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Abstract 

Although Cav1.2 Ca2+ channels are modulated by reactive oxygen species (ROS), the 

underlying mechanisms are not fully understood. In this study, we investigated effects of 

hydrogen peroxide (H2O2) on the Ca2+ channel using a patch-clamp technique in guinea-pig 

ventricular myocytes. Externally applied H2O2 (1 mM) increased Ca2+ channel activity in the 

cell-attached mode. A specific inhibitor of Ca2+/calmodulin-dependent protein kinase II, 

(CaMKII) KN-93 (10 µM), partially attenuated the H2O2-mediated facilitation of the channel, 

suggesting both CaMKII-dependent and independent pathways. However, in the inside-out 

mode, 1 mM H2O2 increased channel activity in a KN-93-resistant manner. Since H2O2-

pretreated calmodulin did not reproduce the H2O2 effect, the H2O2 target was presumably 

assigned to the Ca2+ channel itself. A thiol-specific oxidizing agent mimicked and occluded the 

H2O2 effect. These results suggest that H2O2 facilitates the Ca2+ channel through oxidation of 

cysteine residue(s) in the channel as well as via the CaMKII-dependent pathway. 
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Introduction 

An alteration in the cell’s redox state such as increased reactive oxygen species (ROS) 

production is associated with pathology [1-3]. In the heart, ROS as highly reactive compounds 

accumulate in tissues during myocardial ischemia/reperfusion and cause peroxidation of lipids 

and proteins [4], which play an important role in the pathogenesis of ischemia/reperfusion 

abnormalities, including myocardial stunning, irreversible injury, and reperfusion arrhythmias 

[5]. ROS-induced Ca2+ overload is one of the major causes of cardiomyocyte injury during 

ischemia/reperfusion [6]. Ca2+ overload induced by oxidation is thought to be mediated by 

increased Ca2+ release from the sarcoplasmic reticulum (SR) through the Ca2+ release channel 

(ryanodine receptor 2, RyR2) and decreased Ca2+ uptake by inhibiting Ca2+-ATPase (SERCA) 

activity [7].  

L-type (Cav1.2) Ca2+ channels (LTCCs) in the myocardium sarcolemma are the main 

route for Ca2+ influx into cells. Different from skeletal muscle, in cardiac myocytes, Ca2+ 

influx through LTCCs triggers Ca2+ release, determining the Ca2+ dynamics in the cardiac 

myocytes. Accumulating evidence shows that basal activity of LTCCs is modulated by 

cytoplasmic factors including protein kinase-mediated phosphorylation [8, 9], phosphatase-

mediated dephosphorylation (8-9) and the interaction with Ca2+ and Mg2+ [10], lipids [11] and 

proteins [12, 13]. Recent studies suggest that the function of LTCC is crucially modulated by 

ROS during ischemia/reperfusion [14, 15]. Exposure of myocytes to a high concentration of 

H2O2 results in alteration of Ca2+ channel activity and cellular Ca2+ homeostasis [16]. However, 

the mechanism underlying the effects of oxidation is so far controversial since both inhibition 

and facilitation of LTCCs by oxidation have been suggested [17-20]. The mechanism of the 

ROS effect on LTCCs also remains elusive. For example, H2O2 has been suggested to facilitate 

LTCCs by activation of Ca2+/CaM-dependent protein kinase II (CaMKII) through oxidation of 

methionine residues in CaMKII or increasing Ca2+ release through RyR (20). On the other 

hand, Tang et al. [19] have reported that H2O2-induced facilitation of LTCCs is mediated by 

glutathionylation of LTCCs.  



Yan et al.  

- 4 - 

To explore the effect of oxidation on cardiac LTCCs and the underlying mechanisms, the 

inside-out mode of patch-clamp technique is beneficial since the internal side of LTCC can be 

well controlled. We have previously found that LTCC activity is maintained with calmodulin 

(CaM) and ATP without run-down of the channel in the inside-out patches [12, 21-26]. In this 

study, using this method we have investigated the effect of H2O2 on the current through 

LTCCs. H2O2 was found to increase Ca2+ channel activity both in the cell-attached mode and 

the inside-out mode. The specific CaMKII inhibitor KN-93 partially attenuates the facilitation 

effect in the cell-attached mode, but had no effect in the inside-out mode. Our results suggest 

H2O2 facilitates LTCCs through CaMKII-dependent and independent pathways. 

