is unique, so we can write ψ = φ−1.

Definition 1.6 A sliding block code φ : X → Y is a conjugacy from X to Y, if it is invertible. Two shift
spaces X and Y are conjugate (written X ∼= Y) if there is a conjugacy from X to Y.

Definition 1.7 A graph G consists of a finite set V = V(G) of vertices (or states) together with a finite
set E = E(G) of edges. Each edge e ∈ E(G) starts at a vertex denoted by i(e) ∈ V(G) and terminates
at a vertex t(e) ∈ V(G) (which can be the same as i(e)). Equivalently, the edge has initial state i(e) and
terminale state t(e).

There may be more than one edge between a given initial state and terminal state; a set of such edges is
called a set of multiple edges.

Definition 1.8 A graph G is irreducible if for every ordered pair of vertices I and J there is a path in G

starting at I and terminating at J.

Definition 1.9 Let G be a graph with vertex set V. For vertices I, J ∈ V, let AIJ denote the number of edges
in G with initial state I and terminal state J. Then the adjacency matirix of G is A = [AIJ], and its
formation from G is denoted by A = A(G) or A = AG.

Definition 1.10 Let G be a graph with edge set E and adjacency matrix A. The edge shift XG or XA is the
shift space over the alphabet A = E specified by

XG = XA = { ξ = (ξi)i∈Z ∈ EZ | t(ξi) = i(ξi+1) for all i ∈ Z }.

The shift map on XG or XA is called the edge shift map and is denoted by σG or σA.



8 HIROSHI SAINOHIRA and SHOJI TSUBOI

According to the definiton, a bi-infinite sequence of edges is in XG exactly when the terminal state of
each edges is the initial state of the next one;, i.e., the sequence describes a bi-infinite walk or bi-infinite
trip on G.

Definition 1.11 A labeled graph G is a pair (G, L), where G is a graph with edge set E, and the labeling
L : E → A assigns to each edge e of E, and a label L(e) from the finite alphabet A. The underlying graph
of G is G. A labeled graph is irreducible if its underlying graph is irreducible.

Definition 1.12 A subset X of a full shift is a sofic shift if X = XG for some labeled graph G. A pre-
sentation of a sofic shift X is a labeled graph G for which XG = X. The shift map on XG is denoted by
σG.

Definition 1.13 A shift space X is mixing if, for every ordered pair u, v ∈ B(X), there is an N such that
for each n ≥ N there is word w ∈ Bn(X) such that uwv ∈ B(X).

For two points x, y of a full shift AZ over an alphabet A, we put

(1.1) ρ(x, y) =

{
2−k if x �= y and k is maximal so that x[−k,k] = y[−k,k]

0 if x = y.

This ρ satisfies the axioms of a metric, so it makes AZ a metric space. As we can see easily the topology
on AZ induced by this metric is equivalent to the product topology of discrete topology on AZ. The discrete
topology on a finite set A makes it compact. Hence, due to Tikhonov’s theorem, AZ with the metric ρ is also
compact. In what follows we always consider this metric on AZ. The shift map σ is a homeomorphism with
respect to the topology indeuced by the metric ρ, so (AZ, σ) can be considered as an invertible dynamical
system (cf. [1], Definition 6.2.1). A subset X of AZ is a shift space if and only if it is shift-invariant, i.e.,
σ(X) = X, and compact (cf. [1], Thorem 6.1.21). From this fact it follows that any shift space can also be
considered as an invertible dynamical system. When we consider a shift space with the metric ρ in (1.1) as
a dynamical sysytem, we call it a shift dynamical sysytem. A homeomorphism φ from a shift (X, σX) to
another one (Y, σY) is said to be a topological conjugacy if φ ◦ σX = σY ◦φ. Two shift spaces are said to
be topological conjugate if there is a topological conjugacy between them. The fact that two shifts spaces
are conjugate as a shift space if and only if they are topologically conjugate as a dynamical system follows
from the following thorem ([1], Theorem 6.2.9).

