発現プロファイルと酵素活性に基づいた ヒメツリガネゴケ由来キチナーゼの機能に関する研究

The functions of chitinases based on their gene expressions and enzymatic activities in *Physcomitrella patens*

> 2016年9月 小原 咲紀

目 次

第1章 序論

第 2 章 ヒメツリガネゴケ由来キチナーゼ(PpChi)およびキチンエリシター受容体 (PpCERK)の発現解析

- 第1節 緒論
- 第2節 実験材料
 - 第1項 材料および試薬
 - 第2項 プライマー
- 第3節 実験方法
 - 第1項 PpChi 遺伝子および PpCERK 遺伝子の検索
 - 第2項 配列比較による構造予測
 - 第3項 推定分子量および推定等電点の算出
 - 第4項 ヒメツリガネゴケの培養と継代
 - 1) 胞子からの培養
 - 2) 継代培養
 - 第5項 ゲノム DNA の抽出
 - 第6項 検量線用 template の合成
 - 第7項 内在性コントロールの選択
 - 第8項 成長段階における転写量の変動
 - 第9項 キチンオリゴ糖処理
 - 第10項 Total RNA の調製
 - 第11項 ランダムヘキサマーによる cDNA の合成
 - 第12項 発現解析
- 第4節 実験結果
 - 第1項 PpChiおよび PpCERK の構造および推定分子量・等電点
 - 第2項 内在性コントロールの選択と成長段階における転写量の変動

第3項 キチンオリゴ糖処理に対する遺伝子転写量の変動 第5節 考察

第3章 ヒメツリガネゴケ由来キチナーゼ(PpChi)遺伝子のクローニング

- 第1節 緒論
- 第2節 実験材料
 - 第1項 材料および試薬
 - 第2項 プライマー
 - 第3項 コンピテントセルの調製

第3節 実験方法

- 第1項 cDNA 合成
- 第2項 PCR による制限酵素サイト付き PpChi 遺伝子配列の増幅
 - 1) 1st PCR
 - 2) 2nd PCR
- 第3項 アガロースゲル電気泳動
- 第4項 TA クローニング
 - 1) アガロースゲルからの PCR 産物の抽出
 - 2) ライゲーション反応
- 第5項 形質転換
- 第6項 インサートチェック
- 第7項 プラスミド抽出
- 第8項 塩基配列の確認
- 第9項 推定分子量および推定等電点の算出

第4節 実験結果

- 第1項 PpChi の塩基配列および推定アミノ酸配列
- 第2項 推定分子量·推定等電点
- 第3項 データベースとの比較
- 第4項 相同性比較

第5節 考察

第4章 ヒメツリガネゴケ由来キチナーゼ(PpChi)の発現系・精製法の構築

- 第1節 緒論
- 第2節 実験材料
 - 第1項 材料および試薬
 - 第2項 プライマー
 - 第3項 コンピテントセルの調製
 - 第4項 培地の調製
 - 第5項 グリコールキチンの調製

第3節 実験方法

- 第1項 部位特異的変異導入
- 第2項 制限酵素処理
- 第3項 発現用ベクターへのサブクローニング
 - 1) アガロースゲルからの DNA 断片の抽出
 - 2) ライゲーション反応
- 第4項 形質転換
- 第5項 インサートチェック
- 第6項 E. coli BL21 (DE3) によるリコンビナント PpChi の発現
- 第7項 キチナーゼ活性測定
- 第8項 SDS-PAGE
- 第9項 タンパク質の定量
- 第10項 組換えタンパク質の精製
 - 1) PpChi-Ia
 - 2) PpChi-IV
 - 3) PpChi-Vb
- 第 11 項 E. coli Rosetta-gami によるリコンビナント PpChi の発現
- 第12項 GST 融合タンパク質の発現と精製
 - 1) GST 融合タンパク質の発現
 - 2) GST 融合タンパク質の精製
- 第13項 Brevibacillus によるリコンビナント PpChi の発現
 - 1) Brevibacillus の形質転換

2) *Brevibacillus*の形質転換組換え体を用いた目的タンパク質の発現 第14項 タンパク質の巻き戻し(透析法)

- 1) 透析法
- 2) 組換えタンパク質の精製
- 第4節 実験結果

第1項 *E. coli* BL21 (DE3) によるリコンビナント PpChi の発現第2項 組換えタンパク質の精製

- 1) PpChi-Ia
 - a) SP Sepharose FF カラムを用いた陽イオン交換クロマトグラフィー
 - b) HiTrap Q HP を用いた陰イオン交換カラムクロマトグラフィー
 - c) HiTrap SP HP カラムを用いた陽イオン交換クロマトグラフィー

2) PpChi-IV

- a) Phenyl Superose カラムを用いた疎水相互作用クロマトグラフィー
- b) Mono-Q カラムを用いた陰イオン交換クロマトグラフィー
- 3) PpChi-Vb
 - a) HiTrap Q HP カラムを用いた陰イオン交換クロマトグラフィー
- 第3項 分子量測定
- 第4項 E. coli Rosetta-gami によるリコンビナント PpChi の発現
- 第5項 GST 融合タンパク質の発現と精製第6項
- 第6項 Brevibacillus によるリコンビナント PpChi の発現

第7項 ンパク質の巻き戻し(透析法)

- 1) 透析法
- 2) 組換えタンパク質の精製
- 第5節 考察

第5章 ヒメツリガネゴケ由来キチナーゼ(PpChi)の酵素化学的諸性質

- 第1節 緒論
- 第2節 実験材料

第1項 材料および試薬

第3節 実験方法

- 第1項 pHの影響
 - 1) 最適 pH
 - 2) pH 安定性
- 第2項 温度の影響
 - 1) 最適温度
 - 2) 熱安定性
- 第3項 (GlcNAc)4-6 に対する分解パターン
- 第4項 高分子基質に対する動力学的解析
- 第5項 低分子基質に対する動力学的解析
- 第6項 抗真菌活性
- 第4節 実験結果
 - 第1項 pHの影響
 - 1) 最適 pH
 - 2) pH 安定性
 - 第2項 温度の影響
 - 1) 最適温度
 - 2) 熱安定性
 - 第3項 (GlcNAc)4-6 に対する分解パターン
 - 第4項 高分子・低分子基質に対する動力学的解析
 - 第5項 抗真菌活性

第5節 考察

第6章 結論

引用文献

謝辞

第1章 序論

キチナーゼ(EC 3.2.1.14)は、*N*アセチルグルコサミン(GlcNAc)が 6·1,4 結合し たポリマーであるキチンを加水分解する酵素である。キチナーゼは触媒ドメインの 構造により糖質加水分解酵素ファミリー18 (GH18) および 19 (GH19) の 2 つに 分類されている(http://www.cazy.org/)。ファミリー18 キチナーゼは広く生物界に 存在しており、ファミリー19 キチナーゼは主に陸上植物および一部の細菌類で見ら れる。さらに、植物キチナーゼは、その一次構造の相同性から、大きく 5 つのクラ スに分類されている(Fig. 1·1)。植物クラス I キチナーゼは、N 末端のヘベイン様 キチン結合ドメイン(糖結合モジュール family 18、CBM18)と C 末端の触媒ドメ イン(糖質加水分解酵素 family 19)がリンカーを介して連結された構造で、クラス II キチナーゼは、クラス I キチナーゼと相同性の高い触媒ドメインのみから成る。 クラス IV キチナーゼは、クラス I キチナーゼ同様キチン結合ドメインを持つが、い くつかの欠損部位により分子量が小さい。

Schematic representation of five classes (I-V) and two subclasses (II-L and IIIb) of plant chitinases. Open squares indicate linker regions. Solid lines indicate disulfide bonds. GH and CBM indicate glycoside hydrolase and carbohydrate binding module, respectively.

A, Schematic representation of GH-19 chitinases. PLC-A, pokeweed leaf chitinase-A (Q7M1Q9); BcChi-A, *Bryum coronatum* chitinase-A (BAF99002); PR-P and PR-Q, pathogenesis-related protein P and Q from *Nicotiana tabacum* (CAA35790 and CAA35789); SgChi-C, Chitinase-C from *Streptomyces griseus* (BAA23739). I-V indicate loop regions in catalytic domain of class I and class II chitinases. Solid lines indicate disulfide bonds. **B**, Ribbon models of barley 26-kDa chitinase (left) and a catalytic domain of Chi-C from *S. griseus* (right). Green ribbons indicate a-helices. Red color indicates the regions which are lost in some plant class II-L chitinases or bacterial GH-19 chitinases. クラス II-L キチナーゼは、クラス II キチナーゼのサブクラスであり、キチン結合ド メインをもたず、GH19 の触媒ドメインのいくつかの欠損部位により分子量が小さ い。欠損領域は触媒ドメイン内部の5つのループ構造とC末端ループ構造に限られ ており、その組み合わせには多様性がある(Fig. 1-2)。 クラス III, IIIb, V キチナー ゼは、触媒残基周辺に DXDXE という共通モチーフを持つ触媒ドメイン(糖質加水 分解酵素 family18: GH18) から成っているが, 互いの1次構造の相同性は15%以下 と極めて低い(Fig. 1-1)。クラス III は植物で最初に見つかった GH18 キチナーゼ であり、シンプルな (β/α)s バレル構造を持ち、植物では報告例が最も多い。IIIb キ チナーゼは,クラス III と分子サイズは同程度(約 30 kDa)だが相同性が低く,ク ラスIIIで保存されている3つのジスルフィド結合を形成するシステイン残基が無く, オリゴ糖の分解パターンが全く異なることから, クラス III のサブクラスとして提案 された (Yamagami et al., 1998)。 クラス V キチナーゼは最初にタバコで発見され, クラス III との相同性が極めて低く,分子サイズが 10 kDa 程大きい(約 40 kDa) ことなどから,新たなクラスとして提案された。クラス V キチナーゼは哺乳類や真 菌由来のキチナーゼと相同性があり,立体構造解析により,クラス III 等の(β/α)。バ レル構造にα/βドメインという挿入配列があることが分かっている。それぞれのクラ スにおいて等電点の異なる様々なアイソフォームが存在する。

高等植物はキチナーゼを有しているにもかかわらず、その基質であるキチンを生体内に持たないことから、植物キチナーゼは微生物由来のキチンに作用してキチン 関連物質を生産することにより、植物 - 微生物間相互作用に関わっていると考えられている。植物キチナーゼは機能の一つとして、病原性真菌の主な細胞壁成分であるキチンを分解することによって、真菌の侵入および生育を抑制する生体防御タンパク質であることが報告されている(Selitrennikoff 2001; Theis and Stahl 2004)。 病原性真菌の感染によりキチナーゼの活性や遺伝子発現が大幅に増加することや、キチナーゼの過剰発現により植物の病原性真菌に対する抵抗性が上がることも報告されている(Schlumbaum 1986; Collinge 1993; Graham and Sticklen 1994)。しかしながら、植物のキチナーゼには、抗真菌活性を全く示さないものや、(Taira *et al.* 2005a; Taira *et al.* 2005b)、非生物的ストレスによって誘導されるもの、病原菌の感染によって誘導されないものもある(Graham and Sticklen, 1994)。植物と菌根菌との共生成立の過程では、植物キチナーゼが誘導されるという報告(Salzer et al.,

3

2000)や、キチンオリゴ糖の誘導体である根粒形成シグナル因子(Nod factor)を 植物キチナーゼが分解できるとの報告もある(Ovtsyna et al., 2000)。一方で、アラ ビノガラクタンプロテイン等が植物キチナーゼの内在性の基質である可能性が議論 され、その分解を通じて発生・分化に関わるとの見方もある(van Hengel et al., 2001)。内在性の基質の有無に関わらず、植物キチナーゼの生理的役割は多様である といえる(Kasprzewska, 2003)。

細胞外ドメインとしてキチン結合モチーフである LysM ドメインを持つ,キチン エリシター受容体キナーゼ (CERK) がシロイヌナズナより見つかった (Miya et al 2007)。Nod factor の認識に関わる受容体の細胞外ドメインもまた, LysM ドメイン である (Limpens et al. 2003; Radutoiu et al. 2003)。それゆえ,植物キチナーゼと キチン結合タンパク質は,植物と微生物との相互作用に関与する重要な分子として 注目されている。

キチナーゼの生理的役割を解明するために、その発現時期や局在性、様々なスト レスやホルモンに対する応答性などについて調べられており、様々な議論がなされ ているが、その生理機能の解明までには至ってない。その問題点として、高等植物 はキチナーゼの種類が多いだけでなく、類似した遺伝子の数も多く、解析が困難で あることをあげることができる。

植物キチナーゼの生理的役割は,植物の進化とともに変化または多様化してきた と考えられる。植物キチナーゼが微生物との相互作用に関わるとすれば,共進化に よってその役割が変化し,また,植物キチナーゼが発生・分化に関わるとすれば, その役割は植物の進化と大きく関係すると思われる。したがって,進化段階の異な る植物において,どのような構造と機能を持ったキチナーゼが存在するかを調べる ことにより,その生理的役割についての知見が得られると期待できる。

進化的に古い植物の方が、キチナーゼの数や種類が少ないと予測されることから、 陸上植物の中で最も原始的な植物とされるコケ植物のなかでも、ゲノムプロジェク トが終了しているヒメツリガネゴケ(*Physcomitrella patens*)を材料とし、そのキチ ナーゼ (PpChi) について研究が進められている。本研究では、PpChi およびキチ ンエリシター受容体キナーゼ(PpCERK)の遺伝子について、転写量の変動を解析した。 続いて、有意に発現している6種のキチナーゼ候補遺伝子のcDNAをクローニング し、さらに発現系を構築した。得られた組換えタンパク質の酵素化学的諸性質を調 べ,遺伝子発現のプロファイルと総合して植物におけるキチナーゼの機能について 議論した。

第2章 ヒメツリガネゴケ由来キチナーゼ(PpChi)およびキチンエリシター受容体 (PpCERK)の発現解析

第1節 緒論

高等植物はキチンを持たないにも関わらず、キチンを分解する酵素キチナーゼを 持っている。植物は病原菌に感染すると、単子葉植物、双子葉植物の別なく患部組 織にキチナーゼが誘導される(Koga 1992)。病原菌はオートクレーブ処理した後で も、接触するだけでキチナーゼを誘導することができる(古賀 1994)。キチナーゼ の発現量を増大させたトランスジェニック植物は、病原性真菌に対する抵抗力が増 大することからも、その生理的役割のひとつは病原性真菌の細胞壁成分であるキチ ン質を分解することによって感染を防ぐ生体防御作用であると考えられている(平 良 2016)。また、植物と菌根菌との共生成立の過程で、植物キチナーゼが誘導され るという報告(Salzer et al., 2000)や、キチンオリゴ糖の誘導体である根粒形成シ グナル因子(Nod factor)を植物キチナーゼが分解できるとの報告もあり(Ovtsyna et al., 2000)、キチナーゼは植物 - 微生物間の相互作用に関与していると思われる。

植物キチナーゼの機能を解析する上で、高等植物にはキチナーゼの種類と類似し た遺伝子の数が多く、解析が困難になっている。そこで、進化的に古い植物の方が キチナーゼの数や種類が少ないと予測されることから、陸上植物の中で最も原始的 な植物であると考えられるコケ植物を用いて解析することとした。コケ植物蘚類ヒ メツリガネゴケ(*Physcomitrella patens* subsp. *patens*)はゲノムサイズが 500Mbp と小さく、形質転換、遺伝子ターゲティング、栄養繁殖が可能である。また、世代 交代が3ヶ月と早く、培養も比較的容易であることから、近年、進化の観点からよ く研究されているコケ植物のモデル植物である。ゲノム解読は 2006 年に完了し、 2008 年に公開されている (Rensing et al. 2008)。

植物のキチン受容体として、細胞外にキチン結合モチーフである LysM ドメイン を持ち、細胞内にタンパク質キナーゼドメインを持つキチンエリシター受容体キ ナーゼ (CERK) がシロイヌナズナより発見された (Miya et al. 2007)。CERK は 病原微生物より遊離したキチン関連物質を認識し、キチナーゼを含む PR タンパク 質 (pathogenesis-related proteins) の発現を誘導する。

6

本章では、コケ植物の生体防御システムにおけるキチナーゼの役割について調べるために、ヒメツリガネゴケ由来キチナーゼ(PpChi)とキチンエリシター受容体キナーゼ(PpCERK)のキチンエリシター処理条件下での発現を解析した。

第2節 実験材料

第1項 材料および試薬

ヒメツリガネゴケの胞子体は、大学共同利用機関法人 自然科学研究機構 基礎 生物学研究所の長谷部研究室より分譲していただいた。人工気象器は、株式会社ト ミー精工の植物インキュベータ CLE-303 を使用した。RNeasy Plant Mini kit は QIAGEN 社より、SuperScript III First-Strand Synthesis System for RT-PCR は Invitrogen 社より購入した。プライマーの合成は、Life Technologies 社に依頼した。 Power SYBR® Green Master Mix (2x) は Applied Biosystems 社より購入し、リ アルタイム PCR システムは Applied Biosystems 社の 7300 Real Time PCR System を用いた。その他の試薬は、全て市販の特級またはそれに準ずるものを用いた。