 

Materials and methods  

Materials 

MgATP, hydrogen peroxide (H2O2) tablet and 5,5’-dithiobis (2-nitrobenzoic acid) (DNTB) 

(cysteine residue oxidation reagent) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA), KN-93 (CaMKII inhibitor) and KN-92 (inactive analog of KN-93) were from 

Calbiochem (San Diego, CA, USA) and Bay K 8644 (Ca2+ channel agonist) was from Wako 

(Osaka, Japan). 

 

Preparation of single cardiac myocytes 

Single ventricular myocytes were isolated from adult guinea-pig hearts by collagenase 

dissociation as described previously [27]. In brief, a female guinea pig (weight 300-500 g) was 

anesthetized with pentobarbital sodium (30 mg/kg, i.p.), and the aorta was cannulated in situ 

under artificial respiration. The dissected heart was mounted on a Langendorff apparatus and 

perfused with Tyrode solution for 3 min, then with nominally Ca2+-free Tyrode solution for 5 

min, and finally with Ca2+-free Tyrode solution containing collagenase (0.08 mg/ml; Yakult) 

for 7–15 min. The collagenase was washed away with a high K+, low Ca2+ solution (storage 

solution). The single ventricular myocytes were dispersed and filtered through a stainless steel 
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mesh (105 µm). 0.05 mg/ml protease (Type XIV, Sigma) and 0.02 mg/ml DNase I (Type IV, 

Sigma) were incubated with the myocytes to improve the success rate in attaining a gigaohm 

seal. The enzyme-treated myocytes were then washed twice by centrifugation (800 rpm for 3 

min) and stored at 4oC.  

The experiments were carried out under the approval of the Committee of Animal 

Experimental, Kagoshima University.  

 

Solutions 

Tyrode solution contained (in mM) 135 NaCl, 5.4 KCl, 0.33 NaH2PO4, 1.0 MgCl2, 5.5 glucose, 

1.8 CaCl2, and 10 HEPES-NaOH buffer (pH 7.4). The storage solution was composed of (in 

mM) 70 KOH, 50 glutamic acid, 40 KCl, 20 KH2PO4, 20 taurine, 3 MgCl2, 10 glucose, 10 

HEPES, and 0.5 EGTA and the pH was adjusted to 7.4 with KOH. The pipette solution 

contained (in mM) 50 BaCl2, 70 tetraethylammonium chloride, 0.5 EGTA, 0.003 BAY K 8644, 

and 10 HEPES-CsOH buffer (pH 7.4). The basic internal solution consisted of (in mM) 90 

potassium aspartate, 30 KCl, 10 KH2PO4, 1 EGTA, 0.5 MgCl2, 0.5 CaCl2, and 10 HEPES-

KOH buffer (pH 7.4; free Ca2+ 80 nM, pCa 7.1). CaM and MgATP were dissolved in basic 

internal solution in the inside-out patch mode.  

 

Preparation of CaM   

The cDNA of human CaM cloned into the pGEX6P-3 vector (GE Healthcare Bioscience, 

Uppsala, Sweden) was expressed as a glutathione-S-transferase (GST) fusion protein in 

Escherichia coli BL21 and purified using glutathione–Sepharose 4B (GE Healthcare). The 

GST region was cleaved by PreScission Protease (GE Healthcare). The purity of CaM was 

confirmed by SDS-PAGE and quantified by the Bradford method (Thermo Fisher Scientific, 

Rockford, IL, USA) with bovine serum albumin as the standard and a correction factor of 1.69.  