Theorem 1.14 (Curtis-Lyndon-Hedlund Theorem) Suppose that (X, σX) and (Y, σY) are shift dynam-
ical systems, and that θ : X → Y is a (not necessarily continuous) map. Then θ is a sliding block code if and
only if it is continuous and commutes with shift maps, i.e., θ ◦ σX = σY ◦ θ.

2 RLL(m,n) shifts and their characteristic polynomials

For each pair (m,n) of positive integers with m < n, we define X(m,n) to be the set of all binary sequences
for all 1’s occur infinitely often in x in both directions, and there are at least m 0’s, but no more than n 0’s,
between two 1’s. X(m,n) is called (m,n) run-length limited shift. X(m,n) is the sofic shift associated
to the following labeled graph:

Figure 2.1: X(m,n)

We denote by G(m,n) the underlying graph of the labeled graph in Figure 2.1. We name each vertex and
each edge in G(m,n) as follows:
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v_0 ...
e_0

v_m
e_m-1

f_m

...
e_m

f_m+1

v_n
e_n-1

f_n

Figure 2.2: G(m,n)

Proposition 2.1 If we put

F =
{

11, 101, 1001, · · · , 1 0 · · · 0︸ ︷︷ ︸
m − 1

1, 0 · · · 0︸ ︷︷ ︸
n + 1

}
,

then X(m,n) = XF.

Proof: Let x be a point in AZ where A = {0, 1}. Assume x �∈ XF. Then x must contain a block in F, and
so x �∈ X(m,n). Hence X(m,n) ⊂ XF. To prove the converse inclusion, we assume x ∈ XF. Then, since the
number of consecutive 0’s which occurs in x can not exceed n + 1, 1 occurs infinitely many times in both
directions. If we look at a block w in x which has consecutive 0’s sandwiched by two 1’s like 10 · · · 01, then
the number of 0’s in the block is more than m− 1 and less than n+ 1. There exists the unique path π in the
graph in Figure 2.2 such that L(π) = w where L : E(G(m,n)) → {0, 1} is the labeling in Figure 2.1. The path
π always ends at the vertex v0. Hence, there exists the unique infinite path π1(x) in both direction in the
graph in Figure 2.2 such that L(π1(x)) = x, that is, x ∈ X(m,n). Therefore XF ⊂ X(m,n). Consequently,
XF = X(m,n).

Proposition 2.2 X(m,n) is conjugate to XG(m,n) as a shift space.

Proof: We will construct a sliding block code φ : X(m,n) → XG(m,n) which gives a conjugacy between
them. As shown in the proof of Proposition 2.1, for any point x of X(m,n) there exists the unique infinite
path π1(x) in both directions in the graph in Figure 2.2 such that L(π1(x)) = x. We define φ(x) = π1(x).
Obviously, φ commutes with the shift maps. Furthermore, φ(x)0 is a function of x[−n,n]. To see this
fact, argue as follows: If x0 = 1, then all of x−i are zeros for 1<i<n, or there exists k with m<k<n − 1

such that x−1 = · · · = x−k = 0 and x−(k+1) = 1. In the former case φ(x)0 = fn, and in the latter case
φ(x)0 = fk. If x0 = 0, then there exist k and � with 0<k<n − 1, 0<�<n − 1 and m + 1<k + � + 1<n such
that x−k+1 = x�+1 = 1, x−1 = · · · = x−k = 0 (1<k), and x1 = · · · = x� = 0 (1<�). In this case φ(x)0 = ek.
In all cases φ(x)0 is decided by x[−n,n], which means that φ(x)0 is a function of x[−n,n]. Therefore φ is a
sliding block code ([1], Proposition 1.5.8). The map ψ : XG(m,n) → X(m,n) defined by ψ(π1) = L(π1) for
π1 ∈ XG(m,n) gives the inverse of φ, so φ gives a conjugacy between X(m,n) and XG(m,n).

Proposition 2.3 X(m,n) is mixing.