第2項 プライマー

検量線用 template の合成に用いたプライマーを Table 2-1 に, リアルタイム PCR に用いたプライマーを Table 2-2 に示した。

1 able 2-1. Sequences of ongo DINA primers for real time	PCR
--	-----

Gene	Accession No.	Primer	Sequence $(5' \rightarrow 3')$
PpChi-Ia	EDQ53501	Chi-Ia temp-F	ATGGAGACACTGTTATCCCTCA
		Chi-Ia temp-R	GCTTCTGCAACCATGTTAACTG
PpChi-Ib	EDQ64021	Chi-Ib temp-F	GGAAGTTGAGTGTTGGCATTC
		Chi-Ib temp-R	GAACAGCTTGCGCGTGATGA
PpChi-Ic	EDQ80360	Chi-Ic temp-F	GAGCATTGTGGCACCGGAT
		Chi-Ic temp-R	GTGATTGACGTGCGCAAAGAATG
Dra Chi Ha	ED062634	Chi Ha tama E	
PpCm-IIa	EDQ53624	Chi Ha temp P	ATCCATACCCCCACTCCAATAAC
		Cm-na temp-R	AIGCAIAGGCCAGIGGAAIAAC
PnChi-IIh	FDO53657	Chi-IIb temp-F	ATGTTAGGAGTGGAAGGGCTC
r pem no	LDQ33037	Chi-IIb temp-R	ATGGGGAATCTTTCGCTCCAG
		om no tomp re	
PpChi-IIc	EDQ64064	Chi-IIc temp-F	TGGATGGAGCATGGCCAAAGAT
		Chi-IIc temp-R	CGGGTTTACGATTTGCAAGTGTA
		1	
PpChi-IV	EDQ60220	Chi-IV temp-F	AGCTCCAGCGCGTGGTA
		Chi-IV temp-R	GTGTACCACCAGCGTTGCA
PpChi-IIL	EDQ72654	Chi-IIL temp-F	GAACCCTATTACTTTGGACGAG
		Chi-IIL temp-R	TACGCGACCCGCGACAACAT
PpChi-Va	EDQ51077	Chi-Va temp-F	ATGACGGTACTTCTAGTCCAC
		Chi-Va temp-R	TCGAGCTAGCTTIGIGAACGT
PnChi-Wh	EDO63241	Chi-Vh temp-F	TCGTCAGGCAATACCGAGCT
1 pcm-vo	EDQ05241	Chi-Vb temp-P	CACATCTTGTCTGCTTGCATG
		Chi vo temp it	
PpCERK-a	EDQ51621	CERK-a temp-F	GAGTACCTGGAGCACGGTCT
-	-	CERK-a temp-R	AGGCTGGCGATGCTGGAAG
		-	
PpCERK-b	EDQ67338	CERK-b temp-F	GGGAGAGTTCACCATGCTGT
		CERK-b temp-R	GAGCTTCGATGGGGTGGTT
β-Actin	XM 001783849	PpAct temp-F	GTACGATGAATCTGGTCCATC
		PpAct temp-R	ACCGATCTAGAGCTACAAACAG
α -Tubulin	AB096718	PpTub temp-F	TCGAAGCTGGGATTCACTATC
		PpTub temp-R	GTCTGGAACTCCGTGATATCT
18S rRNA	X80986	Pp18S temp-F	TGACGGAGAATTAGGGTTCG
		Pp18S temp-R	CAATGGATCCTCGTTAAGGG

Gene	Accession No.	Primer	Sequence $(5' \rightarrow 3')$
PpChi-Ia	EDQ53501	Chi-Ia rt-F	TACAGCGCCCAGGCAGAT
		Chi-Ia rt-R	CACATTCAGACGATTGCAAAAATC
PpChi-Ib	EDQ64021	Chi-Ib rt-F	TGCGCTGATCCAAACAACT
		Chi-Ib rt-R	CATCGTCGGTTCCGCAATA
De Chi Le	FDORAZCO		
PpCm-Ic	EDQ80360	Chile at P	CETTAGEAGETTETTECGAGTT
		CIII-IC II-R	GETATGAAAGCETEGTACGTA
PpChi-IIa	EDO53624	Chi-IIa rt-F	CTCAGGGACACCTTCCAGTTG
r pem nu	222021	Chi-IIa rt-R	CACCTTGCAGACCGCAATCT
			0.1001100.1010000.11101
PpChi-IIb	EDQ53657	Chi-IIb rt-F	TGGAAGGGCTCGTGTGCAGTA
-		Chi-IIb rt-R	TCCGTGAACAAATCGCTTATGGT
PpChi-IIc	EDQ64064	Chi-IIc rt-F	TGGACGTGGAGCCTTTCCT
		Chi-IIc rt-R	TCAGAGCCTTCCCAGTTGGA
PpChi-IV	EDQ60220	Chi-IV rt-F	GCCGCGTTTGTGGTTGTAG
		Chi-IV rt-R	CCCCTTGAGACGCAACAAAT
PpChi-IIL	EDQ72654	Chi-IIL rt-F	CTCAAGGTAGCCATCGGTTCA
		Chi-IIL rt-R	CCACCGITAATGGCICIGGTA
DroChi Va	EDO51077	Chi Va et E	CCCCTCA CCCTCTTA CTA CCA
rpciii-va	EDQ31077	Chi Va it D	GCCAGTAGCCTGATTTCACAATC
			OCCADIAOCCIDATITCACAAIC
PpChi-Vb	EDO63241	Chi-Vb rt-F	GGGTGAACGTGATGACCTATGA
1		Chi-Vb rt-R	TAATGCTGTGTGTTCGCCAGTAG
PpCERK-a	EDQ51621	CERK-a rt-F	CTCCGGCAAGGAAGCAGTT
		CERK-a rt-R	CACACCCTGCTCCTCCTCAT
PpCERK-b	EDQ67338	CERK-b rt-F	GCGTTGTCGAAGATGTCCAGT
		CERK-b rt-R	GGTGGTTCGAGTATCCGGTAGA
β-Actin	XM 001783849	PpACT rt-F	TCGTTGCAAGTATCAGTGATTGC
		PpACT rt-R	CATCTGCGAAATAAACCTCTGTTG
α -Tubulin	AB096718	PpTUB rt-F	TGGACAATGAGGCAATTTACGA
		PpTUB rt-R	TACGTCGGCCGCTCGAT
100	3700007	D-100 - T	
18S rRNA	X80986	Pp18S rt-F	ACGGCTACCACATCCAAG
		Pp18S rt-R	CGIGICGGGAIIGGGTAA

Table 2-2. Sequences of oligo DNA primers for standard curve.

第1項 PpChi 遺伝子および PpCERK 遺伝子の検索

米国立生物工学情報センター(National Center for Biotechnology Information, NCBI; http://www.ncbi.nlm.nih.gov/)の遺伝子配列データベースを用いて、PpChi 遺伝子および PpCERK 遺伝子を検索した。

第2項 配列比較による構造予測

配列相同性検索サービス BLAST (Basic Local Alignment Search Tool, http://www.ncbi.nlm.nih.gov/BLAST/)を用いて, PpChi 遺伝子および PpCERK 遺伝子の構造を予測した。

第3項 推定分子量および推定等電点の算出

SIB (Swiss Institute of Bioinformatics) のウェブサイト ExPASy (Expert Protein Analysis System) より, ExPASy CA > Tools > Primary structure analysis > Compute pI/Mw (http://ca.expasy.org/tools/pi_tool.html)を用いて推定 分子量および推定等電点を算出した。

第4項 ヒメツリガネゴケの継代と培養

1) 胞子からの培養

ヒメツリガネゴケゴケの胞子からの培養は、基礎生物学研究所が公開している方法(http://www.nibb.ac.jp/evodevo/0.Top.html)を基に、次のように行った。

1-1)胞子体の回収

胞子体は、25°Cで葉が10枚程度出た茎葉体を15°Cで、1日1回茎葉体の先端 を水で湿らせ、4週間程度培養することにより茎葉体の先端に形成させた。胞子体が 弾ける前にピンセットとメスを用いて3、4個ずつマイクロチューブに回収し、1日 乾燥させた後、4°Cで保存した。 1-2) セロハン膜の洗浄方法

セロハン膜は市販の包装用のものを用いたが、表面が撥水性のものは使用不可で ある。シャーレ(直径 9 cm)より少し小さく切ったセロハン膜(COLOR CELLOPHANE、オキナ株式会社)12 枚を 500 ml ビーカーに入れて、5 mM EDTA (pH 8.0)溶液中でオートクレーブ(120°C, 20 min)した。オートクレーブ後、 蒸留水により 5~6 回洗浄し、蒸留水を加えて再びオートクレーブした。

1-3) 胞子体の滅菌処理と胞子蒔き

以下の操作はクリーンベンチ中で行った。

オートクレーブした Table 2-3.の組成の培地をシャーレ3枚に分注し,培地が固化 したら 1-2)で準備したセロハン膜を敷いた。次に,胞子体が入ったマイクロチュー ブに,10%の次亜塩素酸ナトリウム水溶液を加えて 2-3 分ほどピペッティングして 滅菌した後,次亜塩素酸ナトリウム水溶液を取り除くために滅菌水で 5 回ほどすす いだ。その後,1 mlの滅菌水を加え,チップの先で胞子体を潰して胞子を滅菌水中 に出し,その胞子液 200 µl をセロハン膜を敷いたシャーレにまいた。最後に,胞子 をシャーレ全体にいきわたらせるために 1 ml の滅菌水を加えて,30~50 µmole photon/m²/s の照度で 16 h: 明,8 h:暗の周期で培養した。

Reagents	Conc.
$MgSO_4 \cdot 7H_2O$	1 μΜ
KH_2PO_4	18.4 µM
KNO ₃	10 µM
$FeSO_4 \cdot 7H_2O$	45 μΜ
$CuSO_4 \cdot 5H_2O$	0.22 µM
H ₃ BO ₃	10 µM
$CoCl_2 \cdot 6H_2O$	0.23 µM
$Na_2MoO_4 \cdot 2H_2O$	0.1 µM
ZnSO ₄ •7H ₂ O	0.19 µM
$MnCl_2 \cdot 4H_2O$	2 μΜ
KI	$0.17~\mu M$
Ammonium Tartrate	5 mM
$CaCl_2 \cdot 2H_2O$	10 mM
Agar	0.80%

Table 2-3. Spore germination medium

2) 継代培養

継代培養には,前述した培地の CaCl₂・2H₂O 濃度を 1 mM とし,オートクレーブ 後に D-glucose を 0.5%添加したものを使用した。以下の操作はクリーンベンチ内で 行った。

オートクレーブした培地をシャーレ 5 枚に分注し,固化したら 1-2)で準備したセ ロハン膜を敷いた。次に,1 mlの滅菌水を入れたポリビンにシャーレ1 枚分のヒメ ツリガネゴケの原糸体を加え,ピペットのチップの先ですり潰した。さらに 9 mlの 滅菌水を加え,シャーレ 1 枚あたり 2 ml の破砕液を分注し,30~50 µmole photon/m2/s の照度で 16 h:明,8 h:暗の周期で培養した。

第5項 ゲノム DNA の抽出

植物 DNA 抽出キット(innuPREP Plant DNA Kit, Analytik Jena)を用いてゲ ノム DNA を抽出した。

第6項 検量線用 template の合成

DNA 濃度(または遺伝子のコピー数)があらかじめわかっているスタンダードサ ンプルを使って検量線を作成し、未知濃度のサンプルを定量する絶対定量法による リアルタイム PCR を行うため、PCR によって合成された DNA 断片を検量線用の template とした。

ヒメツリガネゴケより抽出したゲノム DNA を鋳型として,第2節第2項の Table2-1 に示したプライマーを用いて PCR を行った。PCR 産物をアガロースゲル 電気泳動し,QIAGEN 社の MinElute Gel Extraction Kit を使用してゲルから増幅 された DNA 断片を抽出して DNA の濃度を測定し,得られた濃度から遺伝子のコ ピー数を算出した。

第7項 内在性コントロールの選択

絶対定量法に最適な内在性コントロール用の遺伝子を選択するために,β-actin (Accession: XM_001783849), α-Tubulin (Accession: AB096718), 18S rRNA (Accession: X80986)遺伝子の発現量変動を測定した。

第8項 成長段階における転写量の変動

キチナーゼ遺伝子の発現の解析に最適な成長段階を調べるために,継代後 8, 10, 12, 15, 20, 25, 30 日目の PpChi 遺伝子転写量の変動を解析した。

第9項 キチンオリゴ糖処理

ヒメツリガネゴケは,継代後20日目のものを使用した。キチンオリゴ糖処理には, キトヘキサオース (GlcNAc) 6 を使用した。第4項で述べた継代培地(液体)に (GlcNAc) 6 を加えて氷上で溶解させ,2mM 溶液とした。ヒメツリガネゴケのシャー レ1枚 (20ml) あたり1mlの (GlcNAc) 6 溶液を添加し,終濃度100µM とした。 また, (GlcNAc) 6 溶液の代わりに継代培地(液体)1ml を添加したものをコントロー ルとした。

第10項 Total RNA の調製

RNeasy Plant Mini kit に添付されているプロトコールに従い, キチンオリゴ糖未 処理, 処理後1時間,3時間,6時間のヒメツリガネゴケより Total RNA を抽出し た。次に, DNase 処理によるゲノム DNA 分解後, RNeasy Plant Mini kit の RNA Clean up プロトコールに従って DNase を不活性化した(Scheme 2-1)。

Total RNA 10x DNase buffer DNaseI RNase inhibitor RNase free water

50 μl •37℃, 30min. •RNA clean up protocol

Pure Total RNA

Scheme 2-1. DNase treatment.

第11項 ランダムヘキサマーによる cDNA の合成

cDNA は, SuperScript III First-Strand Synthesis System for RT-PCR に添付さ

れているプロトコールにしたがって合成した。1 サンプルあたり 300ngの Total RNA を使用し、25µL のスケールで合成した。cDNA 合成用のプライマーには、ランダム ヘキサマーを用いた。

第12項 発現解析

リアルタイム PCR には, Applied Biosystems の 7300 Real Time PCR System を使用した。検量線の作製には第6項で得られた template を,発現解析には前項で 得られた cDNA を鋳型として使用した。反応液の組成と反応条件は, Shceme 2-2 に示した。

Power SYBR Green Master Mix (2 x)	12.5 μL
Forward primer (10 pmol/mL)	1 μL
Reverse primer (10 pmol/mL)	1 μL
Sample DNA (cDNA)	5 µL
Distilled water	5.5 µL

25 μL

95°C 10 min 95°C 15 sec]	
60℃ 1 min	× 40
95℃ 15 sec	
60℃ 1 min	
95℃ 15 sec	

t

Scheme 2-2. Real time PCR

第4節 実験結果

第1項 PpChiおよび PpCERK の構造および推定分子量・等電点

NCBIによる遺伝子検索, BLAST サーチ, 酵素活性サイトの有無より, 10種類の PpChi 候補遺伝子および 2 種類の PpCERK 候補遺伝子を得た。各遺伝子の構造予測, 推定分 子量・推定等電点の算出の結果を Fig. 2-1 から 2-12 に示す。また, これらの結果をまと めたものを Table 2-4 に示し, 以後は Table 2-4 の Name に示した名称を用いる。

		10		20)		30		40			50			60	
	atgtt	tgccct	agtø	ggcact	tgta	acta	agcaa	tgg	tggtg	otot	gat	tgca	gga	ggc	gcag	
1	ΜF	A L	V	A L	V	L	S N	G	G A	L	Ι	А	Е	Α	Q	20
		70		80)		90		100			110			120	
	gggga	atgcag	geoga	aacto	geea	atgt	ccaaa	ttt	ggogoa	actg	tte	cage	caa	ctg.	gggg	
21	GΕ	C S	R	N S	Ρ	С	ΡN	L	A H	С	С	S	Ν	Ψ	G	40
		130		140)		150		160			170			180	
	tacts	cggggt	tgg	caacga	ictat	tgt	gggga	ggg	ttgcca	aggg	CZZ	gee	gtg	tta	tggc	
41	Y C	GΥ	G	N D	Y	C	GΕ	G	СQ	G	G	P	C	Y	G	60
		1.90		200	ı .		210		220			230	č		240	
	cotac	tector	a o o o		acct	- 000	210 totaa	oto	correct	tora	e ore	cate	• ct	aac	1200	
61	P T	D D	, 400 C	P C	P		دة 100 100	۰: د	C 1	n n	.~~	T	1	T	R R	80
01	1 1	250	u	200	i 1	I	270 270	0	200	D	м	200	L	1	200	00
		200		200	,		270		200			290			300	
0.1	agegt	TTTCga	igaai	ττοτι	0000	ggc	сатст	CTC	CTTCT	acto	ττα	icga(gt	gct	catt	100
81	2 V	FE	N		Р	ե	HL	2	FY	2	Ŷ	U	۷	L	1	100
		310		320)		330		340			350			360	
	gaggo	tgogaa	atca	atteed	tcag	gttt	ggcac	gac	gggcga	acac	cga	cact	tcg	taa	gaga	
101	ΕA	A K	S	FΡ	Q	F	GΤ	Т	G D	Т	D	Т	R	К	R	120
		370		380)		390		400			410			420	
	gagat	cgctgd	ottad	goggo	gcat	gto	aagca	cga	aactg	gagg	tct	gtci	tgt	tog	cctt	
121	ΕI	A A	Y	A A	Н	V	ΚH	Е	ΤG	G	L	S	V	R	L	140
		430		440)		450		460			470			480	
	gtoto	ctccaa	agtti	cactt	aaga	atto	aaatt	gca	aaccg	gaga	caa	ttat	ttg	tge	aago	
141	V S	S K	F	ΗΙ	R	F	ΚI	ົດ	ΤG	n	Ν	γ	C.	Δ	S	160
		490		500	1	•	510	<u>.</u>	520	2		530.	č		540	
	taaca	00F	++++	-ootta	, 			~	taato		tee	tet		act	ttoo	
161	16606 M D	D D	Ιιαιι	D C	M	200 C)Caata ∩ V	M	C D	5080 C	D	1		ι	(100 (1.90
101	m IV	550	1	I U	19	a	6 I	14		u	I	E00	Q	L	0 000	100
	±	000			, 		070		000	L	ц ., ц	090			000	
101	tggaa	ctacaa	ittad	ctogo	agca	iggo	ccgta	CTT	gggtgi	toga	τοτ	cato	caa N	caa	accc	000
181	W N	Y N	ř	LA	A	ե	S T	L	6 V	U	L	1	N	ĸ	P	200
		610		6ZL	,		630		640			650			660	
	aatct	ggtggo	caaca	aataa	icete	ato	gcttt	caa	aacga	gcct	gte	gtti	ttg	gat.	gatt	
201	N L	V A	I	N N	L	I	A F	K	T S	L	Ψ	F	Ψ	М	I	220
		670		680)		690		700			710			720	
	tatgg	agacad	tgtt	atcco	tcad	att	catga	tgt	catgat	tcgg	gaa	ttg	gag	acc	ctcc	
221	ΥG	DΤ	V	ΙP	Н	Ι	ΗD	V	ΜI	G	Ν	₩	R	Ρ	S	240
		730		740)		750		760			770			780	
	agege	cgacca	aget	gogaa	loogo	gta	accogg	ttt	cggcgt	tcac	cat	agad	cgt	tat	taac	
241	SĀ	D Q	Ā	Ā N	R	V.	ΡĞ	F	ĞΫ	Т	Ι	Ď	V	Ι	Ν	260
		790		800)		810		820			830			840	
	ggagg	ntt ggz	aeter	caacaa	atar	ago	seccea	gge	agatgi	ood g	agt	gaat	tta	tta	caaa	
261	00×00	I F	،دری ر	N K	γ	с С	Λ Π	00~ /	D A	B	۵۵c V	N	γ	Y	K	280
201	u u	850	0	198	1	0	870	<u> </u>	880	11	Y	800	'		ann	200
	~~+++	++ ~ ~ ~ ~	++	+	, .++	+	070	+ ~ ~	000 taatai	+	- + -	030		+ - +	300	
201	Balli D F	C N	LUSI D	LULBAC	u Bið V	saat N	D C	188	N I	L88a D	otg o	v aa	144 N	uat.	8488 D	200
201	υr	010	Л	L N	Ψ 1	N	г u 000	ն	N L	υ	U	N	IN .	IN	л	300
		910		920	,		900									
001	ccatt	ttacto	agti	aacat	ggtt	: gca	gaagc	tta	a	010						
301	ΡF	Y S	V	N M	V	A	ΕA	ж		31Z						