 

Patch clamp and data analysis  
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Barium current through LTCCs was recorded in the cell-attached and inside-out mode using 

the patch-clamp technique. For the recording in the cell-attached mode, the myocytes were 

perfused with the basic internal solution at 31–35°C using a patch pipette (2–4 MΩ) 

containing 50 mM Ba2+ and 3 µM Bay K8644. Bay K8644, a Ca2+ channel agonist, was used 

to prolong the open time of the channel to facilitate the experiments. Barium currents through 

LTCCs were elicited by depolarizing pulses from -70 to 0 mV for a 200 ms duration at a rate 

of 0.5 Hz. The currents were recorded with a patch-clamp amplifier (EPC-7; List, Darmstadt, 

Germany) and fed to a computer at a sampling rate of 3.3 kHz. The mean current ( I ) was 

measured and divided by the unitary current amplitude (i) to yield NPo, based on the equation 

I = N × Po ×i, where N is the number of channels in the patch and Po is the time-averaged 

open-state probability of the channels. Data are presented as the mean ± S.E. Student’s t-test or 

ANOVA with post-hoc Tukey HSD test was used to estimate statistical significance and values 

of P < 0.05 were considered as significant.  

  

RESULTS 

H2O2 facilitated Ca2+ channel in the cell-attached mode via CaMKII-dependent and 

independent pathways  

We first examined the effect of H2O2 on the current through LTCCs in the cell-attached mode 

in guinea-pig ventricular myocytes. After recording the current for 2 minutes as a control, 1 

mM H2O2 was applied in the perfusion solution. As shown in Fig. 1A and B, Ca2+ channel 

activity was rapidly increased without a change in the unitary current amplitude. Taking an 

average of six patches, the Ca2+ channel activity was increased to 206 ± 32 % of the control 

(Fig. 1D). This result confirmed the facilitating effect of H2O2 on LTCCs.  

Facilitation of LTCCs by glutathionylation [19] or phosphorylation mediated by activated 

CaMKII [20] during oxidative stress has been proposed. To evaluate the possible CaMKII-

dependent effect of H2O2, we incubated the cardiomyocytes with 10 µM KN-93, a specific 

CaMKII inhibitor, for 10 minutes before recording the current. Under this condition, it has 
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been reported that activity of CaMKII is nearly completely inhibited by KN-93 [28, 29]. As 

shown in Fig. 1C, KN-93 significantly attenuated H2O2-mediated facilitation (132 ± 15 % 

(n=9) vs 206 ± 32 % with no drug, P<0.05), while KN-92, an inactive analog of KN-93, 

partially attenuated the facilitation but it was not statistically significant (156 ± 13 % (n=5) vs 

206 ± 32 % with no drug, P=0.30). These results suggested that not only CaMKII-dependent 

but also independent pathways were involved in H2O2-mediated facilitation of LTCCs.  

 

H2O2 facilitated Ca2+ channel  in the inside-out mode independently of CaMKII  

To explore the mechanism of CaMKII-independent facilitation of LTCCs produced by H2O2, 

we investigated the H2O2 effect on LTCCs in the inside-out patches in which the Ca2+ channel 

activity was maintained by application of 1 µM CaM together with 3 mM ATP [12, 21-26].  In 

the inside-out patch mode, LTCCs were disconnected with cytoplasmic factors and perfused 

with an artificial solution with known composition. This was quite beneficial to examine direct 

effects of external reagents on LTCC. After the patch was excised and moved to a small inlet 

in the perfusion chamber which was connected to a microinjection system, CaM/ATP was 

immediately applied to induce Ca2+ channel activity, the single channel current was recorded 

for 3 minutes as a control current, then 1 mM H2O2 was added into the CaM/ATP solution. As 

shown in Fig. 2A, H2O2 significantly increased the CaM-induced Ca2+ channel activity in the 

inside-out mode. This facilitatory effect of H2O2 was concentration dependent up to 1-2 mM, 

and higher concentrations of H2O2 conversely inhibited Ca2+ channel activity presumably 

because of a non-specific deteriorating effect of H2O2 (Fig. 2B). These results suggested that 

H2O2 (<2 mM) facilitated Ca2+ channel activity in the inside-out patches via a direct 

modification of LTCC and/or its closely-located proteins such as CaM and CaMKII. To assess 

the possibility that CaMKII was still located near the channel and modulated channel activity 

in the excised patches, we examined the effect of KN-93 in the inside-out patches. As shown 

in Fig. 2C, KN-93 had only a small effect on the H2O2-mediated facilitation of LTCCs in the 

inside-out mode. In summary, channel activity was modulated by H2O2 from 144 ± 32 % 
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(control) to 272 ± 70 % in the absence of KN-93 (n=5), and from 139 ± 21 % to 231 ± 29 % in 

the presence of KN-93 (n=6). Although KN-93 seemed to slightly attenuate the increasing 

effect of H2O2 on channel activity, this difference was statistically insignificant. Thus KN93 

did not significantly affect the H2O2-mediated facilitation of the Ca2+ channel in the inside-out 

mode.  

