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Abstract

The classical Brachistochrone curve is one of fastest descent on a vertical plane.
In this paper curves on fastest descent on surfaces that can be represented by elliptic
integrals are studied. In the first part it is shown that such curves have to lie on spheres
or cones. In the second part curves on cones are studied in detail and it is found that
these curves approach to cycloids as cones become cylinders gradually.

1 Introduction

A Brachistochrone curve, or curve of fastest descent, is the curve between two points that
is covered in the least time by a body that starts at the first point with zero speed and is
constrained to move along the curve to the second point, under the action of constant gravity
and assuming no friction.

The problem of Brachistochrone curve is first posed by Johann Bernoulli, and is solved
simultaneously by himself and several his contemporaries ([1]). It is very old, but has conti-
nously atrracted many people until now ([2], [3]).

In this paper we study brachistochrone curves on surfaces of rotation. Consider a surface
of rotation defined by

r(z) cosp
r=| r(z)sing
z
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We consider a curve that lies on the above surface, (p(u), z(u)), where u is a parameter.
Then an infinitesimal length of the curve is given by

ds = /Ep? + 2F¢'2' + G2%du = /1292 + (r} + 1)22du,

d
where ¢’ = de and 2/ = =

du du’
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Suppose that the desired curve starts at a fixed point ¢ = O, z = zp and reaches a fixed
point ¢ = 1,z = z;. When a body passes through a plane of height 2, then its speed
becomes /2g{(zo — z), where g denotes the gravity accelleration. Therefore our problem is
to find a curve that minimizes

/ T, 2,0, 2 )du,

f2 12 + (,,.2 + 1)2’2
J , /‘ N — TP 1 .
(W,Z 4 Z) \/Ea-_—z

Since J does not contain ¢ explicitly, the Euler equation of our variational problem
reduces to
d (8J\ oJ
du\8¢' ]~ dp

by _ 1 'y
a<p/ \/ZO —z \/TQ(p/z + (T‘% + 1)z’2

where

Consequently we can deduce

=Cly

where (' is a constant. Hence the differential equation follows
Civzg — zo/7 1 2 +1
r(z Vr(z)2 02(20 - z)
Therefore its general solution can be formally expressed as
_ Vzo — z\/rl (2)2+1
=0 dz + Cs,
(2)/T(2)2 = C¥{zo — 2)

where C, Cy are constants which can be determined by 2p, 1, 21.

(1.1)

We seek a surface such that the integral that appears in (1.1) can be reduced to an elliptic

integral. We write
r(2) = v/ P(z2).
Then we have
/ Vo —zVn(E)P+1 / m\/ﬂ—W
2)4/1(2)? — C3(zp — 2) 2P(2)/P(z) — C?(z0 — z)

Accordingly it is necessary that P(z) is a quardratic polynomial and /P/(2)2 +4P(z) is a
square of a polynomial. Thus we assume that P(z) = az? + bz + c¢. Then we have

P'(2)? + 4P(2) = 4a(a + 1)2? + 4(a + 1)bz + (b? + 4c).

Since it is a square of a polynomial of degree one, its determinant (a+1)(b*—4ac) must vanish.
Hene it follows that a = —1 or b*>~4ac = 0. In the former case we have r(z) = V=22 + bz + ¢,

i r(2)? + (z - g>2 = (g)Z —c

which is an equation of a sphere. In the latter case we have 7(z) = vaz + ﬁa, which is an
equation of a cone. In this preliminary study we treat only a cone. Without loss of generality
we may assume that a cone is specified by r(z) = a + bz.
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2 Brachistochrone on a cone

Suppose that a surface of rotation is a cone r(z) = a+ bz, where b is supposed to be positive.
Then the equation (1.1) becomes

dy Civb2+ 12— 2

dz  (a+b2)\/(a+b2)2— C2(z0— 2)

Hence, changing variable by = = +/zg — 2, we have

dp Cz?
— = , (2.1)
dz (2% - 22)y/(a? - A?)? - (2pz)?
where we put
0_201\/b2+1 A= a+ bz _ﬂ
ST VT o F T
To solve the differential equation (2.1), we need to evaluate an elliptic integral
z%dz
I / : _ (2.2)
(=2 = M)V f(z)

where
f(@) = (2% — A?)* — (2uz)>.

In the next section we will evaluate the integral I and find the following result
1 2\ 1 —1/..
I= u [9+arctan (\/1 —k? tan@) —2(1—-k%)% -sn (s1n9)] ,

where a variable 8 is related to z as

V1-k2sin?6—v

1—k2sin’0+v

=M

with parameters v and k defined by (3.1) and (3.2) respectively. Therefore we obtain the
following theorem.

Theorem The Brachistochrone on a cone is a curve defined by

Vv 2 L
P = % [9 + arctan (\/ 1—k? tan 0) —2(1 -k -sn~! (sin 9)] +C (2.3)

and

(2.4)

a V1= k2sin?6 — (1 - k?)3 ?
ZZZQ—(E-*-Z())- — 1
V1—k2sin? 6 + (1 - k2)3

where k and C are constants determined by 29, 21, 1.