	10 20 30 40 50 60	
1	atggagcggaagttgagtgttggcattctggcattgctggtgccgtttctgtgcgtg M E R K L S V G I L A L L L V P F L C V 70 80 90 100 110 120	20
21	LTggatttagtagctgggcagaattgcaacagcacggtcccgtgcgctgatccaaacaac LDLVAGQNCNSTVPCADPNN 130 140 150 160 170 180	40
41	tgctgtagccagtatggatattgcggaaccgacgatgcgtactgcgtgatcgggtgccag C C S Q Y G Y C G T D D A Y C V I G C Q 190 200 210 220 230 240	60
61	aacggteeetgeegegacageeeeteteegeeaecaeeteegeegeet N G P C R D S P S P P P P A P P S P P 250 260 270 280 290 300	80
81	tececaceaceaceaceagaceatecgtetegeceacaceetegtegggetggtege SPPPPPRPSVSPTPSSGAGR 310 320 330 340 350 360	100
101	ctcatcacgegcaagetgttegagaagetetaceegaactaceaeaagaegttttactee LITRKLFEKLYPNYNKTFYS 370 380 390 400 410 420	120
121	tacgatgccttcattgtcgctgcaaatgccttccccaaatttctgaacgaggggtgtcgc Y D A F I V A A N A F P K F L N E G C R 430 440 450 460 470 480	140
141	gaatetegttaegtgagetegetgetggagtgeaeaegtgeageaagaaaeegeaggt ESRLRELAAWSAHVQQETAG 490 500 510 520 530 540	160
161	gagotogaaatootgoagttogttoogotgtootoagatatooattgoottogacaaaao ELEILQFVPLSSDIHCLRQN 550 560 570 580 590 600	180
181	cctcacaagatcgcagtgcttgtctactgtgacgctacctcgacgaggtacccttgtgag PHKIAVLVYCDATSTRYPCE 610 620 630 640 650 660	200
201	ccataccagaagtacttcggtcgtgggcctcttcaactctcctggaatttcaactatggg PYQKYFGRGPLQLSWNFNYG 670 680 690 700 710 720	220
221	cctgccggtgaagctcttggcattgacatcctgaagcgaccattcctggtttctttc	240
241	cccgtgttggcctttaaggcctccatatggttttggaacacagcccgcgagggcggcatt PVLAFKASIWFWNTAREGGI 790 800 810 820 830 840	260
261	ccttccatacacgacgtgatcatcgggaaatacaggccatcagcagcagacaaggcagcg PSIHDVIIGKYRPSAADKAA 850 860 870 880 890 900	280
281	aaccgcactgtcggcttcggatacaccattaacatcatcaacgggggcatcgagtgtggg N R T V G F G Y T I N I I N G G I E C G 910 920 930 940 950 960	300
301	aaaggaactgctaccccacaagcagcgaaccgcgtcaagtactttctagagtttagcgaa K G T A T P Q A A N R V K Y F L E F S E 970 980 990 1000 1010 1020	320
321	aagttggaagtgtcaccggggaaaaacctcgactgcacaaaccaaaaatctttcgcttag K L E V S P G K N L D C T N Q K S F A *	340

399 aa

Fig. 2-2. A: Nucleotide and amino acid sequence of EDQ64021. B: Schematic representation.

	10 20 30 40 50	60
	atgacctcgtgcagggttgctctattgctgctcgtggtttgcttctccggacttgcca	iaa
1	M T S C R V A L L L L V V C F S G L A K	. 20
	70 80 90 100 110 1	20
	gctgaggactgtgggtggcaggctaatggtgctagatgctcgccgagcactgtctgt	gc
21	A E D C G W Q A N G A R C S P S T V C C	; 40
	130 140 150 160 170 1	80
	agtcagtggggctattgtggagtaacccctgagcattgtggcaccggatgccagagcg	{gc
41	SQWGYCGVTPEHCGTGCQS0	i 60
	190 200 210 220 230 2	240
	-tcctgcactggcggtagccctccttcgccaggagggagcggccttagcagcttctttc	cg
61	SCTGGSPPSPGGSGLSSFFF	, 80
	250 260 270 280 290 3	300
	agttocotgtttgataagtggttococaactgcaattcattotatacgtacgaggott	:tc
81	S S L F D K W F P N C N S F Y T Y E A F	: 100
	310 320 330 340 350 3	360
	atagoggoggotgotttgtacccogogtttggatottocagaaatccagaaatacaaa	ag
101	I A A A L Y P A F G S S R N P E I Q K	120
	370 380 390 400 410 4	120
	cgagaagttgcagcattetttgcgcaegtcaateaegaaacagaaggtetagteta	att
121	REVAAFFAHVNHETEGLVYI	140
	430 440 450 460 470 4	180
	gaggagatcaacaaatctttttcatactgtcgagagagag	Cg
141	E E I N K S F S Y C R E R D S Y G C A F	, – 160
	490 500 510 520 530 5	540
	gggaagaagtactacagtagaggteetetgeaactgteatggaattacaactacaage	tg
161	G K K Y Y S R G P L Q L S W N Y N Y K L	. 180
	550 560 570 580 590 6	300
	gcgtcctccaaagtgggattcaacatctgggcagacccagacaagattgctaccgacg	tg
181	A S S K V G F N I W A D P D K I A T D V	200
	610 620 630 640 650 6	60
	actctggcattcaagacggctttgtggttctggatggaacccgccactcccaaaccat	ca
201	TLAFKTALWFWMEPATPKPS	3 220
	670 680 690 700 710 7	/20
	tgtcactccgtcattgtgggtgatcagggattcggaacgaccaccaacatcatcaacg	ga
221		,0 ; 240
	730 740 750 760 770 7	 '80
	ggottagagtgtggacccaataattcaccagcacaggcagagaaccgcagcaagtact	ac
241	G I F C G P N N S P A Q A F N R S K Y Y	, 260 / 260
211	790 800 810 820 830 8	200
		,40 11 g
261		/ 280
201	850 860 870	1 200
221	TPVCIIVSIASSOCIALAS	
201	IFIULLYUL* 200	

B

Α

Theoretical pI/Mw: 6.84/31283.24

Fig. 2-3. A: Nucleotide and amino acid sequence of EDQ80360. B: Schematic representation.

		10		:	20		30		40			50			60	
1	atgg [.] M V	ttotoga I G	;agc ∆	gtgo C :	tcgc S ມ	aggt V	gagca S N	acgo A	totgg I V	tgta C	scac T	caa, K	gga F	gtt F	caag K	20
		70			80	 	90		100			110	_		120	20
21	gagaa E K	daggele G C 120	scaa N	Caag K 1	acig TV V	tgag S	E L	F	N A	E	M	.gtt F 170	E	ggc A	M 100	40
	+++	001			40 9900	ct ro	001	0003	100 arrat	tote	road	rota.	~ ~ ~	~ a a	100	
41	F K	H R 190	N	D 21	аава К А ОО	Å	H A 210	Q	G F 220	Ŵ	S	γ 230	D	G	F 240	60
61	atego I A	ctgcago A A 250	taa K	gatg M I 21	ttcg F E 60	agaa K	ggacg DG 270	gctt F	tggca: G M 280	tggt V	agg G	stgg G 290	cga E	gga D	tgtg V 300	80
	cagaa	agoggga	iget	ctcg.	gcgt	tctt	cgctc	atgt	cgcgc	acga	iaad	cto	gtg	tgg	atgg	
81	Q K	R E 310	L	S . 3:	A F 20	F	A H 330	۷	A H 340	E	Т	S 350	С	G	₩ 360	100
101	agtga	gagetaa	igga	cggt	ccta	cago	gtggg	gact	gtgct	acaa	icca	aga,	gct	cgc	gcct	100
101	ას	а к 370	U	ы I З	Р I 80	А	- W G - 390	L		N	ų	L 410	L	A	Р 420	1ZU
	gaaaa	aggatta	ictg	caag	acgg	goga	tttga	tgta	iccett.	gogo	aco	ano ggg	tgc	tgg	ttac	
121	ΕK	DY	С	K	T G	D	LM	Ŷ	ΡC	A	Ρ	G	A	G	Ŷ	140
		430		4	40		450		460			470			480	
1 4 1	tacg	gacgtgg	agc,	gttt		tcta	ctgga	acta	caact	atga	stee	cac	agg	agt	ggct	100
141	ïц	к ы /00	А	г I БI	Ρ L ΛΛ	Ÿ	- W N - 510	Ÿ	N 1 520	ե	٢	1	ն	۷	А 540	100
	ttgaa	430 agcagga	icct	gtta	cacc	acco	tgaaa	ttct	ctccc	agaa	loga	aac	cat	tgc	gtgg	
161	LK	Q D	L	LI	H H	P	ΕI	L	S Q	N	E	T	Ι	A	₩	180
		550		51	60		570		580			590			600	
101	caag	cagetgt	ttg	gtac	tgga	tgac	gcctg	ccaa	igacga	gaco	ato	ct cc	tca	cga	gatt	000
181	ų A	A V 610	ΥŸ	י ז הי	₩ M 20	I	P A 820	ĸ	н к ело	Ρ	2	۲ 650	Н	E	1	200
	atga:	ttggcaa	igtg	u. ggtgi	∠∪ ccga	ogaa	gaatg	асас	040 cotog	otta	ites	rcaa.	gcc	tgg	cttc.	
201	M I	G K	.0.0	V 1	P T	K	N D	T	LA	Ϋ́	R	K	P	G	F	220
		670		6	80		690		700			710			720	
~~ 1	ggca	tgaccat	caa	tgtc	aagg	caag	tgatg	toga	atgcg	geea	icga	gega	aga	tcc	tege	<u></u>
221	GΜ	700	Ν	V	K A 40	S	U V 75.0	E	C G	Н	G	- E	D	Ρ	R	240
	ators	/3U agtrace	raat	/) ct.cci	4U cact	actt	/DU vacet	teet	/00 000000	acac	ott	011 600	o++	ooa	/80 teac	
241	M Q	S R	Jaar	S I	H Y	acti 	T F		R D	T	F	a, D	6 L L	D	D	260
2.11		790	•	8	00	-	810	-	820			830	-	U	840	200
	ccgg	gotcaaa	itct	agat	tgcg	gtct	gcaag	gtgt	tattc	cact	ggo	cta	tgc	atc	aatg	
261	ΡG	S N	L	DI	C G	L	Q G	۷	ΙP	L	A	Y	A	S	М	280
	tag															
281	*	281														
								_	_				_			
								T	heore	tical	l pI	/Mw	v: 5	5.99	/ 311	146.33

 \mathbf{A}

B

Fig. 2-4. A: Nucleotide and amino acid sequence of EDQ53624. B: Schematic representation.