H2O2 may also able to oxidize CaM and modulate the effect of CaM on Ca2+ channel 

activity. To assess this possibility, we examined the effect of oxidized CaM pretreated with 1 

mM H2O2 at room temperature for 30 minutes. As shown in Fig. 3A and B, after Ca2+ channel 

activity was maintained by intact (untreated with H2O2) CaM + ATP in the inside-out patches, 

we substituted the oxidized CaM for the untreated CaM. Channel activity did not change 

significantly, suggesting that CaM was not oxidized or oxidized CaM, if any, had similar 

potency as the untreated CaM on activity of LTCC (Fig. 3C). This result suggested that 

oxidation of CaM was not involved in the H2O2-mediated facilitation of LTCCs, and thus a 

direct oxidation of LTCCs might be a possible mechanism for the facilitation in the inside-out 

mode. 

 

Cysteine residues in the Ca2+ channel are involved in H2O2-mediated facilitation  

The α1C subunit of LTCC contains 38 cysteine residues and 36 methionine residues in the 

cytoplasmic chains, which are potentially subject to oxidation modification. To identify the 

amino acid residue which was oxidized by H2O2 and responsible for the H2O2-mediated 

facilitation of LTCCs, a specific oxidizing agent of cysteine residues 5,5'-dithiobis-(2-

nitrobenzoic acid) (DTNB) was applied in place of H2O2. As shown in Fig. 4, 1 mM DNTB 

significantly increased Ca2+ channel activity maintained by CaM (from 129 ± 22 % up to 184 

± 21 %, n=5), suggesting that oxidation of cysteine residue(s) was responsible, at least 

partially, for the H2O2-mediated facilitation of LTCCs. Since there is no specific oxidizing 

agent of methionine residues available, we examined the effects of H2O2 on LTCC after 

application of DTNB. Application of H2O2 + CaM after DTNB + CaM only slightly increased 
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Ca2+ channel activity and was statistically insignificant (Fig. 5). These results suggested that 

oxidation of cysteine residue(s) was the major cause of the H2O2-mediated facilitation of 

LTCCs in the inside-out patches.   

 

Discussion  

In the present study, we investigated the effect of hydrogen peroxide (H2O2) on the L-type 

Ca2+ channel (LTCC) of cardiac myocytes in the cell-attached and the inside-out mode. We 

found that H2O2 facilitates cardiac LTCCs through two pathways: 1) direct oxidation of 

cysteine residue(s) of the channel; 2) indirect pathways via activation of CaMKII. 

Changes of the redox state in the cardiac myocytes play an important role in heart 

diseases. LTCC as a major regulator of cardiac function is subject to redox modification. 

Although there is accumulating evidence supporting that reactive oxygen species (ROS) 

modulate the function of LTCCs, the results of these studies are controversial: Oxidizing 

agents are reported to inhibit the human and rabbit cardiac LTCC expressed in HEK293 cells 

[17, 18]. In isolated guinea-pig ventricular myocytes, oxidation decreased the current through 

LTCC [30]. On the other hand, a decrease in cellular superoxide and H2O2 is associated with a 

decrease in the current of native [31, 32] and expressed LTCCs [17, 33], while the thiol-

specific oxidizing agent DNTB increases the LTCC current [34]. The complicated interactions 

between LTCC and uncontrolled cytoplasmic factors may be partially responsible for the 

uncertainty surrounding the effects of oxidation on LTCCs. The present study took advantage 

of the inside-out mode of patch-clamp technique in which most of the cytoplasmic factors 

were washed out [12, 21-26]. Our results show that H2O2 facilitates LTCC at concentrations 

up to 2 mM and inhibits the channel at higher concentrations. This finding may partly account 

for the diverse results in the previous studies. 

