論 文 要 旨

Tumour-suppressive *microRNA-24-1* inhibits cancer cell proliferation through targeting *FOXM1* in bladder cancer

Satoru Inoguchi¹, Naohiko Seki², Takeshi Chiyomaru¹,

Tomoaki Ishihara¹, Ryosuke Matsushita¹, Hiroko Mataki³,

Toshihiko Itesako¹, Shuichi Tatarano¹, Yusuke Goto²,

Rika Nishikawa², Masayuki Nakagawa¹, Hideki Enokida¹

¹Department of Urology, Graduate School of Medical and Dental Sciences,

Kagoshima University, Kagoshima, Japan

²Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan

³Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan

Here, we found that *microRNA-24-1* (*miR-24-1*) was significantly reduced in bladder cancer (BC) tissues, suggesting that it functioned as a tumour suppressor. Restoration of mature *miR-24-1* inhibited cancer cell proliferation and induced apoptosis. *FOXM1* was a direct target gene of *miR-24-1*, as shown by genome-wide gene expression analysis and luciferase reporter assay. Overexpressed *FOXM1* was confirmed in BC clinical specimens, and silencing of *FOXM1* induced apoptosis in cancer cell lines. Our data demonstrated that the *miR-24-1-FOXM1* axis contributed to cancer cell proliferation in BC, and elucidation of downstream signalling will provide new insights into the molecular mechanisms of BC oncogenesis.