18

atgttaggagtggaagggetegtgtgeagtaagettacaagggecaagggetegtaataaa 1 M L G V E G L V C S K A Y K D O G C N K 20 70 80 90 100 110 120 accataagegatttgtcaeggagggaatgttegaggggatgtcatgaecaggaagggt 21 T I S D L F T E G M F E G M F M H R N G 40 130 140 150 160 170 180 cgatggegeatggecaaggetttggaaggeogggegggggggggggggggggggg					10			20			30)			40			50			60	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		at	gtt	agg	agt	gga	age	gct	cgt	gtg	cagi	taa	agc	tta	caa	gga	cca	agg	gtg	caa	taaa	
70 80 90 100 110 120 accataagcgatttgttcacgagggatgttcatggaccgacggaggtt 21 T I S D L F T E G M F M H N G 40 130 140 150 160 170 180 cggatggcgcatgcgcaaggcttttggaggtacggcgggggggg	1	М	L	G	V	Е	G	L	٧	С	S	Κ	Α	Y	К	D	Q	G	С	Ν	К	20
accataagcgatttgttcacggagggaatgttcatggagggacggt 21 T I S D L F T E G M F E G M F M H R N G 130 140 150 160 170 180 cggatggcgatggcgatggcagggttcatggcggcgcgcagggt 41 R M A H A O G F W S Y G G F M T A A K M 190 200 210 220 230 240 ttccagtctgccggcttcggttcagtagggggggatggacagcgaggaggtgct 61 F O S A G F G S V G G D D T O K K E L A 250 260 270 280 290 300 gcgttcttcgctcacgtagctcatgaaacctagtgggggaggaggaggaggaggtcc 81 A F F A H V A H E T S C G W P G A K D S 100 310 320 330 340 350 360 ccatacgcatgggggcttggtcacaggaggactccacatacctatggatactgcag 101 P Y A W G L C Y N R E L S P T Y E Y C K 120 370 380 390 400 410 420 gggagacgaactcctatcatatgggcgggggtggaggagggggttgt 121 G D E L L Y P C A P G A S Y H G R G A F 140 430 440 450 460 470 480 cctctcatgggaactcatattgggggggggggggggggg					70			80			90)		1	00			110			120	
21 T I S D L F T E G M F M H R N G 40 130 140 150 160 170 180 180 180 cggatggcogatgcogaaggctttggatgaggtagggggggttaggcogcogacggcogaagg K M A A K M 60 190 200 210 220 230 240 ttccagtcgcoggggttcaggggggggggggggggggggg		ac	cat	aag	cga	ttt	gtt	cac	gga	ggg	aata	gtt	cga	ggg	gat	gtt	cat	gca	ccg	gaa	cggt	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	Т	Ι	S	D	L	F	Т	Е	G	М	F	Е	G	М	F	М	Н	R	Ν	G	40
$\begin{array}{c} cggatggc gatgc gatg gag active tygag that gag gag gag gad gag active the gatg gag active the gatg gad gag gag gad gad$				1	30			140			150)		1	60			170			180	
41 R M A H A Q G F W S Y G G F M T A A K M 190 200 210 220 230 240 ttccagtctgccgcttcggttcagtaggtggggagacacgcagaagaagaggttgct 61 F Q S A G F G S V G G D D T Q K K E L A 250 260 270 280 290 300 gcgttcttcgctcacgtagctcatgaaacctcatgtgggtgg		cg	gat	ggc	gca	tgc	gca	agg	ctt	ttg	gagt	tta	cgg	cgg	gtt	cat,	gad	cgc	cgc	caa	gatg	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	R	Μ	A	Н	Α	Q	G	F	Щ	S	Y	G	G	F	М	Т	A	А	К	М	60
ttccagtctgccggcttcggtcagtagggggatgacacgcagaagaaggagcttgct 61 F Q S A G F G S V G G D D T Q K K E L A 250 260 270 280 290 300 gcgttcttcgctacagtagctcatgaaacctcatgtgggtgg				1	90			200			210)		2	20			230			240	
 61 F Q S A G F G S V G G D D T Q K K E L A 250 260 270 280 290 300 gcgttctcgctcacgtagctcatgaaacctcatgtgggtgg		tt	cca	gtc	tgc	cgg	ctt	cgg	ttc	agti	aggi	gg	gga	tga	cac	gca,	gaa	igaa	gga	gct	tgct	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	F	Q	S	A	G	F	G	S	V	G	G	D	D	Т	Q	Κ	К	Е	L	Α	80
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				2	50			260			27()		2	80			290			300	
81 A F F A H V A H E T S C G W P G A K D S 310 320 330 340 350 360 ccatacgcatgggggctttgctacaaccgagagctctaacctacct		gc	gtt	ctt	cgc	tca	cgt	age	tca	tgaa	aaco	cto	atg	tgg	gtg	gee	tgg	gage	gaa	aga	ttcc	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	81	A	F	F	A	Н	۷	Α	Н	Е	Т	S	С	G	W	Ρ	G	A	К	D	S	100
$\begin{array}{c} ccatacgcatgggggctttgctacaaccgagagctctcacctacct$				3	10			320			330)		3	40			350			360	
101 P Y A W G L C Y N R E L S P T Y E Y C K 370 380 390 400 410 420 ggagacgaactcctctacccgtgtgctcctggcgcttcttaccacggtcgtggagcttt 121 G D E L L Y P C A P G A S Y H G R G A F 430 440 450 460 470 480 cctctctactggaactcaattatggccgacggagcggcgtgaagcaggacttatta 141 P L Y W N F N Y G A T G A A L K Q D L L 490 500 510 520 530 540 aatcatcccgagatttgtcgtacaacgaacggtcgatggagcggcgtcgaagcagcatctggtac 161 N H P E I L S Y N E T V A W Q A A I W Y 550 560 570 580 590 600 tggatgactcccgggaagacaaggcctctctcatcaagttatggtggtaagtggtg 181 W M T P G K T R P S P H Q V M V G K W V 610 620 630 640 650 660 ccaaccaaaaacgacactctggtaaacgttgctggttggaatgaccatcaacta 201 P T K N D T L A K R L P G F G M T I N I 670 680 690 700 710 720 agggctagtgaaagcggtgtggccatggcgacgcacccaatggcagcagcagcagcagcagcag 221 R A S E S E C G H G D D L Q M H D R I G 730 740 750 760 770 780 cactacgtcgcttcctccatgattacttcggcctacagatccaggcaagcagtgggac 241 H Y V R F L H D Y F G L T D P G K H V D 790 800 810 820 tgtgcatcgcagcaagtagtcgaatggcaatggcattggaatgaagtcataga 261 C A S Q Q V V Q L E Y A L V * 275		СС	ata	cgc	atg	ggg	gct	ttg	ota	caa	coga	aga	gct	ctc	acc	tac	cta	atgaa	ata	ctg	caag	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	101	Ρ	Υ	A	₩	G	L	С	Υ	Ν	R	Е	L	S	Ρ	Т	Y	Е	Y	С	К	120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				3	70			380			390)		4	00			410			420	
121 G D E L L Y P C A P G A S Y H G R G A F 430 440 450 460 470 480 cctctctactggaacttcaattatggcgcgacggagcggcgttgaagcaggacttatta 141 P L Y W N F N Y G A T G A A L K Q D L L 490 500 510 520 530 540 aatcateccgagattttgtcgtacaacgaaacggtcgcatggcaggca		gg	aga	cga	act	cct	cta	acce,	gtg	t gc	tcci	tgg	cgc	ttc	tta	cca	cgg	gtog	tgg	agc	tttt	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	121	G	D	Е	L	L	Y	Р	С	A	Ρ	G	Α	S	Y	Н	G	R	G	A	F	140
cctctctactggaacttcaattatggcgcgacggagcggcgttgaagcaggacttatta 141 P L Y W N F N Y G A T G A A L K Q D L L 490 500 510 520 530 540 aatcatcccgagatttgtcgtacaacgaaacggtcgcatggcaggcggcgtcggta 161 N H P E I L S Y N E T V A W Q A A I W Y 550 560 570 580 590 600 tggatgactcccgggaagacaaggcctctcctcatcaagttatggtggtaagtgggtg 181 W M T P G K T R P S P H Q V M V G K W V 610 620 630 640 650 660 ccaaccaaaaacgacactctggctaacgctgctgggttggaatgacacacata 201 P T K N D T L A K R L P G F G M T I N I 670 680 690 700 710 720 agggctagtgaaagcgagtgggccatggcgacctccaaatgcacgaccgcatcggg 221 R A S E S E C G H G D D L Q M H D R I G 730 740 750 760 770 780 cactacgttcgcttcctccatgattacttcggcctcacagatccaggcagg				4	30			440			450)		4	60			470			480	
 141 P L Y W N F N Y G A T G A A L K Q D L L 160 490 500 510 520 530 540 aatcateeegagatttgegtacaacgaaacggegeagggageggegegggggggggg		СС	tct	cta	ctg	gaa	ctt	caa	tta	tgg	cgcg	gac.	ggg	agc.	ggc	gt t,	gaa	agca	gga	ctt	atta	
490 500 510 520 530 540 aatcatecegagattttgtcgtacaacgaaacggtcgcatggcagcgatetggtac aatcatecegagatttgtcgtacacgaacggcagcgatetggtac 180 161 N H P E I L S Y N E T V A W Q A A I W Y 180 161 N H P E I L S Y N E T V A W Q A A I W Y 180 161 N H P E I L S Y N E T V M Q A A I W Y 180 tggatgactcccgggaagacagggagagacaaggcctctcctcatcaagttaggtggaaggagggtggagacaaggcctctcctcataggttggaagggggg 640 650 660 660 660 620 660 660 620 670 710 720 agggctagtgaaagcgagtgggcgacgacgacctccaaatgcacgacgacgacgacgacgacgacgacgacgacgacgac	141	Ρ	L	Y	Ψ	Ν	F	Ν	Y	G	Α	Т	G	Α	Α	L	К	Q	D	L	L	160
aatcateeegagattttgtegtacaaegaaaeggtegeatgegeageageageageageageageageageageageage				4	90			500			51()		5	20			530			540	
 161 N H P E I L S Y N E T V A W Q A A I W Y 180 180 180 180 180 180 180 180 180 180		aa	tca	tcc	cga	gat	ttt	gto	gta	caa	ogaa	aac	ggt	cgc	atg	gca,	ggo	age	gat	ctg	gtac	
550 560 570 580 590 600 tggatgactccgggaagacaaggcctctcctctatcaagttatggttggt	161	Ν	Н	Ρ	Е	Ι	L	S	Υ	Ν	Е	Т	V	Α	W	Q	Α	А	Ι	₩	Y	180
tggatgacteccgggaagacaaggeeeteteeteateaagttatggttggtaagtggtg 181 W M T P G K T R P S P H Q V M V G K W V 200 610 620 630 640 650 660 ccaaccaaaaacgacaetetggetaacgettgeetgggttggaatgaceateaaeata 201 P T K N D T L A K R L P G F G M T I N I 220 670 680 690 700 710 720 agggetagtgaaagegagtgtggeeatggegaegeeteeaatgeeeggeegg				5	50			560			570)		5	80			590			600	
 181 W M T P G K T R P S P H Q V M V G K W V 610 620 630 640 650 660 ccaaccaaaaacgacactctggctaaacgctgcctgggttggaatgaccatcaacata 201 P T K N D T L A K R L P G F G M T I N I 670 680 690 700 710 720 agggctagtgaaagcgagtgtggccatggcgacgacctccaaatgcacgacgggggg 221 R A S E S E C G H G D D L Q M H D R I G 730 740 750 760 770 780 cactacgttcgcttcctccatgattacttcggcctcacggtcaggcagg		tg	gat	gac	tcc	cgg	gaa	igac	aag	gcc	otoi	tee	tca	tca	agt	tat,	ggt	tgg	taa	gtg	ggtg	
610 620 630 640 650 660 ccaaccaaaaacgacactctggctaacgcttgcctgggtttggaatgacatcaacata 201 P T K N D T L A K R L P G F G M T I N I 220 670 680 690 700 710 720 3gggctagtgaaagcgagtgtggccatggcgacgacctccaaatgcacgaccgcatcggg 240 730 740 750 760 770 780 240 730 740 750 760 770 780 260 790 800 810 820 260 260 790 800 810 820 260 260 270 260 790 800 810 820 260 260 270 275 260 270 275 260 275 275 275	181	₩	Μ	Т	Ρ	G	К	Т	R	Ρ	S	Ρ	Н	Q	V	М	V	G	К	Ψ	٧	200
ccaaccaaaaacgacactctggctaaacgcttgcctgggtttggaatgacatcaacata 201 P T K N D T L A K R L P G F G M T I N I 220 670 680 690 700 710 720 agggctagtgaaagcgagtgtggccatggcgacgacctccaaatgcacgaccgcatcggg 221 R A S E S E C G H G D D L Q M H D R I G 240 730 740 750 760 770 780 cactacgttcgcttcctccatgattacttcggcctcacagatccaggcaagcatgtggac 241 H Y V R F L H D Y F G L T D P G K H V D 260 790 800 810 820 tgtgcatcgcagcagcagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275				6	10			620			63()		6	40			650			660	
201 P T K N D T L A K R L P G F G M T I N I 220 670 680 690 700 710 720 agggctagtgaaagcgagtgtggccatggcgacgacctccaaatgcacgaccgcatcggg 221 R A S E S E C G H G D L Q M H D R I G 240 730 740 750 760 770 780 cactacgttcgcttcetccatgattacttcggcctcacagatccaggcaagcatgtggac 241 H Y V R F L H D Y F G L T D P G K H V D 260 790 800 810 820 1 1 275 275 261 C A S Q V V Q L Y 275		сс	aac	caa	aaa	cga	cad	tct;	ggc	taa	acgo	ctt,	gcc	tgg,	gtt	tgg	aat	gac	cat	caa	cata	
670680690700710720agggctagtgaaagcgagtgtggccatggcgacgacctccaaatgcacgaccgcatcggg221RASESECGHGDLQMHDRIG240730740750760770780cactacgttcgcttcctccatgattacttcggcctcacaggtcaggcatgtggac241HYVRFLHDYFGLTDPGKHVD260790800810820tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa261CASQVVQLEYALV*275	201	Ρ	Т	Κ	Ν	D	Т	L	Α	К	R	L	Ρ	G	F	G	М	Т	Ι	Ν	Ι	220
agggctagtgaaagcgagtgtgggccatggcgacgacctccaaatgcacgaccgcatcggg 221 R A S E S E C G H G D D L Q M H D R I G 730 740 750 760 770 780 cactacgttcgcttcctccatgattacttcggcctcacagatccaggcaagcatgtggac 241 H Y V R F L H D Y F G L T D P G K H V D 790 800 810 820 tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275				6	70			680			690)		- 7	00			710			720	
221 R A S E S E C G H G D L Q M H D R I G 240 730 740 750 760 770 780 780 780 780 780 780 780 780 780 790 780 7		ag	ggc	tag	tga	aag	cga	igtg	tgg	cca:	tgga	ga	cga	cct	cca	aat,	gca	acga	ccg	cat	cggg	
730 740 750 760 770 780 cactacgttcgcttcctccatgattacttcggcctcacagatccaggcaagcatgtggac 241 H Y V R F L H D Y F G L T D P G K H V D 260 790 800 810 820 tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275	221	R	Α	S	Е	S	Е	С	G	Н	G	D	D	L	Q	М	Н	D	R	Ι	G	240
cactacgttcgcttcctccatgattacttcggcctcacagatccaggcaagcatgtggac 241 H Y V R F L H D Y F G L T D P G K H V D 260 790 800 810 820 tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275				- 7	30			740			750)		- 7	60			770			780	
241 H Y V R F L H D Y F G L T D P G K H V D 260 790 800 810 820 tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275		ca	cta	cgt	tcg	ctt	cct		tga	tta	otta	gg	cct	cac	aga	tee	agg	geaa;	gca	tgt	ggac	
790 800 810 820 tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275	241	Η	Y	V	R	F	L	Н	D	Y	F	G	L	Т	D	Ρ	G	Κ	Η	V	D	260
tgtgcatcgcagcaagtagtccaattggaatatgcattagtataa 261 C A S Q Q V V Q L E Y A L V * 275				- 7	90			800			81()		8	20							
261 CASQQVVQLEYALV* 275		tg	tgc	atc	gca	gca	agt	agt	cca	att	ggaa	ata	tgc	att	agt	ata	a					
	261	С	А	S	Q	Q	V	V	Q	L	Е	Y	Α	L	٧	*		2	75			

Theoretical pI/Mw: 6.29/30529.52

			10			20			3	0			40			50			60	
	atgg	ctgo	ctgc	tgc	cgo	act	tct	ggt	tgc	agc	tct	ctt,	ggt	ggt,	gge	;cgt;	gag	cgc	gcac	
1	ΜA	Α	A	A	A	L	L	V	A	А	L	L	۷	۷	G	۷	S	A	Н	20
			70			80			9	0		1	00			110			120	
	ggac	gcaa	iggg	act	ggt	:gtg	cac	taa	aga	gtt	gaa	gga	aga	cgg	ate	caa	caa	aac	catc	
21	G R	K	G	L	۷	C	Т	K	E	L	K	E	D	G	С	N	К	T	l	40
		1	30			140			15	0		1	60			170			180	
	agtg	atct	:gtt	cac	ggt	gca	aac	ttt	cga	gga	cat	gtt	caa	aca	CCS	caa	oga	cag	agct	00
41	8 D	L	F		۷	U AAAA	I	F	E	U.	М	F	K .	Н	К	N	U	К	A	60
		.	90			200			21	U '		- Z.	20			230			240	
0.1	gcgc	atgo	cgc	ggg	ctt	ctg;	gac T	cta:	cga	tgg	CTT	cat,	ggc	tgc:	agc	tca;	gat	gtt	cgag	00
61	A H	A	A NEO	G	F	W	I	Ŷ	07	G	F	M	A	A	A	u aaa	М	F	E	80
		2	150			260			, ZT	U		Z	80			290			300	
0.1	aagg	acga	sctt	cgc	cto	cgt;	888	tgg	tga	cga	tat	gca.	gaa	gcg.	gga	igct(cgc	ggc.	gttc	100
81	κυ	ь С		Α	2	V 000	ե	ե	0	U o	Μ	ų o	10	к	E	L OF O	Α	А	F 000	100
	± ±	Ċ	510			320			- 33 1	U +	- 4	J.	40			350	L	.	300	
101	TTCS	5000 11	icgt v	cgc	002	icga:	aac T	gtc.	gtg	τgg	atg w	gag	сат	ggc	caa v	aga: n	t gg	TCC.	тасс	100
101	ΓА		γ 20	A	п	20 N		3	0 00	ն	ΥŸ	ି ଏ ଜ	M	A	N	110	ն	٢	120	1ZU
			>7U 		- 4 -	300			- 39 	U 	±	4	UU 		- 4 -	410			420	
121	gcat	8888	sact	atg	CT 8	к	cca o	aga. E	gCT.	cgc	TCC D	caτ, μ	gaa v	aga n	ста v	CTS)	caa v	gac T	τggc c	1.40
ΙΖΙ	A II	ц ,	120	U	T	110	U.	Ľ		А 0	Г	171 	л 00	U	T	470	N	I	400	140
	and t	4 + ~ ~ +	iou .ete	+ ~ ~	_+_	440			40 + ~~o	U + ~ ~	++-	4	00 + ~ ~	~ ~ ~	+ ~~~	470	- + +	+	400	
1 / 1	gall D I	LSCI	.gta v	LCC D	ate C	sigc:	асс	agg	LBC	188	v	v	188	acg D	LSS	age	Ε	D	ICLC	160
141	υL	Ľ,	100	Г	U	8	Г	u	А Б1	ւն Ո	Ĩ	ו הי	น วก	К	G	8 520	Г	Г	L 540	100
	taat	~~~~~	180 Vota		++-	000	+ ~ ~		UI taa	U (700	~~~	.U + ~ +	20 80 0	~~~~	~~~	000	~++	a o o	040 toot	
161	V W	88ac N	ν	N.	V	1088	P	aac T	د88 1	gaa K	880 1	I I	gaa K	εca, Π	889 N	lo e ca	5 L L	BCA H	Н	180
101	1 11	11	560	14		560	1	1	ы Б7	0	А	5	20	Q	D	Бал	L		600	100
	cctø	aoat	cct	coc	002	000 1222	roa	aac	cat.	ບ ລຫດ	ato	orea:	oo agr	age	tat	++0	ota	cto	oat o	
181	PF	I	1	4	000	N	F	T	I	48C	uto W	ն	480 4	480	I		γ	W W	M	200
101		F	310	-	0	620	-	'	63	ດີ		6	40	~	1	650	'		660	200
	acco	cter	raa	gar	22 S	7900	atr	tee	t ca	∨ tga	agt	tat	gat	rgg	gaa	oto:	rot	gee	gacg	
201	TP	×دەر ۵	K	T	R	P	S	P	Н	F	V	M M	I	-00- G	K	.o.co. W	٦Ö	P	T	220
201		F	370			680	Ň		69	n		7	nn	ŭ		710			720	220
	aaga	atga	itac	act	tgo	baaa:	tcg	taa	acc	∪ Cgg	ctt	tgg	aat	galo	cat	caa	cat	taa	ggcc	
221	K N	n n	T		Å	N	R	K	P	G	F	G	M	T	I	N	I	K	A .	240
		7	730	-		740			75	0 Ũ		7	60		•	770	•		780	210
	agog	acgt	tga	et e	tgg	roca:	tgg	aga	tga	tee	tcg	cat.	gct	gt c:	асе	aato	ste	cca	ctat	
241	S D	٧		с. С	G	H	G	D	D	P	R	M	1	S	R	I	S	Н	γ	260
_	0 0		790	Ŭ		800		5	81	n.			20	Ū		830	Ū		840	200
	ttgg	actt	tct	tca	aaa	icaa	att	cca	agt	tca	aga	tee	tgg	tge	aaa	cct:	tga	ctg	cggc	
261		F		D	N	K	F	, D	V	0	D	P	G	A	N	1	D	C	G	280
		. 8	350	-		860		-	87	0	-					_	-	-		200
	ctge	aagg	rtgt	agt	tco	stet	ggc	ata	tge	atc	aat	tta	a							
281	LQ	C C	γ	Ϋ́	P	L	Ă	Ŷ	Ă	S	Ī	*	-	2	93					
	_ 0					_				2	-			-						

 \mathbf{A}

Theoretical pI/Mw: 6.35/32139.67

Fig. 2-6. A: Nucleotide and amino acid sequence of EDQ64064. B: Schematic representation.

