最終試験の結果の要旨

報告番号	総研第250号		学位申請者		楊 磊
審查委員	主査	桑木 共之		学位	博士(医学・歯学・学術)
	副查	宮田 篤郎		副查	堀内 正久
	副查	栗原 崇		副査	柏谷 英樹

主査および副査の5名は、平成25年7月10日、学位申請者 楊 磊 君に面接し、学位申請論文の内容について説明を求めると共に、関連事項について試問を行った。具体的には、以下のような質疑応答がなされ、いずれについても満足すべき(回答)を得ることができた。

- 質問1) Why did you use Ba²⁺ instead of Ca²⁺ for the recording of Ca²⁺ channel currents?
- (回答) Because Ba²⁺ is more permeable to the channels than Ca²⁺, and prevents Ca²⁺-dependent inactivation of the channel. Our experiments were thereby facilitated very much.
- 質問2) In your internal solution, why did you use a high concentration of K⁺ and low concentrations of Na⁺ and Ca²⁺?
- (回答) We aimed to make the internal solution whose ionic composition was similar to that of cytoplasm. Then, the resting membrane potential could be fixed to zero.
- 質問3)Can you record Ca²⁺ current without Bay K 8644 (Ca²⁺ channel agonist)?
- (回答) Yes. However, we have used Bay K in our experiments, because Bay K prolongs the open time of the channel that makes a stable and reliable recording of the channel activity.
- 質問4) Does KN-93 have any effects on activity of the Ca²⁺ channel?
- (回答) It is reported that a CaMKII inhibitor KN-93 can directly inhibit Ca²⁺ channels. However, low concentrations of KN-93 (<10 μM) do not significantly inhibit the channel.
- 質問5) In your experiment, guinea-pig myocytes were used, but CaM was from human. How about the similarity between human CaM and guinea-pig CaM.
- (回答) Homology between human CaM and guinea-pig CaM is very high. There are small difference in the nucleotide sequence, but no difference in the amino acid sequence.
- 質問6) Is H_2O_2 permeable to membrane? Does H_2O_2 directly pass through the cell membrane or via some other channels?
- (回答) Yes, H_2O_2 is permeable to cell membranes. It is suggested that H_2O_2 does not pass through the lipid phase, but through aquaporins, water-permeable channels.
- 質問7) Do you think that the effect of H_2O_2 is reversible? Can the channel be reduced by any reagent?

- (回答) We think the effect may be reversible. It is reported that the effect of thiol-oxidizing agents on the Ca²⁺ channel is reversed by dithiothreitol (DTT). However, we have not tested the effect of DTT in this study.
- 質問8) Please explain production and metabolism of H₂O₂.
- (回答) First, superoxide (O_2^-) is generated from oxygen mainly by NADPH oxidase and the mitochondrial electron transport chain, and then, O_2^- is catalyzed by superoxide dismutase (SOD) to H_2O_2 . H_2O_2 is degraded to H_2O by catalase and glutathione peroxidase.
- 質問9) You treated CaM with H_2O_2 . So, do you think that CaM can be oxidized by H_2O_2 ? Is there any evidence in your experiment or some reports for oxidation of CaM by H_2O_2 ?
- (回答) Yes, it has been reported that the methionine residues in CaM is oxidized by H_2O_2 . However, our aim was to examine whether a short time (10 min) was enough for H_2O_2 to oxidize CaM, which was enough for H_2O_2 to manifest the facilitation of the channels.
- 質問 10) Did you determine which cysteine residues is responsible for the H_2O_2 -mediated facilitation of the Ca^{2+} channel?
- (回答) No, not yet. In this study, we have found only that some cysteine residues are involved in the H₂O₂-mediated facilitation of the channel. In the future study, we would like to identify the cysteine residues responsible for the facilitation.
- 質問 11) Please explain how CaMKII facilitates the L-type Ca²⁺ channel?
- (回答) CaMKII facilitates Ca^{2+} channel activity through phosphorylation of the channel protein. Both the main ($\alpha 1C$) and accessory (β) subunits of the channel are suggested to be phosphorylated, but it is still in discussion.
- 質問 12) How are you sure that oxidation of $\alpha 1$ C, but not other subunits, is responsible for the H_2O_2 effect.
- (回答) We are not sure for this. We cannot exclude the possibility that β -, $\alpha 2\delta$ -, and/or γ -subunit(s) is oxidized and thereby modulates activity of the channels.
- 質問 13) Is it possible that H_2O_2 facilitates the Ca^{2+} channel through modulation the effect of Bay K 8644, but not through direct oxidation of Ca^{2+} channel?
- (回答) We could not rule out this possibility. However, it is difficult to think that agonistic effect of Bay K 8644 is potentiated by oxidation, because the effects of dihydropyridines, such as nifedipine and Bay K 8644, are easily lost by photo-oxidation.
- 質問 14) Did you check whether a Ca²⁺ channel blocker influences the H₂O₂-induced facilitation of the Ca²⁺ channel?
- (回答) No, not yet. We would like to examine this point in the future study.
- 質問 15) H₂O₂ can oxidize proteins and lipids in the membrane. Which one is more sensitive to oxidization?
- (回答) Generally speaking, proteins may be more sensitive to redox modification. However, for example, unsaturated lipids are very sensitive to the attack of the hydroxyl radical (· OH).
 - 以上の結果から、5名の審査員は申請者が大学院博士課程修了者としての学力・識見を有しているものと認め、博士(医学)の学位を与えるに足る資格を有するものと認定した。