Proof: We consider XG(m,n) instead of X(m,n) due to Proposition 2.2. In XG(m,n) there are periodic points
of period m+ 1 and m+ 2. Since m+ 1 and m+ 2 are co-prime, per(XG(m,n)) = 1, where per(XG(m,n)) is
the greatest common divisor of the periods of XG(m,n)’s periodic points. Obviously, XG(m,n) is irreducible.
Therefore we can conclude that XG(m,n) is mixing ([1], Proposition 4.5.10).

In what follows we always consider XG(m,n) instead of X(m,n). The adjacency matrix of the graph
G(m,n) denoted by A(m,n) is as follows:
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v0 v1 · vm−1 vm · · · vn

A(m,n) =

v0

v1

·
·

vm−1

vm

·
·
·

vn

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · 0 0 0 · · · 0

· 0 1 · · · · · · ·
· · 0 · · · · · ·
· · 1 0 · · · · ·
0 · · · 0 1 0 · · · 0

1 0 · · 0 0 1 0 · · 0

1 0 · · 0 0 0 1 0 · ·
· · · · · 0

· · · · · 1

1 0 · · 0 0 · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We define the characteristic polynomial of RLL(m,n) shift space is to be that of the adjacency matrix A(m,n)
of the graph G(m,n), which is calculated as follows:

χA(m,n)(t) =
∣∣∣tEn+1 −A(m,n)

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

t −1 0 · 0 0 · · · · 0

0 t −1 0 0 · · · · 0

· · · · · · · · · ·
0 · t −1 0 · · · · ·
0 · · · t −1 0 · · · 0

−1 0 · · 0 t −1 0 · · 0

−1 0 · · 0 0 t −1 0 · ·
· · · · · · 0

· · · · · t −1

−1 0 · · 0 0 · · · · t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · 0 0 · · · · 0

t2 0 −1 0 0 · · · · 0

· t −1 · · · · · · ·
0 · t −1 0 · · · · ·
0 · · · t −1 0 · · · 0

−1 0 · · 0 t −1 0 · · 0

−1 0 · · 0 0 t −1 0 · ·
· · · · · · 0

· · · · · t −1

−1 0 · · 0 0 · · · · t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · 0 0 · · · · 0

0 0 −1 0 0 · · · · 0

· · 0 −1 · · · · · · ·
0 · · −1 0 · · · · ·

tm 0 · · 0 −1 0 · · · 0

−1 0 · · 0 t −1 0 · · 0

−1 0 · · 0 0 t −1 0 · ·
· · · · · · 0

· · · · · t −1

−1 0 · · 0 0 · · · · t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · 0 0 · · · · 0

0 0 −1 0 0 · · · · 0

· · · · · · · · · ·
0 · · −1 0 · · · · ·
0 · · · 0 −1 0 · · · 0

tm+1 − 1 0 · · 0 t −1 0 · · 0

−1 0 · · 0 0 t −1 0 · ·
· · · · · · 0

· · · · · t −1

−1 0 · · 0 0 · · · · t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · 0 0 · · · · 0

0 0 −1 0 0 · · · · 0

· · · · · · · · · ·
0 · · −1 0 · · · · ·
0 · · · 0 −1 0 · · · 0

0 0 · · 0 0 −1 0 · · 0

t(tm+1 − 1) − 1 0 · · 0 0 t −1 0 · ·
· · · · · · 0

· · · · · t −1

−1 0 · · 0 0 · · · · t

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 · 0 0 · · · · 0

0 0 −1 0 0 · · · · 0

· · · · · · · · · ·
0 · 0 −1 0 · · · · ·
0 · · · 0 −1 0 · · · 0

0 · · · 0 0 −1 0 · · 0

0 · · · 0 0 −1 0 · ·
· · · · · · 0

0 · · · · · −1

p(t) 0 · · 0 0 · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)n+2 × (−1)np(t) = p(t)

where p(t) = tn+1 −
∑n−m

k=0 tn−m−k.

3 The numbers of periodic points of RLL(m,n) shifts

First, we give the definitions of a periodic point, a cycle and the zeta function of a topological dynamical
sysytem. Let (M,φ) be a topological dynamical system. We donote φk the composition of φ with itself
k > 0 times, and call it k-th iteration of φ.