	10 20 30 40 50 60	
	${\tt atgggaagaactacagggactagtgtggggcaccagcaccatgttgccgcgtttgtggtt}$	
1	M G R T T G T S V G H Q H H V A A F V V	20
	70 80 90 100 110 120	
	gtagetetggtageattggteegatttgttgegteteaaggggagtgtteggaateeaca	
21		4∩
21	130 140 150 160 170 180	40
4.1		00
41	A L P D N I M L L S U Y N Y L G I G D A	60
	190 200 210 220 230 240	
	tattgtggtgaaggttgcaagaatggtccctgcaacgctggtggtacacctcctgcgcct	
61	Y C G E G C K N G P C N A G G T P P A P	80
	250 260 270 280 290 300	
	gaacctccaacctcaggttcaggttggtcgagcttcttcaccgaagaagttttcgacggg	
81	E P P T S G S G W S S F F T E E V F D G	100
	310 320 330 340 350 360	
101		120
101	270 200 200 400 410 420	120
101	gcttacccgacgttcggtaacgaaggatctgtggatgaccagaagcgagagatcgctgcc	1.10
TZ I	AYPIFGNEGSVUUUKREIAA	140
	430 440 450 460 470 480	
	tttttcggaaacgtcaaccaagaatctggaggcttgaaattcgtcagagagactaaccct	
141	F F G N V N Q E S G G L K F V R E T N P	160
	490 500 510 520 530 540	
	actgaaatatactgcgacacgaccaacacccaatacccttgcgccgctggtaagtcctat	
161	TEIYCDTTNTQYPCAAGKSY	180
	550 560 570 580 590 600	
101		200
101		200
001	ctgaacttgccactcctcgccactccagagttggtagagactgatgccgatgtggcgttc	000
201		220
	670 680 690 700 710 720	
	aagacggccctctggttttggatggccaatcagtgccaccaagcaatcatcggtcctcct	
221	KTALWFWMANQCHQAIIGPP	240
	730 740 750 760 770 780	
	cccagtttcggaaaaaccattcggataatcaatggagcgaaagagtgcggccttgtaaac	
241	P S F G K T I R I I N G A K F C G I V N	260
_ · ·	790 800 810 820 830 840	
201		200
201		200
0.0.1	gaccotggcaccgacctacggtgctga	
281	UPGIULRC* 289	

Fig. 2-7. A: Nucleotide and amino acid sequence of EDQ60220. B: Schematic representation

В

		10			20			30)			40			50			60	
	atgad	cagete	ttgt	tct	gago	oot;	ggta	acaa	igg	agc	ttc	age	tga	gta	gtca	gag	ctt	tata	
1	ΜT	A L	V	L	S	L	٧	Q	G	А	S	A	Е	₩	S	S	F	Ι	20
		70			80			90)		1	00			110			120	
	accaa	agetga	actt	cga	itca	gaa	gtai	tttc	00	agg	tca	tat	ttc	gtt	cta	cac	ata	cgac	
21	ΤK	A D	F	D	Q	К	Y	F	Ρ	G	Н	Ι	S	F	Y	Т	Y	D	40
		130			140			150)		1	60			170			180	
	agoot	tcaagge	cogo	tgo	agg	gac	goot	tttc	ac	tca	att	cgg	aaa	tto	ggg	atc	tcc	tgaa	
41	S L	ΚA	A	Α	G	Т	Ρ	F	Т	Q	F	G	Ν	S	G	S	Ρ	Е	60
		190			200			210)		- 2	20			230			240	
	gacca	agaage	gaga	gtt	ggca	act	tgca	aagt	tt	aaa	gca	aca	ata	loga	igcaa	aaa	ctg	taat	
61	DQ	KR	Е	L	A	L	A	S	L	Κ	Q	Q	Y	Е	Q	Ν	С	Ν	80
		250			260			270)		- 2	80			290			300	
	ataca	agtgtaa	agca	lage	stta	otg	tgat	taca	ac	atc	tcc	cta	ccc	ate	sttc [.]	taa	gac	acaa	
81	ΙQ	СK	Q	G	Y	С	D	Т	Т	S	Ρ	Y	Ρ	С	S	К	Т	Q	100
		310			320			330)		3	40			350			360	
	gaaco	ctatta	actt	tgg	acga	agg	tcc	catt	ca	act	gtt	ctg	gaa	icta	icaa	ota	cgg	tgct	
101	ΕP	ΥY	F	G	R	G	Ρ	Ι	Q	L	F	₩	Ν	Y	Ν	Υ	G	Α	120
		370			380			390)		4	00			410			420	
	tgtgg	gogatta	acat	age	caaa	acg	ccti	tctt	ca	agt	ccc	agg	cca	gat	ttc	cac	gaa	ccct	
121	C G	DY	Ι	G	Κ	R	L	L	Q	V	Ρ	G	Q	Ι	S	Т	Ν	Ρ	140
		430			440			450)		- 4	60			470			480	
	gtcat	tgcat	ttca	igac	aget	ttt	ctg	gtto	tg.	gat	gac	tca	age	tag	scca.	tcg	gtt	catt	
141	V I	A F	Q	Т	A	F	Ψ	F	Ψ	М	Т	Q	G	S	Н	R	F	Ι	160
		490			500			510)		5	20			530			540	
	ctage	caaat	catt	cto	cgg	gac.	taco	caga	ige	cat	taa	logg	tgg	;cta	acte	oga	aga	aggg	
161	L A	K S	F	S	G	Т	Т	R	A	Ι	Ν	G	G	Y	S	Е	Е	G	180
		550			560			570)		5	80			590			600	
	cgcag	gacaga [.]	tgtt	gto	geg	ggti	cgc	gtat	ta	caa	gag	ctt	cte	cad	aata	act	tgg	ggtc	
181	R R	Q M	L	S	R	V	A	Y	Y	Κ	S	F	С	Т	Ι	L	G	V	200
		610			620														
	gacco	cggca	ooga	itct	cgaa	atg	ctga	a											
201	DΡ	G T	D	L	Е	С	*		2	09									

Fig. 2-8. A: Nucleotide and amino acid sequence of EDQ72654. B: Schematic representation.

	10 20 30 40 50 60	
	$at {\tt gacggtacttctagtccacggccctgagcctgttactagcaaaccccattgcggatcg}$	
1	MTVLLVHGPEPVTSKPHCGS	20
	70 80 90 100 110 120	
~1	aagattgtgaaatcaggctactggccatattgggcaaccgatacgtcaaacctcaatttc	10
21	KIVKSGYWPYWAIDISNLNF	40
4.1	gagttccaaacgcatgtattctttgcatttgcacagattgacccggtaacgtatgaggtc	00
41		60
61		00
01	ΥΓΓΓΓΓΟ Ο Ο ΥΟΙΓΓΓΓΓΓΚ ΔΑΚ 250 200 270 200 200 200	00
81		100
01	210 220 220 240 250 260	100
101	F S A M A S S A A N R K A F I Q S S I Q	120
101	370 380 390 400 410 420	120
	ttgsctcttaacaatagcttcgacggtcttgacctggactgggagtttccagatactcaa	
121	LALNNSFDGLDLDWEFPDTQ	140
	430 440 450 460 470 480	
	stggacatggacaacctggccattcttctgaaggagtggcggggccgaggcgcagaaaaag	
141	V D M D N L A I L L K E W R A E A Q K K	160
	490 500 510 520 530 540	
	ctacttctcacagctgctgtgtacttccgaaacattctctatttctggcaaccagcggac	
161	L L T A A V Y F R N I L Y F W Q P A D	180
	550 560 570 580 590 600	
	caacaacgccggtatccgatcgcgtcaatcaacaagaacctggactggataaatgtgatg	
181	Q Q R R Y P I A S I N K N L D W I N V M	200
	610 620 630 640 650 660	
	tstttcsattaccscssctcctsssaatctaacacasstsascacacssctctstatsac	
201	CFDYRGSWESNIGEHIALYD	220
	670 680 690 700 710 720	
001	cccaatctcccagtcgtcggcacgacgacgacgtgtcaccgactggatcacagcaggtcta	0.40
ZZT	PNLPVVSIDDAVIDWIIAGL 700 740 750 700 770 700	240
2/1		260
241	700 900 910 920 920 940	200
261		280
201	850 860 870 880 890 900	200
	etet erea erea test et	
281	V W S F I V V Y I O N D G W T T V I D D	300
201	910 920 930 940 950 960	~~~
	gcaacget gt caat gt acaget acaacacccagt cgctt cagt gggt agggt at gat at	
301	ATVSMYSYNTQSIQWVGYDN	320
	970 980 990 1000 1010 1020	
	sagettaccatcaaaaagaagetggaatacgccatcagaatcaaaaagctgaagggggtg	
321	EVTIKKKVEYAIRIKKLKGV	340
- = /	1030 1040 1050 1060 1070 1080	
	tttgtttggagtctcaaccacgatgactccaattggtctcttgctcgagcaggtacctct	
341	F V W S L N H D D S N W S L A R A G T S	360
	1090	
	caacctccgctgtag	
361	QPPL* 365	

Theoretical pI/Mw: 5.88/40887.40

Fig. 2-9. A: Nucleotide and amino acid sequence of EDQ51077. B: Schematic representation.

	10 20 30 40 50 60	
1	atggcgcccagaatatcattgtttgggatcttgctggtgcagattctcagttttcagttg M A P R I S L F G I L L V Q I L S F Q L 70 80 90 100 110 120	20
21	ttggtatcgccggatttcttcttggctggagctgtggtgagggggggttactggtgcaa LVSPDFFLAGAVVRGGYWLQ 130 140 150 160 170 180	40
41	sacttgccgctagtgaacataaacttcaattacgagacgcatgtgtactacgcgtttgca D L P L V N I N F N Y E T H V Y Y A F A 190 200 210 220 230 240	60
61	sgottsgaccottootogtaccaggttstsgotoogaccacogacaatsgoccagtacsgo G L D P S S Y Q V V A P T T D N G Q Y A 250 260 270 280 290 300	80
81	acstttstssccacsscsaasasctcaaacccttccsttstsacsctcctctccatcssc T F V A T A K S S N P S V V T L L S I G 310 320 330 340 350 360	100
101	sgagstgcascaaattttaccacatttggcsaaatgstgagcacatccaccasgcsgcag G G A A N F T T F G E M V S T S T R R Q 370 380 390 400 410 420	120
121	scottcattsacascastatotosotssotosocaatacasttacsaassactssaccta A F I D S S I S L A R Q Y S Y E G L D L 430 440 450 460 470 480	140
141	sactsgsastcaccscaaasccaaacasasatgsaaaatttgscsctactsctacassaa DWESPQSQTEMENLALLQE 490 500 510 520 530 540	160
161	tggcgcgcgcgctgcgcatacggaggctcaatcgtcaggcaataccgagcttctcctcaca W R A A A H T E A Q S S G N T E L L L T 550 560 570 580 590 600	180
181	sctsctstsasctaccastcaattctsctctacacssststcsstaatcasstctssccs A A V S Y Q S I L L Y T G V G N Q V W P 610 620 630 640 650 660	200
201	attaccsctttcaacacatacttssactssatssatssat	220
221	tcatgggagccaaccactactggcgaacacagcattatacgaccccaactccgacgtc S W E P T T T G E H T A L Y D P N S D V 730 740 750 760 770 780	240
241	sacactsattacssaatcaacaactssctstcascasscatscasscas	260
261	ttsssacttsctttctatssaaascastsssttcttsccaastcttsccaacaccssasta LGLAFYGKQWVLASLANTGV 850 860 870 880 890 900	280
281	sssscscctsccaccastsstsscsaccccataacatatscasacatcstsacttacaac G A P A T S G G D P I T Y A D I V T Y N 910 920 930 940 950 960	300
301	aacscassasscsccactsttsascaasattccactactstatcaatstatasttacaas N A G G A T V E Q D S T T V S M Y S Y K 970 980 990 1000 1010 1020	320
321	tctsacttsacttssatcssstatsacaatcctsatactatcsctscsaaasttcastat S D L T W I G Y D N P D T I A A K V Q Y 1030 1040 1050 1060 1070 1080	340
341	scscagagtaaatctttsctsgsttacttcscctssscacttcatcasgacgatscsaat A Q S K S L L G Y F A W A L H Q D D A N 1090 1100 1110	360
361	ttctccttggcgtcagcaggtatgaattga F S L A S A G M N * 370	
	Theoretical pI/Mw: 4.	19/40142.62

Fig. 2-10. A:Nucleotide and amino acid sequence of EDQ63241. B: Schematic representation.

 \mathbf{A}

B

	10	20	30	40	50	60	
	atggcgcaac	agaattacaac	gacacagagg	gatacgcat	scaatgcagcac	cgtcttcg	~~
I	MAUU 70	N Y N 80	U I E G 90	Y A C 100	N A A P 110	S S 120	20
21	acgtcatgca T S C S	scactttcscc T F A	ttctatagga FYRT	ccttccagg F Q A	G E S L	tacgaaaa R K	40
41	sttggagact	acttcaacaaa ENV	IDU actgctgcag T A A A	CCSTTSCCA	atgtgagtggga V S C M	tgaaccta	0.9
41	190 ctetocacaa	200	210	220 aageeetets	230 230	240	00
61	L S T T 250	A S L 260	K Q T Q 270	A L Y 280	V P L D 290	C R 300	80
81	C L N A	R S Q 320	M Q V S 330	H T I 340	V K G D 350	T F 360	100
101	tggctgttgt W L L S 370	ctgttaccgag V T E 380	tatgggggtc; YGGL 390	tsacaassta T R Y 400	accaggccatga Q A M M 410	tggcttcg A S 420	120
121	aatccgtcca N P S K 430	aggacgtgtat DVY 440	aacctcacaa NLTI 450	ttggcgaca G D T 460	caataacggtgco ITVP 470	cgatattc IF 480	140
141	tstscatstc C A C P 490	caactgcggcg TAA 500	caggttgcga: Q V A N 510	atgggacgaa G T N 520	attatttggtca YLVT 530	cgaccact T T 540	160
161	ststaccctt V Y P S 550	ctgaaacgete E T L 560	sacattatca D I I S 570	stgcacggti A R F 580	cggcatctcga G I S T 590	cgacagat TD 600	180
181	ctcascasss L S R A 610	cgaacaacgtg NNV 620	aactcgtcgt NSSS 630	cgatcctgga ILD 640	atgtgaacaccad VNTT 650	ctctgctc L L 660	200
201	gtcccgcttg V P L A 670	cgactttaccg TLP 680	ccactggcaa PLAT 690	ccatggatt: M D W 700	sggctccggtta A P V T 710	cctctcag S Q 720	220
221	cctccgccga PPPS 730	stccacctsca PPA 740	actstascst TVAS 750	cgccgaatgo PNA 760	ctscacctscas A P A V 770	tgattacg I T 780	240
241	aaatcggcat K S A S 790	cgcagacacca Q T P 800	ictctacatcs L Y I G 810	saatcgcggf I A V 820	tssascsttts: GAFG 830	stttgacc L T 840	260
261	ttggcggcgg L A A V 850	tstttscatts FAL 860	ictgcttttgt LLLF 870	tcaaggcat K A S 880	cccgaaattcag; R N S G 890	sgacgaaa T K 900	280
281	cccaaagacc PKDL 910	tcacggaagaa T E E 920	atgaagogoo M K R P 930	cgaacatgg† N M V 940	acatettgagt: H L E L 950	tgetegea L A 960	300
301	ggcatgtegg G M S D 970	acatggtcggg M V G 980	stcagagaago S E K P 990	cagtettget VLL 1000	ttcacatgaaga S H E E 1010	agattcaa I Q 1020	320
321	tctgccactc S A T Q 1030	aaggetteagt G F S 1040	ccagagaatt P E N F 1050	tcattcaag I Q G 1060	satcggtgtaca: SVYK 1070	aaggetgt G C 1080	340
341	atcaacggtc INGQ 1090	agcttgttgca LVA 1100	atcaagcaga IKQM 1110	tsaassssaa K G N 1120	acatgacccagg: M T Q E 1130	ageteaaa LK 1140	360
361	atcctttgcc I L C Q 1150	aagtccaccac V H H 1160	agcaatctag SNLV 1170	tsaasctss K L V 1180	G L C V 1190	tssscsss G G 1200	380
	tcagaaaatt	tstacctcsts	tatgagtatg	ccaaacatga	satocotoaaces	attgcctg	