The underlying mechanisms of modulation of the Ca2+ channel by H2O2 are not completely 

clear. Song et al. [20] have reported that H2O2-mediated facilitation of the Ca2+ channel 

through activation of CaMKII can be activated either by Ca2+/CaM or oxidation of methionine 
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residues in CaMKII. Thus, H2O2 is involved in both activation processes: 1) H2O2 enhances 

Ca2+ release from SR by increasing RYR activity; 2) Oxidation of methionine residues in 

CaMKII protein (amino acid numbers: 281 and 282 in mouse) sustains the kinase activity 

independent of Ca2+/CaM [3]. However, Tang et al. [19] suggest that H2O2 facilitates the Ca2+ 

channel through direct glutathionylation of the channel protein. It is difficult to distinguish the 

direct effect of H2O2 from an indirect one when examining whole cells. In the present study, 

we employed a method to record LTCC current in the inside-out mode in which channel 

activity was maintained by CaM/ATP in the internal solution [12, 21-26]. Our results show 

that the CaMKII specific inhibitor KN-93 did not completely attenuate H2O2-mediated 

facilitation of LTCC in the cell-attached mode, suggesting that H2O2-mediated facilitation is 

mediated by not only a CaMKII-dependent pathway but also CaMKII-independent pathways. 

The finding that KN-93 does not inhibit the H2O2 effect in the inside-out mode indicated that 

the CaMKII-mediated facilitation is absent in the inside-out mode, and hence implies that 

CaMKII might not be attached to LTCC or, if present, it might not be in a state sensitive to 

oxidation in our inside-out patches.  

Thus our results indicate that, in addition to the CaMKII-dependent pathway, there is an 

additional CaMKII-independent pathway for the H2O2-mediated facilitation of LTCC. Since 

most intracellular proteins are washed out in the inside-out patches, it is likely that direct 

oxidation of LTCC or its associated proteins by H2O2 might be involved in the facilitation of 

LTCC. Since H2O2-pretreated CaM does not mimic the facilitatory effect of H2O2, oxidation of 

CaM does not account for the mechanism of facilitation. This is consistent with the fact that 

human CaM does not contain any cysteine residues. Thus, it seems most likely that the Ca2+ 

channel protein itself undergoes direct oxidation by H2O2 as the CaMII-independent pathway 

of the LTCC facilitation.  

Both cysteine and methionine residues are subject to oxidation by H2O2. The pore-

forming subunit α1C of cardiac LTCC is rich in cysteine and methionine residues in the 

cytoplasmic chains [35]. Our findings that the specific cysteine oxidizing agent DTNB mimics 
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the H2O2 effect and that the effect of subsequently applied H2O2 is largely occluded suggests 

that cysteine residue(s) are involved in the H2O2-mediated facilitation. However, this does not 

exclude a possible involvement of a methionine residue(s). Future work should determine the 

oxidation sites responsible for the H2O2-mediated modulation of LTCC. In conclusion, LTCC 

may undergo ROS-mediated modification via the direct oxidation of LTCC as well as the 

indirect pathways involving CaMKII activation. This would be relevant for the understanding 

of ROS-mediated regulation of ion channels and Ca2+ overload and arrhythmogenesis during 

oxidation stress on the heart.  
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Figure legends 

 

Fig. 1  H2O2 facilitates L-type Ca2+ channel activity in cell-attached mode.  A Time course 

of channel activity (NPo) recorded in cell-attached mode before and after application of 1 mM 

H2O2. B Examples of current traces of the Ca2+ channels before (a) and after (b) application of 

H2O2 taken at the times indicated in A. C Effect of 1 mM H2O2 on channel activity (NPo) 

recorded in the cell-attached mode in the presence of 10 µM KN-93. D Summary of the 

normalized activity of the Ca2+ channel treated with H2O2 with no drug (n=6), and with 10 µM 

KN-93 (a specific CaMKII inhibitor) (n=9) or KN-92 (an inactive form of KN-93) (n=5). 