Definition 3.1 A point x ∈ M is periodic for φ if φk(x) = x for some k ≥ 1, and we say that x has
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period k under φ. If x is periodic, the smallest positive integer k for which φk(x) = x is the least period
of x. If φ(x) = x, then x is called a fixed point for φ.

Definition 3.2 For a periodic point x0 for φ of the least period k > 0 , we call the subset C =
{ x0, φ(x0), · · · , φk−1(x0) } of finite points of M a cycle of period k for φ.

Let pk(φ) denote the number of periodic points of period k, and qk(φ) that of the least period k. For a
shift space (X,φX), we write pk(X) for pk(σX) (resp. qk(X) for qk(σX)). From the Möbius inversion formula
([2]), qk(φ) and pk(φ) are related as follows:

qk(φ) =
∑
�|k

μ
(k

�

)
p�(φ)

where μ is the Möbius function defined by

μ(k′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(−1)r if k′ is the product of r distinct primes,

0 if k′ contains a square factor,

1 if k′ = 1.

We are now going to calculate pk(X(m,n)) the number of periodic points of period k in the RLL(m,n)
shift X(m,n) for k ≥ 1. In what follows we write pk(m,n) for pk(X(m,n)) for simplicity. We denote by
Z≥0 the set of all non-negative integers, and by Z

n−m+1
≥0 the product of n −m + 1 copies of Z≥0. For a

non-negative integer k, we define the subset Dk(m,n) of Z
n−m+1
≥0 by

Dk(m,n) =
{
(pm+1, · · · , pn+1) ∈ Z

n−m+1
≥0 |

n−m+1∑
i=1

(m+ i)pm+i = k
}

.

Then, the number pk+1(m,n) for k ≥ 0 is given as follows:

Proposition 3.3

(3.1) pk+1(m,n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (0<k<m− 1),

∑
(pm+1,··· ,pn+1)∈Dk+1(m,n)

(k+ 1)(pm+1 + · · ·+ pn+1 − 1)!

pm+1! · · ·pn+1!
(m<k),

where we understand that if Dk+1(m,n) = ∅, then the sum is equal to zero.

Proof: First, note that pk+1(m,n)/k+ 1 is the number of cycles of period k+ 1 in X(m,n), though, if
a cycle has period k′ + 1 with k+ 1 = �(k′ + 1) (� ≥ 1), then we should count this cycle as 1/� of a cycle of
period k+ 1. There is one-to-one correspondence between closed paths of length k+ 1 in the graph G(m,n)
and cycles of peiod k+1 in the shift X(m,n) if we do not take account of which vertex and edge closed paths
start at. Therefore, it suffices to count the number of closed paths starting at the vertex v0 of length k + 1

in the graph G(m,n). In G(m,n) there are n−m+ 1 closed paths πm+1, · · · , πn+1 starting at v0 specified
by ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

πm+1 = e0 ◦ · · · ◦ em−1 ◦ fm,

πm+2 = e0 ◦ · · · ◦ em−1 ◦ em ◦ fm+1,
...

πn+1 = e0 ◦ · · · ◦ em−1 ◦ em ◦ · · · ◦ en−1 ◦ fn.

We call these closed paths ”fundamental paths” since every closed path π starting at v0 in G(m,n) can be
expressed as

(3.2) π = πi1
◦ πi2

◦ · · · ◦ πis ,
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where each πiα (1<α<s) in this expression is one of πm+1, · · · , πn+1. If we denote by pm+i(π) the number
of πm+i which occurs in the expression in (3.2) for 1<i<n−m+1, then s =

∑n−m+1
i=1 pm+i(π) and the length

of the closed path π is
∑n−m+1

i=1 (m+i)pm+i(π). Note that, in the expression in (3.2), all of πi1
◦πi2

◦· · ·◦πis ,
πi2

◦ πi3
◦ · · · ◦ πis ◦ πi1

, · · · , πis ◦ πi1
◦ · · · ◦ πis−1

represent the same closed path in G(m,n). To count
the number of closed paths π’s which can be expressed as in (3.2) with pm+i(π) = pm+i for 1<i<n−m+ 1

for a given (pm+1, · · · , pn+1) ∈ Dk+1(m,n), we think of each pm+i as the number of positions where the
closed path πm+i occurs in the expression in (3.2). Then the number we seek is

1

(pm+1 + · · ·+ pn+1)

(
pm+1 + · · ·+ pn+1

pm+2

)(
pm+1 + · · ·+ pn+1

pm+2

)
· · ·

(
pn + pn+1

pn

)

=
(pm+1 + · · ·+ pn+1 − 1)!

pm+1! · · ·pn+1!