A

381	S	Е	Ν	L	Υ	L	V	Υ	Е	Y	Α	Κ	Н	G	S	L	Ν	D	С	L	400
-----	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	-----

		1210	1220		1230		1240		1250		1260	
401	cggaac R N	caagee Q A 1270	scaatcss A I G 1280	R T	ccacatt TF 1290	ctc S	tcaaag QS 1300	cgc: A	agcttatc [.] A Y L 1310	tacc. P	st ss W 1320	420
421	tgttca C S	csasts R V 1330	csaattsc R I A 1340	tctcg: L D	atstasc V A 1350	ttc S	tgggct G L 1360	aga; E	stacatcc: Y I H 1370	acaa N	ctac Y 1380	440
441	acaaac T N	cctagc P S 1390	ttcgtaca FVH 1400	icaaag: K D	acstsaa V K 1410	gac T	cagcaa S N 1420	cato I	cctcctgg: L L D 1430	acga. E	gaac N 1440	460
461	ttccgt F R	gccaaa A K 1450	stssccas V A N 1460	tttcg F G	scatggc MA 1470	caa: K	at ccgc SA 1480	ggc A	cagegeega S A D 1490	acgc. A	ssss G 1500	480
481	ccttta P L	ctgacc L T 1510	cgccacat R H I 1520	caccg. T G	scacsca T Q 1530	ggg G	ctacat Y M 1540	ggc; A	scccgagt: P E Y 1550	acct. L	ggag E 1560	500
501	cacggt H G	ctcgta L V 1570	accgtgaa TVK 1580	A D	acgtcta V Y 1590	tgo A	cttcgg F G 1600	ggt: V	sstsstct [.] VVL 1610	tgga E	gatc I 1620	520
521	ctctcc L S	ggcaag G K 1630	saascast E A V 1640	tgtgc: V R	scccgga PE 1650	gaa: K	agatga D E 1660	gga; E	sgagcagg; E Q G 1670	gtgt. V	gaag K 1680	540
541	gaacga E R	scstta A L 1690	tcagacat S D I 1700	catcg I V	tcgatgt DV 1710	cct: L	caatgc N A 1720	agg G	cacegegga TAE 1730	agct. L	gcaa Q 1740	560
561	acggag T E	cagete Q L 1750	cssaastt R K F 1760	catts: I D	accegea PQ 1770	gct. L	gcactc H S 1780	A	ctacccca [.] Y P I 1790	taga E	gatt I 1800	580
581	gcttcc A S	agcatc S I 1810	sccascct A S L 1820	ggcca A M	tsacats TC 1830	cat: I	cgatcc DP 1840	cga [.] D	tecegeeg PAV 1850	tgog R	accc P 1860	600
601	agcatg S M	aaggac K D 1870	stcacatt V T F 1880	cgccc [.] A L	tstcsaa SK 1890	gat. M	sttasc L A 1900	ggc: A	atcactas: SLE 1910	aatg. W	ggag E	620
621	tctaca S T	sctsas A E	tacggete Y G S	aggca G M	tgtccac S T	cgt V	ccccat P I	cga: E	agctcggt: A R *	aa	638	

В

Theoretical pI/Mw: 5.74/68543.27

		10		20			30		40		50)		60	
	atgttto	gaca	cgett	ccgg	acte	ggta	attgat	cto	cgcact	gct	catct	seto	tct	tgaa	
1	MFF	}_H	A S	G G	L	۷	LI	S	A L	L	ΙW	S	L	E	20
		/0		. 80			. 90		. 100		. 110)		120	
0.1	attcato	ctati	tagte	sctca	acaa	aca	stacas	aaa	taccas	SCEE	ataca	cate	set ci	gggc	10
ZT	ІНГ	100	SР	اب ۱ 140	ų	U.	1 K	N	100	G	Ϊ 170	, С. ,	3	ե 100	40
	+	130		140			100		160		171	, 		180	
41	астасаа	igatgo	ссааа о т	ictta - v	CgCI		ctacag v p	аас	ggcags	SELC	gcaat (аас	τοτι	gaca T	60
41		100	Q I	200	м	L.	210	1	220	0	0 0	י ו	L	240	00
	tocatas	rttaci	actat	200	card	-	210 -atcas	200	220 22tta/		tacaai	, xtaa	+ + + +	240 taat	
61	C I L	stiata / T	stiai	: N	T	C C	V F	.ass C	aatigu I A	T	A Q	sisa D	V	n n	80
01	5 1 1	250	L 1	260		0	270	u	280	'	291	ں ۱	v	300	00
	octaaca	200 Iggaci	aatoo	cttt	caat	teat	270 Fagaga	ccc.	totota	acat	contet	, taa	tt g	tage	
81	P N F	1884C	I F	> F	N	n D	R D	P	I Y	I	P I	N.	C.	S	100
~	1 14 1	310	1 1	320	14	0	330	'	340	1	350)	0	360	100
	tetttca	ataat	tactt	ttre	agra	acti	taceto	tca	eraeat	taa	eticces	Inga	tac	eate	
101	CFN	I N	TF	R	A	L	TS	Q	0 I	K	SG	D	T	M	120
		370		380		-	390	-	400		410)		420	
	tacaast	togo	caate	gaac	ttad	cca	sgggct	cac	taccta	gga	agocat	tae	cgt	cgca	
121	YKF	Ā	NÖ	Τ	Y	Q	GL	Т	ΤW	E	ĀI	S	V	Ā	140
		430		440			450		460		470)		480	
	aacccca	cagto	cataa	itcac	taad	cata	gacggt	agg	cgacta	acct	ggtgai	acc	at ta	gaga	
141	N P T	V	ΙI	Т	Ν	М	ΤV	G	DΥ	L	V I	Ρ	L	R	160
		490		500			510		520		530)		540	
	tgcgctt	stcct	tacga	ictac	gcaa	acga	aagggo	tgg	ttotos	saat	tttgci	cac	tta	ctcg	
161	C A C) P	ΤT	T	Q	R	RΑ	G	S R	Ι	LL	Т	Y	S	180
		550		560			570		580		590)		600	
	atcttco	ctgat	tgaaa	accet	aaa	stti	tatcas	cgg	tctgtt	caa	catte	cgga	iagti	agag	
181	IFF	, D	ΕT	Ľ	К	F	ΙS	G	LΓ	Ν	ΙP	Е	V	Е	200
		610		620			630		640		650)		660	
	ttacaaa	ictgca	aaaca	acgg	ggCg	sagi	ttcago	aaa	tetage	cago	gttta	ctac	ttt:	gctt	
201	LQ1	Α	N N	I G	A	S	S A	Ν	LA	A	F T	T	L	L	220
		670		680			690		/00		. 70)		720	
001	gttcctc	ttcc:	gagto	ttgt	acci	ttt	sagcac	gat.	gaaatt	tcc:	atcac	tec	tcc;	gccc	0.10
221	VPL	. P	SL	- Y	٢	L	S 750	М	K F	Ρ	S P	, P	Ρ	P 700	240
		730		/40			750		760			ļ		780	
0.41	tcggtgg	aagca	accag	sgtcc	agca		st ccac	cct.	tgttco	ctgt	gatca	саа	icaa.	ggat D	000
Z4 I	SVE	: A 700	ΡĿ	1 F 000	A	٢	5 I 010	L	0 P	۷	1 1	N N	ĸ	040	260
	+	190		000			010		020		001	, 		040	
261	D C L	iagaca ′ T	e ku	iigia IV	cati T	1880 C	T V	E	188188 C C	SCLL E	Cgggal C M	.880 A	1	A gect	200
201	IJP	250 250	0 1	י י המפ	1	a	1 V 870	I	220	I	0 M 201	1	L	ann	200
	tttatoo	1000		000 + to tr	0+ 0+	Fact	oru Factot	+	000 scotts		000	, .tat	too	000	
281	FII	A	αιδιέ Γ Ι	, 1811 / 1	ειει Γ	A A	T V	i aa K	R Y	icaa K	saaca N I	I.I.	R	k k	300
201	1 1 L	910	0 1	920	0	Α	930	IN .	940	15	950)	17	980	000
	atagagt	- 010 - 2093	raaca	020	ctte	>++;	2000 233639		atocto	-+ o +	33099	, itat	cea	ctct	
301	I F \	/ F	N R	, eaee	1	1	N R	.saa K	S S	V	T D	I	n n	S	320
001	1 – 1	970	14 1	980		-	990	15	1000	r	1010	ì	0	1020	020
	otteaca	otec	eaact	ctag	ctte	zeti	taetee	cat	eacee2	atet	ettte:	, ect e	icea:	taag	
321		А	N S	S S	1	V	S G	M	T D	1	FG	C	D	K	340
•=•	1	030	., .	1040	-	•	1050		1060	-	1070)	-	1080	
	cttacaa	aatto	cticgt	atga	agas	scta	sgacac	ggo	cacaaa	atca	tttca	scga	laga	caac	
341	LTK	(F	SY	Ē.	E	L	DT	A	ΤN	Н	FS	Ē	D	Ν	360
	1	090		1100			1110		1120		1130)		1140	
	agaatco	aggga	aticca	stctt	ccta	ggCa	gaaatt	gaa	cgggto	att	tstas	caat	caa	goga	
361	RIG) G	S V	/ F	L	А	ΚL	Ν	G S	F	V A	Ι	Κ	R	380
	1	150		1160			1170		1180		1190)		1200	
	atgaaag	ggaa	catgt	cgga	cgas	scte	caagat	tct	gticcca	iggt	tcacca	atge	caa	tgtg	
381	МКО	ŝΝ	M S	S D	Е	L	ΚI	L	S Q	V	ΗH	G	Ν	٧	400

В

Theoretical pI/Mw: 6.33 / 71925.0

Fig. 2-12. A: Nucleotide and amino acid sequence of EDQ67338. B: Schematic representation.

-	-	D		
cus tag	Gene	Annotation	Class	Name
YPADRAFT_150026	EDQ53501	2154=Hevein or type 1 chitin binding domain; 79296=Glycoside hydrolase family 19 chitinase domain	Ι	PpChi-la
IYPADRAFT_137102	EDQ64021	3165=Hevein or type 1 chitin binding domain; 102332=Glycoside hydrolase family 19 chitinase domain	I	PpChi-Ib
IYPADRAFT_55609	EDQ80360	2460=Hevein or type 1 chitin binding domain; 79277=Glycoside hydrolase family 19 chitinase domain	I	PpChi-Ic
IYPADRAFT_149874	EDQ53624	32267=Glycoside hydrolase family 19 chitinase domain	П	PpChi-lla
IYPADRAFT_60959	EDQ53657	26261=Glycoside hydrolase family 19 chitinase domain	П	PpChi-IIb
IYPADRAFT_136977	EDQ64064	44279=Glycoside hydrolase family 19 chitinase domain	П	PpChi-IIc
IYPADRAFT_219988	EDQ60220	3469=Hevein or type 1 chitin binding domain; 93288=Glycoside hydrolase family 19 chitinase domain	IV	PpChi-IV
IYPADRAFT_75754	EDQ72654	35208=Lysozyme_like domain	I-II	PpChi-II-L
IYPADRAFT_153222	EDQ51077	20354=The class V plant chitinases have a glycosyl hydrolase family 18 (GH18) domain	Λ	PpChi-Va
[YPADRAFT_138151	EDQ63241	30363=The class V plant chitinases have a glycosyl hydrolase family 18 (GH18) domain	Λ	PpChi-Vb
YPADRAFT_152558	EDQ51621	160202=LysM domain; 334609=Tyrosine kinase, catalytic domain	I	PpCERK-a
IYPADRAFT_132645	EDQ67338	364630=Protein Kinases, catalytic domain	,	PpCERK-b

Table 2-4. PpChi and PpCERK candidate genes and their some information.

第2項 内在性コントロールの選択と成長段階における転写量の変動

Fig. 2-13. に3種の内在性コントロールにて補正した PpChi-Ia の転写量の変動を 示した。α-Tubuin の変動が最も小さく,補正前の転写量と比較して補正値が最も安 定していた。また,継代後 15 日目までは,大幅な転写量の変動が見られた。これら の結果より,キチンオリゴ糖処理に対する遺伝子転写量の変動の解析には,内在性 コントロールとしてα-Tubuin,サンプルは継代後 20 日目のヒメツリガネゴケ茎葉 体を使用することとした。

Fig. 2-13. Gene expression in each growth stage and comparison of the correction value by the endogenous control. O, Before correction; \bullet , α -Tubulin; Δ , 18S rRNA; \blacktriangle , β -Actin.

第3項 キチンオリゴ糖処理に対する遺伝子転写量の変動

重合度の異なるキチンオリゴ糖で処理したヒメツリガネゴケの遺伝子転写量の解 析結果を Fig. 2-14 から 2-18 に示す。10 種類の PpChi と 2 種類 PpCERK のうち, 6 種類 PpChi (Ia, Ib, IIa, IIc, IV, Vb) と 2 種類の PpCERK (a, b) に有意な 発現が認められた。遺伝子転写量の変動は、キチンオリゴ糖処理後増加または減少 する 2 つのパターンに分けられ、キチナーゼのクラスとの相関が認められた。また、 キチンオリゴ糖の重合度によって遺伝子に違いがみられた。

Fig. 2-14. Expression analysis of Class I chitinase genes by RTqPCR. Expression profiles of each chitinase gene after 100 mM (GlcNAc)_n (n=6, 4, 2) treatment. \bullet , (GlcNAc)₆; O, (GlcNAc)₄; \blacktriangle , (GlcNAc)₂.

Fig. 2-15. Expression analysis of Class II chitinase genes by RTqPCR. Expression profiles of each chitinase gene after 100 mM (GlcNAc)_n (n=6, 4, 2) treatment. \bullet , (GlcNAc)₆; O, (GlcNAc)₄; \blacktriangle , (GlcNAc)₂.

Fig. 2-16. Expression analysis of Class IV chitinase genes by RTqPCR. Expression profiles of each chitinase gene after 100 mM (GlcNAc)_n (n=6, 4, 2) treatment. \bigcirc , (GlcNAc)₆; \bigcirc , (GlcNAc)₄; \blacktriangle , (GlcNAc)₂.

Fig. 2-17. Expression analysis of Class V chitinase genes by RTqPCR. Expression profiles of each chitinase gene after 100 mM (GlcNAc)_n (n=6, 4, 2) treatment. \bigcirc , (GlcNAc)₆; \bigcirc , (GlcNAc)₄; \blacktriangle , (GlcNAc)₂.

Fig. 2-18. Expression analysis of CERK genes by RT-qPCR. Expression profiles of each chitinase gene after 100 mM $(GlcNAc)_n$ (n=6, 4, 2) treatment. \bigoplus , $(GlcNAc)_6$; \bigcirc , $(GlcNAc)_4$; \blacktriangle , $(GlcNAc)_2$.

第5節 考察

遺伝子検索の結果, ヒメツリガネゴケのゲノム上に 10 種類の PpChi 候補遺伝子 と 2 種類の PpCERK 候補遺伝子を同定することができた。PpChi 遺伝子は ClassI が 3 種類, ClassII が 3 種類, ClassIV が 1 種類, ClassIIL が 1 種類, ClassV が 2 種類に分類された。PpCERK 遺伝子は, プロテインキナーゼの N 末端側に 3 ヶ所の LysM ドメインを持つ構造であった。予想どおり, ヒメツリガネゴケは高等植物と比 較してキチナーゼ遺伝子の数が少なかったことから, 機能解析に適していることが 分かった。

これらの遺伝子について、リアルタイム PCR にて転写量を解析するために、本実 験系における最適な内在性コントロールと成長段階を検討した。β-Actin, α-Tubulin, 18S rRNA 遺伝子を用いて補正した結果、補正前の転写量と比較して、β-Tubuin に よる補正値が最も安定していた。また、継代後 8, 10, 12, 15, 20, 25, 30 日目の PpChiI-a の変動について調べた結果、継代後 15 日目までは大幅な転写量の変動が 見られた。これらの結果より、キチンオリゴ糖処理に対する遺伝子転写量変動解析 には、内在性コントロールとしてα-Tubuin、サンプルは継代後 20 日目のヒメツリ ガネゴケ茎葉体を使用することとした。

重合度の異なるキチンオリゴ糖(GlcNAc)n (n=6, 4, 2)で処理したヒメツリガネゴ ケを材料として,各キチナーゼ遺伝子の転写量をリアルタイムPCRで解析した結果, 10種類のPpChi候補遺伝子と2種類PpCERK候補遺伝子のうち,6種類PpChi(Ia, Ib, IIa, IIc, IV, Vb) と2種類のPpCERK(a, b)の有意な発現が認められた。 遺伝子転写量の変動は、キチンオリゴ糖処理後増加する、または、減少する2つの パターンに分けられ、キチナーゼのクラスとの相関が認められた。また、キチンオ リゴ糖の重合度によって転写量に違いがみられた。これらの結果から、ヒメツリガ ネゴケもキチンエリシターをCERKが認識し、キチナーゼを含むPRタンパク質の 発現が誘導されるという生体防御機構が存在することが示唆された。さらに、キチ ナーゼのクラスやキチンオリゴ糖の重合度によって転写量の変動プロファイルに違 いがみられたことから、キチナーゼは生体内において、クラスごとに異なる役割を 果たしていることが示唆された。

35

第3章 ヒメツリガネゴケ由来キチナーゼ(PpChi)遺伝子のクローニング

第1節 緒論

キチナーゼは Carbohydrate-Active Enzymes (CAZy) データベースにおける分 類により,糖質加水分解酵素ファミリー18 と 19 に分けられる。さらに,その一次 構造の違いから,いくつかのクラスに分類される。このように,植物キチナーゼの 構造は多様であり,その生理機能も多様であると考えられる。キチンオリゴ糖処理 に対するキチナーゼ遺伝子転写量の変動の結果(第2章)より,ヒメツリガネゴケ の PpChi は,クラスごとに異なる役割を果たしている可能性が示された。それぞれ のキチナーゼの役割について調べるために,リコンビナント PpChi を作製すること とした。そこで,ヒメツリガネゴケ茎葉体から mRNA を抽出し,有意な発現が確認 された 6 種のキチナーゼ候補遺伝子の cDNA のクローニングを試みた。

第2節 実験材料

第1項 材料および試薬

RNeasy Plant Mini kit は QIAGEN 社より, GeneRacer Kit および SuperScript III First-Strand Synthesis System for RT-PCR は Invitrogen 社より購入した。トリプ トンはナカライテスク社より, 酵母エキスはオリエンタル酵母工業社より, LB ブイ ヨンはメルク社より, それぞれ購入した。

プライマーの合成は Life Technologies 社に依頼した。その他の試薬は、全て市販の 特級またはそれに準ずるものを用いた。

第2項 プライマー

クローニングに用いたプライマーを Table 3-1.に示した。

Primer	Sequence $(5^{\circ} \rightarrow 3^{\circ})$
PpChi-Ia_f (Forward)	<u>CATATG</u> CAGGGGGGAATGCAGC
PpChi-Ia_r (Reverse)	<u>GGATCC</u> TTAAGCTTCTGCAACC
PpChi-Ib_f	<u>CATATG</u> CAGAATTGCAACAGCACG
PpChi-Ib_r	<u>GGATCC</u> CTAAGCGAAAGATTTTTGG
PpChi-IIa_f	CATATGTGCAACAAGACTGTGAGC
PpChi-IIa_r	<u>GGATCC</u> CTACATTGATGCATAGG
PpChi-IIc_f	CATATGCACGGACGCAAGGGA
PpChi-IIc_r	GGATCCTTAA ATTGATGCATATGCC
PpChi-IV_f	GGAATTC <u>CATATG</u> CAAGGGGAGTGTTCGG
PpChi-IV_r	GC <u>GGATCC</u> TCAGCACCGTAGGTCGG
PpChi-Vb_f	<u>CATATG</u> GCTGTGGTGAGAGGG
PpChi-Vb_r	<u>GGATCC</u> TTAAATTGATGCATATGCC

Table 3-1. Sequences of primers containing recognition site of restriction enzyme

Single and double underlines indicate NdeI and BamHI restriction sites, respectively.