3 Evaluation of an elliptic integral

In this section we evaluate an elliptic integral

z2dz
1=/ @ V)@
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where
£(@) = (@® = N?)? — (2ua)™.
To evaluate the integral I, we change variable as
B\ dn (u, k) —v
dn(u,k) + v’

T =

where we define a positive parameter v and k by

o VEEE )
/u2+A2+/\

and
K =1-4
Since (3.1) implies
2w
I'L - 1 _ V2,

we have

dnu —v

2
dnu—v\? v

— 4 — - 2. _L =7

flz) = A {<dnu+u> 1} {4/\ 1-v?2 dnu+v

16X4p2

(1—»2)%(dnu+v)
Using (3.2) we see

(1 —v?)2dn?u — (dn®u — 1?)?

Il

k2%sn®u - k%cn® u.

Accordingly we get

~— 43y k%snucnu
fla) = 1—.2 (dn +v)2’

3

On the other hand, since

— dnu = —k%snucnu,

du
we have

dec , k%snucnu

du (dnu+v)?’
Consequently, from (3.4) and (3.5), it follows that

_ 2
dz _ 1—v du.

That is, by (3.3), we obtain

Now, since

22 1 (dn-w»? 1
2222 4y dnu 4w

(2010)

(2 - k%)dn®u —dn*u — (1 — k2)

(1- dn? u)(dn2 u—(1— kz))

;

- 5 (1 - v¥)%dnu — (dn?u - 1%)?].

(3.1)

(3.2)

(3.3)

(3.4)
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we have

1 du
I:— 2 —_—
m [/dnudu+u / o 21/'1{‘

Then, by change of variable as snu = sin#, we have cnudnudu = cos§. Hence

_cosfdf  cosfdf  cosbdf
vy y1-snu

/dnudu =4.

dnudu =d#.

\/l—sin20—

Accordingly we see

Similarly we can see that

d dnud
“ —/ = UZ/ df \/11 = arctan{y/1 — k2 tan#).

dnu dn®w 1—k2sin?f

Therefore we obtain (2.2).

4 Asymptotic curve as k tends to zero

As b tends to zero with both a and C remaining unchaged, we have

—_—
~

TN el

A 2a
b.
C1 vb

Then

and

Hence we reasonably conjecture that the asymptotic Brachistochrone curve as £ vanishes is

the same as that on a cylinder. In this section we will confirm this conjecture.
Let us start with the Taylor expansion of arctan function:

t tan 2o + (2 — 20) ! + (2= 20 2%
ar z = arctan —20) " .
A ey S R s I
as z — 2o vanishes. Since
Kkt
1-k2=1————
2 8’

we set,
K2kt
Zo = tané, Z—Zo=—(?+§>

in the above Taylor expansion. Then we get

1
arctan(v/1 — k2 tand) = 6 — k* é sinf cosf — k* 3 sin# cosd(1 + 2sin” 9).

(.1)
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Next we approximate the first kind of elliptic integral as follows

Lo o, 13
[1+2k sin 0+2'4sm 6+ }d@

/¢> do /¢
o V1-k2sin?6 Jo

k2 ¢ 4 ré
= ¢+—/ sin20d9+£/ sin®fdf + .-
2 0 8 0

Q

2 4
o+ -]Z—(¢>—sin¢>cos¢) + %— <¢—sin¢cos¢— %sin3¢cos¢> ]

Hence we can derive an asymptotic formula for the inverse of sn

sn—

X L /z du B /a.rcsinz do
o (1 —u?)(1—k%u?) 0 1 - k2sin® 6
2
~ arcsinz + %(arcsinz —2zy1—22)
9k4 , 2,
- arcsmz—zx/l—zz—gz VvV1i—22).

64

In this asymptotic formula, setting z = sin 6, we have

sn”l(sind) ~ 6+ k° i (6 — sin @ cos 8}

+k4 6?_4 (9 —sinfcosf — gsin3 60080)

Accordingly we get
(1-kH)isn~!(sing) ~ 60—k i (8 —sinf cos )
—k* Eléi (8 + 5sin 6 cos #6 sin® § cos §) (4.2)
By (4.1) and (4.2) we can deduce

8 + arctan(+/1 — k2 tan§) — 2(1 — k%)% sn™! (sin 6)

4

=~ ;—2(9 + sinf cos B(1 — 2sin” §))
k4 in 46

= Eé(‘le + sin 4 )

Therefore we obtain e

¢ ~ gz (40 +sin46) (43)
1
On the other hand, since

2

v/ 2 gin? ~k2 — 92gin? __k_:_
1 - k?sin 0——1/~Z(1 2sin 0)—4cos29

and
V1—k2sin?0+v=2,
we have
: 9 cos26
A~ — c0s 260 & ——- cos 26.
2: 8 s 2Cy
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Therefore we obtain

2
n—-zR ;—C%(l + cos48) (4.4)

By (4.3) and (4.4) we obtain the following result.
Corollary The Brachistochrone curve on a cone approaches to a cycloid on a cylinder.
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