Thus we have the equality in (3.1).

4 Zeta functions of RLL(m,n) shifts

First, we give the definition of zeta function of a topological dynamical system.

Definition 4.1 Let (M,φ) be a topological dynamical system for which pk(φ) < ∞ for all k ≥ 1. The zeta
function ζφ(t) of (M,φ) is defined by

(4.1) ζφ(t) = exp
( 1∑

k=1

pk(φ)

k
tk

)
.

We know that if X is a shift of finite type, then there is an r × r non-negative integer matrix A with
X = XA ([1], Theorem 2.3.2) and the zeta function of XA is given by

(4.2) ζσA
(t) =

1

trχA(t−1)
=

1

det(Er − tA)
,

where σA denotes the shift map of XA, and χA the characteristic polynomial of A ([1], Theorem 6.4.6). The
equality in (4.2) follows from the definition of ζφ(t) and the fact that

pk(σA) = trAk = λk
1 + λk

2 + · · ·+ λk
r

where λ1, · · · , λr the root of χA(t) listed with multiplicity ([1], Proposition 2.2.12).
Now, we calculate pk+1(m,n) for k ≥ 0 by use of the zeta function of the shift dynamical system

XG(m,n). Since the characteristic polynomial χA(m,n)(t) of the adjacency matrix A(m,n) of the graph
G(m,n) is specified by

χA(m,n)(t) = tn+1 − (tn−m + tn−m−1 + · · ·+ t+ 1),

the zeta function ζσA(m,n)
(t) of XA(m,n) = XG(m,n) is given by

ζσA(m,n)
(t) =

1

tn+1χA(m,n)(t−1)
=

1

1− (tm+1 + · · ·+ tn+1)
.

Therefore, by (4.1),

(4.3)
1∑

k=0

pk+1(m,n)

k+ 1
tk+1 = log ζσA(m,n)

(t) = − log {1− (tm+1 + · · ·+ tn+1)}.
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We will calculate the Taylor’s expanssion of the R.H.S. of (4.3) at t = 0. Put

ϕ(t) = − log {1− (tm+1 + · · ·+ tn+1)},

g(t) = (m+ 1)tm + · · ·+ (n+ 1)tn, and

f(t) = 1− (tm+1 + · · ·+ tn+1).

Then

ϕ′(t) =
g(t)

f(t)
, and

ϕ(k+1)(t) =

k∑
�=0

(
k

�

)(1

f

)(k−�)

(t)g(�)(t) (k ≥ 0),

and so

ϕ(k+1)(0) =

k∑
�=0

(
k

�

)(1

f

)(k−�)

(0)g(�)(0) (k ≥ 0).

Since

g(�)(0) =

⎧⎨
⎩
(�+ 1)! m<�<n,

0 otherwise,

we have

(4.4) ϕ(k+1)(0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (0<k<m− 1),

k∑
�=m

(
k

�

)(1

f

)(k−�)

(0)(�+ 1)! (m<k<n− 1)

n∑
�=m

(
k

�

)(1

f

)(k−�)

(0)(�+ 1)! (n<k).

To know (1/f)(k−�)(0), we calculate the Tayler expansion of (1/f)(t) at t = 0, which is given by

(1

f

)
(t) =

1∑
α0=0

(tn+1 + · · ·+ tm+1)α0

=

1∑
α0=0

α0∑
α1=0

α0−α1∑
α2=0

· · ·
α0−(α1+···+αn−m−1)∑

αn−m=0

(
α0

α1

)(
α0 − α1

α2

)
· · ·

(
α0 − (α1 + · · ·+ αn−m−1)

αn−m

)

×t
Pn−m

i=1 (m+i)αi+(n+1)(α0−
Pn−m

i=1 αi).