第3項 コンピテントセルの調製

LB プレート (1% トリプトン, 0.5% 酵母エキス, 1% NaCl, 1.5% 寒天) 大腸 菌のストックをストリークし, 37 °C で一晩培養し得られた単コロニーより Scheme 3・1.に従ってコンピテントセルを調製した。LB 液体培地は, LB ブイヨンを 2.5% になるように水で溶かし, オートクレーブ (120 °C, 15 分)後, MgCl₂を終濃度が 20 mM になるように加えて調製した。Transformation buffer (TB) は, Table 3-2. の組成の buffer を KOH で pH を 6.7 に合わせた後, 終濃度が 55 mM となるよう に MnCl₂・4H₂O を添加して 0.22 μ m のシリンジフィルターで濾過滅菌したもの (4°C 保存)を用いた。

 Table 3-2. Transformation buffer (TB)

Components	amount
PIPES	0.3 g
$CaCl_2 \bullet 2H_2O$	0.17 g
KC1	1.86 g
H_2O	95 ml

Adjust the pH of the solution to 6.7 with 1 M KOH. Add 1.09 g of MnCl•24H₂O, and then add H₂O to bring the final volume to 100 ml. Filter the solution with 0.22 μ m syringe filter.

1 ml of LB with 20 mM MgCl₂

90 ml of LB with 20 mM MgCl₂

18 °C, 150 rpm, shake Culture about 10 h (OD600 = $0.4 \sim 0.8$) On ice, 10 min $> 2500 \times g$, 10 min, 2 °C Cells ◀ 30 ml of TB sol. (ice cooled) Gently suspend On ice, 10 min ⇒ 2500×g, 10 min, 2 °C Cells - 7 ml of TB sol. (ice cooled) Gently suspend On ice, 10 min ← 0.53 ml of DMSO (ice cooled) Pre-chilled tube with aluminum block at freezer Dispense 100 µl

Chill with liquid N₂

Store at deep freezer (-70 °C)

第3節 実験方法

第1項 cDNA 合成

cDNA は, GeneRacer Kit (invitrogen 社)を用いて,添付されているプロトコー ルに従って合成した。

第2項 PCRによる制限酵素サイト付き PpChi 遺伝子配列の増幅

1) 1st PCR

ORF (open reading frame) のシグナルペプチドを除いた領域の 5'末端および 3' 末端に対し, Table 3-1.に示した *Nde*I および *Bam*HI サイトを付加したプライマー を作成し,前項で合成した cDNA を用いて, Table 3-3-1 および Table 3-3-2 に示す 条件で PCR を行った。

Table 3-3-1. Reaction mixture for PCR

Component	Amount
$10 \times EX$ Taq Buffer	1.0 µl
TaKaRa <i>EX</i> Taq (0.5 units/µl)	0.5 µl
dNTP Mix (2.5 mM)	0.8 µl
Template DNA	0.4 µl
Forward primer (10 μ M)	0.5 µl
Reverse primer (10 µM)	0.5 µl
Distilled water	6.3 µl
Total	10.0 µl

Table 3-3-2. PCR condition

Temperature	Time	Cycle			
95 °C	1.0 min	×1			
95 °C	0.5 min				
55 °C	0.5 min	× 30			
72 °C	1.5 min				
72 °C	10.0 min	×1			

2) 2nd PCR

前項で得られた PCR 産物を鋳型に用いて 1st PCR と同じ条件で 2nd PCR を行い, 制限酵素サイトを付加した PCR 産物を得た。

第3項 アガロースゲル電気泳動

終濃度 1%のアガロースを TAE 緩衝液(40 mM Tris, 40 mM 酢酸, 1 mM EDTA, pH 8.0)に加熱溶解し、これを泳動用プレートに流し込みゲルを作成した。泳動

buffer として TAE 緩衝液を用いた。サンプルと 1/5 量のローディングバッファー (0.25%ブロモフェノールブルー, 1 mM EDTA, 30%グリセロール)を混合してゲ ルに供し,定電圧(100 V)で泳動した。泳動後のゲルは GelRed (Biotium 社) 5,000 倍希釈液に室温で 15-30 分浸して染色した。染色したゲルは、トランスイルミネー ターで観察した。

第4項 TA クローニング

1) アガロースゲルからの PCR 産物の抽出

PCR 産物のアガロースゲルからの抽出は, MonoFas DNA 精製キット I (ジーエル サイエンス社)を用いて, 添付されているプロトコールに従って行った。

2) ライゲーション反応

ゲル抽出液に含まれる DNA 量と pGEM-T Vector のモル比を 3:1 とし, Table 3-4. に示す組成で 4 $^{\circ}$ C で一晩(または室温で 1 時間)ライゲーション反応を行った。

Component	Amount
2×Rapid Ligation Buffer	5.0 µl
pGEM-T Vector (50 ng/µl)	0.5 µl
T4 DNA Ligase (3 Weiss units/ml)	1.0 µl
PCR products	2.0 µl
Distilled water	1.5 µl
Total	10.0 µl

Incubate the reactions 1 hour at room temperature. Alternatively, incubate the reactions overnight at 4°C for the maximum number of transformants.

第5項 形質転換

形質転換の手順は Scheme 3-2.に示した。コンピテントセルは *E. coli* DH5αを使 用した。SOC 培地は, Table 3-5.の組成の培地をオートクレーブ(120 °C, 15 分) 後, 2 M の Mg²⁺溶液(終濃度 20 mM)と 20 mL の 1 M glucose 溶液を加えた。

Table 3-5. SOC medium

Components	amount	final conc.
Bacto Tryptone	20 g	2.0%
Bacto Yeast extract	5 g	0.5%
5M NaC1	2 ml	10 mM
2M KCl	1.25 ml	2.5 mM
H_2O	Fill up to 1 L	

After autoclave the solution, add 10 ml of 2M $MgCl_2$ (final conc. 20 mM) and 20 ml of a sterile 1 M glucose.

100 μ l of Competent cell (DH5 α)

< 2 µl of ligation reaction solution
Mix gently
20 min on ice
45 sec at 42°C
3 min on ice
900 µl of SOC medium
Shake for 1h at 37°C

10 mL of LB plate containing
10 μL of 100 mg/ml Ampicillin,
10 μL of 100 mM IPTG,
20 μL of 20 mg/ml of X-gal

Scheme 3-2. Transformation

第6項 インサートチェック

インサートチェックは Scheme 3-3.に示す Boil 法により調製したプラスミドを鋳型に、プライマーT7 と sp6 を用いて Table 3-6-1 および Table 3-6-2.の条件でコロニーを直接 PCR に供し、反応産物をアガロースゲル電気泳動にて確認した。

30 μ l of distilled water

Scheme 3-3. Boil prep for insert check

Table 3-6-1. Reaction	mixture	for	colony
direct PCR			

Component	Conc.
$2 \times$ Go Taq Green Master Mix	5.0 µl
T7 primer (10 μM)	0.5 µl
sp6 primer (10 μM)	0.5 µl
Template DNA	1.0 µl
Distilled water	3.0 µl
Total	10.0 µl

Table 3-6-2. PCR condition for colony direct PCR

unterreit		
Temperature	Time	Cycle
95 °C	1.0 min	×1
95 °C	0.5 min	
55 °C	0.5 min	× 30
72 °C	2.0 min	
72 °C	10.0 min	×1

第7項 プラスミド抽出

インサートが確認されたコロニーを培養し, 菌体から Plasmid Mini Purification Kit (北海道システムサイエンス社)を用いて, 添付されているプロトコールに従っ てプラスミドを抽出した。

第8項 塩基配列の確認

Table 3-7.に示した組成を株式会社ファスマックシーケンスサービスに外注し,塩 基配列を確認した。

Table 3-7. Mixture for DNA sequencing.

	<u> </u>
Component	Amount
Plasmid DNA	300-600 ng
Primer	6.4 pmol

Fill up to 14 μ l with sterilized water

第9項 推定分子量および推定等電点の算出

ProtParam tool(<u>http://web.expasy.org/protparam/</u>)を用いて推定分子量および 推定等電点を算出した。

第4節 実験結果

第1項 PpChi の塩基配列および推定アミノ酸配列
 各 cDNA の塩基配列および推定アミノ酸配列の結果を Fig. 3-1 から Fig. 3-6 示す。

				10			- 20			3	0			40			50			60	
	CA	GGG	GGA	ATG	CAG	000	GAAA	стс	GCC	ATG	TCC	ΔΔΔ	TTT	GGC	GCA	СТС	TTG	CAG	САА	CTGG	
1	Q	G	Е	С	S	R	N	S	Ρ	С	Ρ	Ν	L	А	Н	С	С	S	Ν	W	20
				70			80			9	0		1	00			110			120	
	GG	GTA	.C T G	CGG	GGT	TGO	GCAA	CGA	СТА	TTG	TGG	GGA	GGG	GTTG	CCA	GGG	CGG	GCC	GTG	TTAT	
21	G	Y	С	G	V	G	N	D	Y	С	G	Е	G	С	Q	G	G	Ρ	С	Y	40
			1	30			140			15	0		1	60			170			180	
	GG	CCC	TAC	тсс	тсс	AGO	GCCC	ттс	ACC	тсс	стс	TGG	сто	CGG	ССТ	GGA	ACGC	CAT	сст.	AACT	
41	G	Ρ	Т	Ρ	Ρ	G	Р	S	Ρ	Ρ	S	G	S	G	L	D	А	Ι	L	Т	60
			1	90			200			21	0		2	220			230			240	
	AG	AAG	CGT	TTT	CGA	GAA	ATTT	стт	CCC	CGG	- CCA	тст	СТС	CTT	СТА	сто	TTA	CGA	CGT	GCTC	
61	R	S	V	F	Е	Ν	F	F	Р	G	Н	L	S	F	Y	S	Y	D	V	L	80
-		-	2	·50			260			27	0		- 7	280		-	290	-		300	
	ΔT	TGA	- 660	TGC	GAA		ATT	CCC	тса	GTT	- TGG	CAC	GAC		CGA	CAC	CGA	CAC	TCG	TAAG	
81	T	F	Δ	A	K	S	F	P	D	F	G	Т	T	G	D	Т	D	Т	R	K	100
0.	•	-	3	10			.320		<u>.</u>	33	n		G	84∩	2		350	•		360	
	ΔG	ΔGΔ	ں۔ GAT		TGC	TT	1060	395	GC A	тат	Ŭ C & A	GCΔ	CG Z		TGG	۸GP	:ACT	CAC	C۵۵	AATC	
101	R	F	T	Δ	Δ	Y	Δ	<u>دم</u>	H	V	۲ K	H	F	T	G	G	1	Т	_K	I	120
101				20	-		380	~		39	n		- 4	ເດດ	a	a	410	'		420	120
	۵C	:GG A	GCA		066	۱ΔGZ		ττδ	TTG	оо лат	۵ ۵	ста	900	.00 1000	AGA	τδτ	тее	TTG	۲A	0.0000	
121	Т	F	00–	T	G	n D	N	Ϋ́	n ru C	Δ	S	W	R	,000 Р	nun	Ī	P	C	N	G	140
121	'	L	4	30	u	U	440	'	0	45	n			เล่า	U	1	470	0	14	480	140
	C۸	ЛТЛ	۳ ۸۸ C	.00 JOJ	тер	ing n	STCC	тет	CC A	ACT	тте	ста	۔ ۸۸۵		слл	тти		CGC	AGC	AGGC.	
141	0-	ν γ	N	n dd G	R	DDO. G	1100 P	101	004	- I	S	una W	N	V	N	V	1	000 ۸	Λuo. Λ	G G	160
	0	'		.an		a	500	-	0	51	nŬ						530	-	~	540	100
	ТС	GTA	стт	00 202	TGT	CG7		сат	CAA	CAA	u ∆nn	٢ΔΔ	тот	720 TGG T	000	۸۵۲	: 444	τδά	сст	CATC	
161	3	V		G	V	DU-	101	I	N	۸۵ الا	P	N	101	V	۸	T	N	N	1	I	180
101	0	1	5	50	Ÿ	D	560	1	14	57	n	14	Ē		~		500	14	L	600	100
	GC	ттт	слу		۵۸۵	ee-	ооо атал	стт	TTG	су, Суд	с Сут	ттλ	тас	,000 3AG A	сле	тат	тлт	eee	тел	CATT	
181	Å	F	ممر لا	T	Q Q	100	unu W	F	- W	M	u Ai I	V	LC C	nun D	T	V	Ĩ	D000	H	I I	200
101	A	I	6	:10	0	L	620	1	п	63	n'	1	- u F	ио	I	v	650	I	11	1088	200
	٢A	тел	о тат	'nλτ	слт	ากกา	020 20.4.02	ттс	ολο	00 191	о сте	еле	ບ ດດດ	,40 ,60 Y	ee.	VCL	000 1001	GVΥ	eeg	ооо Атал	
201	Ц		V	M	I	DUU D	AADL N	. na W	R R	D	010 م	vAu م	۸	лоци П	лоод П	۸uc	, 100 A	N	R	V	220
201		D	6	70	1	u	620		11	60	n	0		200	6	~	710	14	13	720	220
	ee	ດດູດ	ттт	0,0 1000	ерт	ΈλΩ	000 TA 11	λΩλ	ест	03 ТАТ	0 ТАА	000	, AGC	00 2011	ссл	ото	210 2011	ρλλ	λΤλ	720 2017	
221	D	ննն		ն	V	T	JOAN I	нин П	V	T	N N	նան	RUC C		E E	u ic r	N N		V	0 DAU	240
221	Г	u	' 7	ים חבי	Ŷ	I	1	D	Ÿ	1 75	11 0	u	- u	 197	L	0	770	n	I	0 700	240
	ee		, 	00	тес	000	740 1041	۰ ۸ ۸	ттλ	70 TT A	0 0 A A	۸ 0 ۸	, דדז	00 TTC	044	тос	770 TOT	0 ^ ^	тот	700 0 A A T	
9/1	40	00A	440 A	AUA D	.iuu	D	aAu n V	AAU N	UTA V	UTA V		AUA D		nu e	UAA N	D	110 P	UAA N	V	M	260
Z4 I	А	Q	- A - 7	ט יחחי	А	П	000	IN	T	1 01	n O	U	Г С	000	N	П	020	IN	۷		200
	00	тоо	, тее	90 • T A A	тот			~ ^ ^ ^		OI TAT	U CAC	000) ATT	20 TT A	ото	лот	000 TA A	олт	сст	040 TCCA	
001	- UU - D	0	0	LI AA M	101	uu#	40 IG		AAA N	IAT M	uAu D	սեն	ALI E	- TTA	010	AGI	TAA N	UAT M	441 V	IGUA A	200
ZU I	۲	u	u	IN	L	U	U	n	IN.	IVI	Ц	٢	Г	ï	ა	۷	IN.	IVI	۷	А	280
	C.A		TΤΛ	A																	
001	uA E	NAGU ∕	IIA W	A	0	00															
ZO I		A	不			00															

Fig. 3-1. Nucleotide sequence of PpChi-Ia cDNA with its deduced amino acid sequence.