Mean channel activity (60 traces) in each patch was normalized to the corresponding control 

value, averaged in the same group, and shown as mean ± S.E. * P<0.05 and ** P<0.01 vs. 

control (Student’s t-test), and # P<0.05 and NS not significant vs. H2O2 without drug (ANOVA 

and Tukey HSD test).  

 

Fig. 2  H2O2-mediated facilitation of Ca2+ channel activity in inside-out mode. A and C  

Time course of channel activity (NPo) recorded in cell-attached (c.a.) mode followed by 

inside-out (i.o.) mode, in which channel activity was maintained with 1 µM CaM + 3 mM ATP, 

and then 1 mM H2O2 without (A) or with (C) 10 µM KN-93 was additionally applied as 

indicated by the boxes in each graph. ATP was included throughout the experiments in the 

inside-out mode. B  Concentration-dependent effect of H2O2. Normalized channel activity was 

plotted against concentration of H2O2. Data (n=4-6) were fitted with a combined Hill’s 

equation as: 

 (100 + A⋅[H2O2]^nf /(Kdf ^nf + [H2O2]^nf ))⋅(Kdi ^ni /(Kdi ^ni + [H2O2]^ni ),  

where [H2O2] is the concentration of H2O2, A the extent of facilitation, Kdf and Kdi apparent 

dissociation constants, and nf and ni Hill’s numbers for facilitation and inhibition, respectively. 

The fitted curve was drawn with A=147, Kdf =0.68 mM, nf =2, Kdi =3.11 mM and ni =3 

(r2=0.983). D  Summary of the normalized channel activity in the presence of CaM + ATP in 
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i.o. mode before and after addition of H2O2 ± KN-93 (n=5-6). Data are shown as mean ± S.E. 

* P<0.05 vs. CaM (t-test), NS not significant (ANOVA). 

 

Fig. 3  Facilitation of Ca2+ channel by H2O2 is not because of oxidation of CaM. CaM was 

pre-incubated with 1 mM H2O2  for 30 min and then applied to the Ca2+ channels. A Time 

course of channel activity recorded first in cell-attached (c.a.) mode followed by inside-out 

(i.o.) mode with 1 µM non-treated (intact) CaM + 3 mM ATP, followed by substitution with 

H2O2-treated CaM (1 µM). B Example of current traces for the control in c.a. mode (a), with 

CaM + ATP in i.o mode (b) and H2O2-treated CaM + ATP (c), at the time period indicated in A. 

C  Summary of normalized channel activity induced by CaM + ATP (n=7) and H2O2-treated 

CaM + ATP (n=6). Data are shown as mean ± S.E. *** P<0.001 vs. control (c.a.), NS not 

significant (ANOVA and Tukey HSD test). 

 

Fig. 4  DTNB, a specific oxidant of cysteine residues, facilitates Ca2+ channel activity in 

inside-out mode. A  Time course of channel activity recorded first in cell-attached (c.a.) mode 

followed by inside-out (i.o.) mode. After patch excision, 1 µM CaM + 3 mM ATP was applied 

to maintain channel activity, and then DTNB (1 mM) was additionally applied. B Example of 

current traces for the control in c.a. mode (a), with CaM + ATP in i.o mode (b) and with CaM 

+ ATP + 1 mM DTNB (c) at the time period indicated in A. C Summary of normalized channel 

activity in the presence of CaM + ATP and CaM + ATP + DTNB (n=5). Data are shown as 

mean ± S.E. * P<0.05 vs. control (t-test). 

 

Fig. 5  A  Time course of channel activity recorded first in cell-attached (c.a.) mode followed 

by inside-out (i.o.) mode. After patch excision, 1 µM CaM + 3 mM ATP was applied to 

maintain channel activity, then DTNB (1 mM) was added, and finally H2O2 (1 mM) was 

additionally applied. B  Summary of channel activity induced by CaM + ATP + DTNB (n=5) 

and CaM + ATP + H2O2 (n=6), normalized to the activity values obtained for conditions of 
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CaM + ATP. Data are shown as mean ± S.E. NS not significant (t-test).  
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