(4.5)

=

1∑
α0=0

{ α0∑
α1=0

α0−α1∑
α2=0

· · ·
α0−(α1+···+αn−m)∑

αn−m=0

α0!

α1!α2! · · ·αn−m!(α0 − α1 − · · ·− αn−m)!

×t
Pn−m

i=1 (m+i)αi+(n+1)(α0−
Pn−m

i=1 αi)
}

.

Hence, if we put

Dk(m,n) =
{
(α1, · · · , αn−m, αn−m+1) ∈ Z

n−m+1
≥0 | α1 ≥ 0, · · · , αn−m+1 ≥ 0,

n−m+1∑
i=1

(m+ i)αi = k
}

,
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then (4.5) can be written as

(1

f

)
(t) =

1∑
k=0

{ ∑
(α1,··· ,αn−m,αn−m+1)∈Dk(m,n)

(α1 + · · ·+ αn−m+1)!

α1! · · ·αn−m+1!

}
tk,

and so (1

f

)(k−�)

(0) = (k− �)!
∑

(α1,··· ,αn−m,αn−m+1∈Dk−�(m,n)

(α1 + · · ·+ αn−m+1)!

α1! · · ·αn−m+1!
.

Hence, by (4.4),
(4.6)

ϕ(k+1)(0)

(k+ 1)!
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 (0<k<m− 1) ,

1

k+ 1

n∑
�=m

∑
(α1,··· ,αn−mαn−m+1)∈Dk−�(m,n)

(�+ 1)(α1 + · · ·+ αn−m+1)!

α1! · · ·αn−m+1!
(m<k).

By the definition of ϕ(t),
ϕ(k+1)(0)

(k+ 1)!
=

pk+1(m,n)

k+ 1
.

Therefor, by (4.6) and (3.1) we have the following equality:

∑
(pm+1,··· ,pn+1)∈Dk+1(m,n)

(k+ 1)(pm+1 + · · ·+ pn+1 − 1)!

pm+1! · · ·pn+1!

(4.7)

=

n∑
�=m

∑
(pm+1,··· ,pn+1)∈Dk−�(m,n)

(�+ 1)(pm+1 + · · ·+ pn+1)!

pm+1! · · ·pn+1!
(k ≥ m)

5 A formula in combinatorics

We will generalize the formula in (4.7). Let a1, · · · , as (s ≥ 1) be positive integers with a1 < a2 < · · · < as,
and k a non-negative integer. We define Dk(a1, · · · , as) by

Dk(a1, · · · , as) =
{
(p1, · · · , ps) ∈ Z

s
≥0 |

s∑
i=1

(ai + 1)pi = k
}

.

When s = n −m + 1 and a1 = m,a2 = m + 1, · · · , an−m+1 = n, Dk(a1, · · · , as) is nothing but Dk(m,n)
defined before. With this notation, we have:

Theorem 5.1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

(k+ 1)(p1 + · · ·+ ps − 1)!

p1! · · ·ps!

(5.1)

=

s∑
i=1

∑
(p1,··· ,ps)∈Dk−ai

(a1,··· ,as)

(ai + 1)(p + · · ·+ ps)!

p1! · · ·ps!
(k ≥ a1)
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Proof: We use the induction on s.

(I) In the case s = 1: Dk+1(a1) (k ≥ a1) is not empty if and only if k+ 1 is a multiple of a1 + 1. If this is
the case, we have

k+ 1

p1
= a1 + 1

for p1 ∈ Dk+1(a1) and the map which assigns p1 to p1−1 gives a one-to-one correspondence from Dk+1(a1)
to Dk−a1

(a1). Hence the equality in (5.1) holds.

(II) In the case s ≥ 2: We assume that the equality in (5.1) holds for s− 1. We put

S =
∑

(p1,··· ,ps)∈Dk+1(a1,··· ,as)

(k+ 1)(p1 + · · ·+ ps − 1)!

p1! · · ·ps!

For i with 1<i<s,

S =
∑

(p1,··· ,ps)∈Dk+1(a1,··· ,as)
pi≥1

(k+ 1)(p1 + · · ·+ ps − 1)!

p1! · · ·ps!

+
∑

(p1,··· ,ps)∈Dk+1(a1,··· ,as)
pi=0

(k+ 1)(p1 + · · ·+ p̆i + · · ·+ ps − 1)!

p1! · · · p̆i! · · ·ps!

where p̆i and p̆i! denotes deleting the symbols pi and pi!. Hence, we have

S =
1

s

{ s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

(k+ 1)(p1 + · · ·+ ps − 1)!

p1! · · ·ps!

+

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi=0

(k+ 1)(p1 + · · ·+ p̆i + · · ·+ ps − 1)!

p1! · · · p̆i! · · ·ps!

}(5.2)

Since each (p1, · · · , ps) ∈ Dk+1(a1, · · · , as) satisfies

s∑
j=1

(aj + 1)pj = k+ 1 and so,
k+ 1

pi
= (ai + 1) +

s∑
j=1
j �=i

(aj + 1)
pj

pi



 A Formula in Combinatorics 17

for every i with 1<i<s, the first term in the braces in (5.2) is transformed as follows:

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

(k+ 1)(p1 + · · ·+ ps − 1)!

p1! · · ·ps!

=

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

k+ 1

pi

{(p1 + · · ·+ (pi − 1) + · · ·+ ps}!

p1! · · · (pi − 1)! · · ·ps!

=

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

(ai + 1)
{(p1 + · · ·+ (pi − 1) + · · ·+ ps}!

p1! · · · (pi − 1)! · · ·ps!

+

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

s∑
j=1
j �=i

(aj + 1)
pj

pi

{(p1 + · · ·+ (pi − 1) + · · ·+ ps}!

p1! · · · (pi − 1)! · · ·ps!

=

s∑
i=1

∑
(p1,··· ,ps)∈Dk−ai

(a1,··· ,as)

(ai + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!

+

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

s∑
j=1
j �=i

(aj + 1)
pj

pi

{(p1 + · · ·+ (pi − 1) + · · ·+ ps}!

p1! · · · (pi − 1)! · · ·ps!

(5.3)

On the other hand, by the induction hypothesis the second term in the braces in (5.2) is transformed as
follows:

s∑
i=1

∑
(p1,··· ,pi,··· ,ps)∈Dk+1(a1,··· ,as)

pi=0

(k+ 1)
(p1 + · · ·+ p̆i + · · ·+ ps − 1)!

p1! · · · p̆i! · · ·ps!

=

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

pi=0

(aj + 1)
(p1 + · · ·+ p̆i + · · ·+ ps)!

p1! · · · p̆i! · · ·ps!
.

(5.4)

We claim that

s∑
i=1

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

s∑
j=1
j �=i

(aj + 1)
pj

pi

{(p1 + · · ·+ (pi − 1) + · · ·+ ps}!

p1! · · · (pi − 1)! · · ·ps!

+

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

pi=0

(aj + 1)
(p1 + · · ·+ p̆i + · · ·+ ps)!

p1! · · · p̆i! · · ·ps!

= (s− 1)

s∑
i=1

∑
(p1,··· ,ps)∈Dk−ai

(a1,··· ,as)

(ai + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!
.

(5.5)
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Indeed, this can be proved as follows:

The first term on the L.H.S. in (5.5)

=

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1

(aj + 1)
pj

pi

{(p1 + · · ·+ (pi − 1) + · · ·+ ps}!

p1! · · · (pi − 1)! · · ·ps!

=

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk+1(a1,··· ,as)

pi≥1,pj≥1

(aj + 1)
{(p1 + · · ·+ (pj − 1) + · · ·+ ps}!

p1! · · · (pj − 1)! · · ·ps!

=

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

pi≥1

(aj + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!

Hence:

The L.H.S in (5.5)

=

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

pi≥1

(aj + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!

+

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

pi=0

(aj + 1)
(p1 + · · ·+ p̆i + · · ·+ ps)!

p1! · · · p̆i! · · ·ps!

=

s∑
i=1

s∑
j=1
j �=i

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

(aj + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!

=

s∑
i=1

s∑
j=1

∑
(p1,··· ,ps)∈Dk−aj

(a1,··· ,as)

(aj + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!

−

s∑
i=1

∑
(p1,··· ,ps)∈Dk−ai

(a1,··· ,as)

(ai + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!

= (s− 1)

s∑
i=1

∑
(p1,··· ,ps)∈Dk−ai

(a1,··· ,as)

(ai + 1)
(p1 + · · ·+ ps)!

p1! · · ·ps!
.

Thus, the equality in (5.5) holds. Consequently, by (5.2), (5.3), (5.4) and (5.5), we obtain the equality in
(5.1).

6 RLL(a1, · · · , as) shifts

The number on the L.H.S. in (5.1) relates to the number of (k+1) cycles of a certain shift dynamical system.
For positive integers a1, · · · , as (s ≥ 1) with a1 < a2 < · · · < as, we define the (a1, · · · , as) run-length
limited shift, denoted by RLL(a1, · · · , as), or X(a1, · · · , as), to be the shift space associated to the labeled
graph in Figure 6.1. We denote by G(a1, · · · , as) the underlying graph of the labeled one in Figure 6.1, by
A(a1, · · · , as) the adjacency matrix of the
graph G(a1, · · · , as) and by XG(a1,··· ,as), or XA(a1,··· ,as), the edge shift associated to G(a1, · · · , as). As
in the case of RLL(m,n) shift, X(a1, · · · , as) is conjugate to XG(a1,··· ,as) as a shift space. The number
on the L.H.S. in (5.1) is equal to pk+1(X(a1, · · · , as)), the number of periodic points of period k + 1 in
X(a1, · · · , as). The adjacency matrix A(a1, · · · , as) is given by
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Figure 6.1: X(a1, · · · , as)

v0 v1 · · · va1−1 va1
· · · · · · · · vas

A(a1, · · · , as) =

v0

v1

·
·

va1−1

va1

va1+1

·
·

va2−1

va2

va2+1

·
·

vas−1

vas

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0 0 · · · · · · · · 0

· · · · · · · · · · · · · ·
· · · · · · · · · · · · · ·
· · 1 0 · · · · · · · · · ·
0 · · · · · 0 1 0 · · · · · · · · 0

1 0 · · · · 0 0 1 · · · · · · · · 0

0 0 · · · · 0 0 0 1 · · · · · · · 0

· · · · · · ·
· · · · · ·
0 0 · · · · 0

1 0 · · · · 0

0 0 · · · · 0

· · · · · ·
· · · · · ·
0 · · · · 1

1 0 · · · · 0 0 · · · · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and so the characteristic polynomial χA(a1,··· ,as)(t) of A(a1, · · · , as) is given by

χA(a1,··· ,as)(t) =
∣∣∣tEas+1 −A(a1, · · · , as)

∣∣∣ = tas+1 − (tas−a1 + tas−a2 + · · ·+ tas−as−1 + 1).

Hence the zeta function ζσA(a1,··· ,as)
(t) of XA(a1,··· ,as) = XG(a1,··· ,as) is given by

ζA(a1,··· ,as)(t) =
1

tas+1χA(a1,··· ,as)(t−1)
=

1

1− (ta1+1 + · · ·+ tas+1)
.

As in the case of RLL(m,n) shift, we can prove the equality in (5.1) by use of the identity

(6.1)
1∑

k=0

pk+1(X(a1, · · · , as))

k+ 1
tk+1 = log ζσA(a1,··· ,as)

(t) = − log {1− (ta1+1 + · · ·+ tas+1)}.

Notice that if we want to prove the equality in (4.7) directly, not using the zeta function of XG(m,n), we need
to generalize it to that of the form in (5.1), since we cannot apply the induction argument to the equality in
(4.7) to prove it.
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