			10			20			30)			40			50			60	
	CAGA	AT1	IGC A4	ACAG	ICA(CGGT	000	GTG	CGCI	FGA"	TCC	ΑΑΑ	CAA	CTG	СТС	TAG	CCA	GTAT	FGGA	
1	QN	1 0	N (S	Т	V	Ρ	С	Α	D	Ρ	Ν	Ν	С	С	S	Q	Υ	G	20
			70			80			90)		1	00			110			120	
	TAT	IGCO	GAAC	CGA	CG.4	ATGC	GTA	CTG	CGTC	GAT	CGG	GTG	CCA	GAAI	CGG	TCC	CTG	CCGC	CGAC	
21	ΥC) (Ϋ́	D	D	Α	Y	С	V	Ι	G	С	Q	Ν	G	Ρ	С	R	D	40
			130			140			150)		1	60			170			180	
	AGCO	0001	готос	GCC	ACC	стес	GCCI	CGC	ACCA	4007	ATC	GCC	GCC	TTC	000	ACCA	ACC.	ACC/	7007	
41	S F) (S P	Ρ	Ρ	Ρ	Ρ	А	Ρ	Ρ	S	Ρ	Ρ	S	Ρ	Ρ	Ρ	Ρ	Ρ	60
			190			200			210)		2	20			230			240	
	AGAC	CAT	ICC G1	сто	GCC	CCAC	4001	стс	GTC1	FGG(GGC	TGG	TCG	ССТІ	САТ	CAC	GCG	CAAC	GCTG	
61	R F) (S V	S	Ρ	Т	Ρ	S	S	G	А	G	R	L	Ι	Т	R	Κ	L	80
			250			260			270)		2	80			290			300	
	TTCC	GAGA	AGC1	СТА	000	CGAAG	CTA	САА	CAAC	GAC	GTT	TTA	стс	СТА	CGA	TGC	стт	CATI	IGTC	
81	FΕ	Ξk	(L	Y	Ρ	Ν	Y	Ν	Κ	Т	F	Y	S	Y	D	Α	F	Ι	V	100
			310			320			330)		3	40			350			360	
	GCTC	GCAA	ATGO	CTT	000	CAA	ATT	тст	GAAC	CGA	GGG	GTG	TCG	CGA	ATC	TCG	TTT	ACG1	FGAG	
101	A A	A N	A	F	Ρ	К	F	L	Ν	Е	G	С	R	Е	S	R	L	R	Е	120
			370			380			390)		4	00			410			420	
	CITCO	GCTC	CTTO	GAG	TGC		CGT	GCA	GC A4	۱ GA	4.ACI	CGC	AGG	ССТІ	GGT	TTA	CGT	TGAC	GAA	
121	LA	4	۱.W	S	Α	Н	٧	Q	Q	Е	Т	Α	G	L	V	Y	٧	Е	Е	140
			430			440			450)		4	60			470			480	
	ATTI	ICA4		TAG	TG	ГСТА	CITG	TGA	CGC1	FAC	стс	GAC	GAG	GTA	000	TTG	TGA	GCCA	ATAC	
141	ΙS	3 k	(S	S	V	Y	С	D	А	Т	S	Т	R	Y	Ρ	С	Е	Ρ	Y	160
			490			500			510)		5	20			530			540	
	CAGA	AG1	FAC T1	TCGG	TCC	GTGG	GCC	тст	TCAA	ACT(стс	CTG	GAA	TTT		ACTA [®]	TGG	GCCI	FGCC	
161	Qk	()	/ F	G	R	G	Ρ	L	Q	L	S	₩	Ν	F	Ν	Y	G	Ρ	A	180
			550			560			570)		5	80			590			600	
	GGTC) AAG	астст	TGG	ICA ⁻	TTGA	CAT	ССТ	GAAC	GCG/	ACC.	ATT	ССТ	GGT	ттс	TTT	CGA	0000	CGTG	
181	G E	Ξ 4	L L	G	Ι	D	Ι	L	Κ	R	Ρ	F	L	V	S	F	D	Ρ	V	200
			610			620			630)		6	40			650			660	
	TTGC	GCC1	TT A4	AGGC	СТС	CAT	ATG	GTT	TTGC	GAA	CAC	AGC	CCG	CGA	GGG	CGGG	CAT	TCC1	TCC	
201	LA	∖ F	K	Α	S	Ι	₩	F	W	Ν	Т	А	R	Е	G	G	Ι	Ρ	S	220
			670			680			690)		- 7	00			710			720	
	ATAC	CACC	GACGT	GAT	CAT	TCGG	GAA	ATA	CAGO	GCC/	ATC	AGC	AGC	AGAI	CAA	(GGC)	AGC	GAAC	CGC	
221	Ιŀ	1 [) (Ι	Ι	G	Κ	Υ	R	Ρ	S	А	А	D	Κ	Α	А	Ν	R	240
			730			740			750)		- 7	60			770			780	
	ACTO	GTCC	GCTT	CGG	ATA		CAT	ΤΑΑ	CATO	CAT	CAA	CGG	GGG	CAT	CGA	GTG.	TGG	GAAA	AGGA	
241	ΤV	/ (βF	G	Υ	Т	Ι	Ν	Ι	Ι	Ν	G	G	Ι	Е	С	G	Κ	G	260
			790			800			810)		8	20			830			840	
	ACTO	GCTA	10000) AC A	AGO	CAGC	GAAI	CCG	CGTC		GTA	CTT	тст	AGA	GTT	TAG	CGA		GTTG	
261	ΤA	٦ ۱	ΓP	Q	Α	Α	Ν	R	V	Κ	Y	F	L	Е	F	S	Е	Κ	L	280
			850			860			870)		8	80			890				
	GAAC	GTG1	ICACC	GGG	iga,		ССТ	CGA	CTGC	CAC	ΔAA	ССА	ΑΑΑ	ATC.	TTT	CGC	TTA	G		
281	E۱	/ 8	S P	G	Κ	Ν	L	D	С	Т	Ν	Q	Κ	S	F	Α	*		298	

Fig. 3-2. Nucleotide sequence of PpChi-Ib cDNA with its deduced amino acid sequence.

				10			20			3	0			40			50			60	
	ΤG	iсда	САА	GAC	TGT	GAC	GCGA	GTT	GTT	CAA	CGC	GGA	GAT	GTT	CGA	GGC	CAT	GTT	ΤΑΑ	GCAC	
1	С	Ν	Κ	Т	V	S	Е	L	F	Ν	А	Е	М	F	Е	А	М	F	Κ	Н	20
				70			80			9	0		1	00			110			120	
	CG	ICAA	CGA	CAA	.GGC	TGC	CCCA	CGC	GCA	.GGG	GTT	CTG	GAG	СТА	CGA	CGG	CTT	TAT	CGC	TGCA	
21	R	Ν	D	Κ	Α	А	Н	А	Q	G	F	₩	S	Υ	D	G	F	Ι	А	А	40
			1	30			140			15	0		1	60			170			180	
	GC	ΤΑΑ	GAT	GTT	CGA	\GA4	AGGA	CGG	CTT	TGG	CAT	GGT	AGG	TGG	CGA	GG4	TGT	GCA	GAAI	GCGG	
41	Α	Κ	М	F	Е	Κ	D	G	F	G	М	V	G	G	Е	D	V	Q	Κ	R	60
			1	90			200			21	0		2	20			230			240	
	GΑ	GCT	CTC	GGC	GTT	CT	FCGC	TCA	TGT	CGC	GCA	CGA	AAC	СТС	GTG	TGG	GATG	GAG	TGG	AGCT	
61	Е	L	S	Α	F	F	А	Н	V	A	Н	Е	Т	S	С	G	₩	S	G	A	80
			2	50			260			27	0		2	80			290			300	
	AΔ	GGA	CGG	TCC	TAC	AGO	CGTG	GGG	ACT	GTG	СТА	CAA	CCA	AGA	GCT	CGC	GCC.	TGA		GGAT	
81	Κ	D	G	Ρ	Т	А	W	G	L	С	Y	Ν	Q	Е	L	А	Ρ	Е	Κ	D	100
			3	10			320			33	0		3	40			350			360	
	ΤA	CTG	ICAA	GAC	GGG	GCG4	AT TT	GAT	GTA	,000	TTG	ICGC	ACC	GGG	TGC	TGG	GTTA	CTA	CGG	ACGT	
101	Y	С	Κ	Т	G	D	L	М	Y	Ρ	С	А	Ρ	G	А	G	Y	Y	G	R	120
			3	70			380			39	0		4	00			410			420	
	GG	IAGC	GTT	TCC	CCT	CTA	AC TG	GΑA	СТА	CAA	СТА	TGG	TCC	CAC	AGG	AGT	GGC	TTT	GAAI	GCAG	
121	G	А	F	Ρ	L	Y	W	Ν	Y	Ν	Y	G	Ρ	Т	G	V	А	L	Κ	Q	140
			4	30			440			45	0		_ 4	60			470			480	
	GΑ	CCT	GTT	ACA	A CO.	1000	CTGA	AAT	TCT	CTC	CCA	GAA	CGA	AAC	CAT	TGC	GTG	GCA	AGC:	AGCT	
141	D	L	L.	Н	Н	Ρ	E	Ι	L	S	Q	Ν	E_	Т	Ι	А		Q	А	A	160
			4	90			500			51	0		5	20			530			540	
	GT	TTG	IGTA	CTG	GAT	GAU	CGCC	TGC	CAA	GAC	GAG	IACC	ATC	TCC	TCA	CG4	GAT	TA T	GAT	TGGC	
161	V	W	Y_	W	М	Т	Р	А	Κ	T	R	Ρ	S_	Р	Н	E	l	М	Ι	G	180
			5	60			560	-		b/	0		b	80			590		- · -	600	
	ΔΔ	GIG	IGG I	GCC	GAC	GAA	AGAA	IGA	CAC	I UUU	CGC	I I A	ICG	CAA	.GCC	T G G		JGG		GACC	
181	Κ	W	V	Р	I	K	N	D		L	A	Y	R	K	Ρ	G	+	G	М		200
			6	10			620			63	0		6	40			650			660	
	AI	CAA	IGI	CAA	.GGC	ΆΑ(JIGA	IGI	CGA	AIG	CGG	ICCA	CGG	CGA	AGA	ICC	CICG	CAT	GCA	GICA	
201	1	Ν	V	K	Α	8	U	V	F	U	G	Н	G_	E	U	Р	K	М	IJ	8	220
	~ ~		b o To	i/U	от I	о т -	680	_ 		69 	U		/ 	UU 	_ _		710			/20	
	CG	iaa I	UIU	UUA	UTA	NC I	IGAC	υIJ	UUT	UAG	GGA	UAU T	υĽΓ	UUA	GII	GGA	IGA	JUU	GGG	JIUA	
221	К	I	8	Н	Y	L		F	L	K	U		+_	IJ	L	U	U	Р	G	8	240
		TO 7	/	30	000		/40			/5 	U Too		/	бU	тос	. т е	//U	<u>эт 4</u>	_		
0.11	AΔ	UU I	AGA	u i G	UGU	ilU	IGUA	AGG	пGТ	IAI	TUU	AUT	GGC	UTA	, I GC	AIL	; AA II	Αاند	li	050	
241	N	L	U	U	Ŀ	L	IJ	G	V	1	Ч	L	A	Y	A	S	M	ж		258	

Fig. 3-3. Nucleotide sequence of PpChi-IIa cDNA with its deduced amino acid sequence.

				10			20			30)			40			50			60	
	СА	CGG	ACG	САА	GGG	AC 1	IGGT	GTG	CAC	TAA	AGA	GTTI	GAA	GGA	AGA	CGG	ATG	CAA	CAA	AACC	
1	Н	G	R	Κ	G	L	V	С	Т	Κ	Е	L	Κ	Е	D	G	С	Ν	Κ	Т	20
				70			80			90)		1	00			110			120	
	ΑT	CAG	TGA	TCT	GTT	CAC	CGGT	GCA	AAC	TTT(CGA	GGAI	CAT	GTT	CAA	ACA	CCG	CAA	CGA	CAGA	
21	Ι	S	D	L	F	Т	V	Q	Т	F	Е	D	М	F	Κ	Н	R	Ν	D	R	40
			1	30			140			150)		1	60			170			180	
	GC	TGC	GCA	TGC	CGC	GGC	GCTT	CTG	GAC	CTA	CGA	TGGI	CTT	CAT	GGC.	TGC	AGC	TCA	GAT	GTTC	
41	А	А	Н	А	А	G	F	₩	Т	Y	D	G	F	М	А	Α	А	Q	М	F	60
			1	90			200			210)		2	20			230			240	
	GΑ	GAA	GGA	CGG	CTT	CGC	CTC	CGT	GGG	TGG	TGA	CGA	TAT	GCA	GAAI	GCG	IGGA	GCT	CGC	GGCG	
61	Е	Κ	D	G	F	А	S	V	G	G	D	D	М	Q	Κ	R	Е	L	А	А	80
			2	50			260			270)		2	80			290			300	
	ΤT	CTT	CGC	CCA	CGT	CGC	CCA	CGA	AAC	GTCO	GTG	TGG.	ATG	GAG	CAT	GGC	CAA.	AGA	TGG	TCCT	
81	F	F	А	Н	V	А	Н	Е	Т	S	С	G	₩	S	М	А	Κ	D	G	Ρ	100
			3	10			320			330)		3	40			350			360	
	AC	CGC	ATG	GGG	ACT	ATC	GCTA	CAA	CCA	AG A(GCT	CGC	TCC	CAT	GAA,	AGA	CTA	CTG	CAA	GACT	
101	Т	А	₩	G	L	С	Y	Ν	Q	Е	L	А	Ρ	М	Κ	D	Y	С	Κ	Т	120
			3	70			380			390)		4	00			410			420	
	GG	CGA	TTT	GCT	GTA	TCC	CATG	TGC	ACC	AGG	TGC.	TGG	TTA	СТА	TGG	400	ITGG.	AGC	CTT	TCCT	
121	G	D	L	L	Y	Ρ	С	А	Ρ	G	А	G	Y	Y	G	R	G	А	F	Ρ	140
			4	30			440			450)		4	60			470			480	
	СТ	CTA	CTG	GAA	СТА	CAA	ATTA	CGG	TCC	AAC ⁻	TGG	GAAI	GGC	TCT	GAAI	GCA	GGA	CTT	GTT	GCAT	
141	L	Y	₩	Ν	Y	Ν	Y	G	Ρ	Т	G	Κ	А	L	Κ	Q	D	L	L	Н	160
			4	90			500			510)		5	20			530			540	
	CA	TCC	TGA	GAT	CCT	CGC	CCA	4AA	CGA	AACO	CAT	AGC.	ATG	GCA	AGC	AGC	TAT	TTG	GTA	CTGG	
161	Н	Ρ	E_	Ι	L	А	Q	Ν	Е	Т	Ι	А	₩_	Q	А	А	Ι	₩	Y	₩	180
			5	50			560			570]		5	80			590			600	
	AT	GAC	CCC	TGC	CAA	GAC	CAAG	GCC	ATC	TCC.	TCA	TGA.	AGT	TAT	GATI	CGG	GAA	GTG	GGTO	GCCG	
181	М		P	A	Κ	I	R	Ρ	S	Р	Н	F	V	М	I	G	K	W	V	Р	200
			6	10			620			630]		- 6	40			650			660	
	AC	GAA	GAA	I GA	TAC	AC I	I I GC,	4 <u>4</u> 4	ICG	I A A/		CGGI		IGG		GAC	ICA II		CAL	I AAG	
201		Κ	N	D		L	A	Ν	R	K	-Ρ	G	+	G	М		1	Ν	I	K	220
			6	/0			680			690) 		/	00			/10			/20	
	GC	CAG	CGA	CGI	IGA	GIU	a i GGC	CCA	TGG.	AGA	IGA	ICC	ICG	CAL	GCT	GIC	ACG.	AA H		CCAC	
221	А	S	D_	V	F	С	G	Н	G	D	D	Ρ	R_	М	L	S	_R	I	S	Н	240
			7	30			740			750)	.	. 7	60 To o	.		770	.	.	780	
	ΙA	III.	GGA	CTI	IC I	IC4		JAA 		CCA	AGI	ICA.	AGA	ICC	IGG	IGC		JC I	IGA	CIGC	
241	Y	L	D_	F	L	Q	N	К	F	U.	V	IJ	D	Ч	G	Α	Ν	L	D	C	260
	~ ~	~~~	7	90	T		800	.	~~~~	810	J			20							
	GG	CCT	GCA	AGG	IGT	AGT	LICC.	ICT	GGC.	A l'A	FGC	A IC.	AΑΤ	ΓFΑ	А	_					
261	G	L	Q	G	V	V	Р	L	Α	Y	А	S	I	ж		- 2	:/4				

Fig. 3-4. Nucleotide sequence of PpChi-IIc cDNA with its deduced amino acid sequence.

				10			20			30)		4	40			50			60	
	СА	AGG	GGA	GTG	TTC	GG A	ATC	CAC	AGC	CTGT	FCCI	CGA	CAA	TAC	CAT	GTO	GCTG	TAG	CCA	GTAT	
1	Q	G	Е	С	S	Е	S	Т	А	С	Ρ	D	Ν	Т	М	С	С	S	Q	Y	20
				70			80			90)		1(00			110			120	
	AΑ	TTA	TTG	TGG	AAC	TGG	GCGA	CGC	CTA	TTGT	FGG"	TGA	AGG	TTG	CAA	GAA	TGG	TCC	CTG	CAAC	
21	Ν	γ	С	G	Т	G	D	А	Υ	С	G	Е	G	С	Κ	Ν	G	Ρ	С	Ν	40
			1	30			140			150)		16	50			170			180	
	GC	TGG	TGG	TAC	ACC	TCC	CTGC	GCC	TGA	ACCT	FCC,	AAC	CTC/	4GG	TTC.	AGG	STTG	GTC	GAG	CTTC	
41	А	G	G	Т	Ρ	Ρ	А	Ρ	Е	Ρ	Ρ	Т	S	G	S	G	W	S	S	F	60
			1	90			200			210)		22	20			230			240	
	ΤT	CAC	CGA	AGA	AGT	TTT	FCGA	CGG	GTG	GTTC	CCC.	TTC	CCG	CAA	TGC	TGA	VTTT.	TTA	CACI	CTTT	
61	F	Т	Е	Е	V	F	D	G	₩	F	Ρ	S	R	Ν	А	D	F	Y	Т	F	80
			2	50			260			270)		28	30			290			300	
	GA	GCG	TTT	CAA	GGC	TGC	CAGCO	GTC	CGC	TTAC		GAC	GTT	CGG	ΤΑΑ	CGA	AGG.	ATC	TGTI	GGAT	
81	F	R	F	K	Α	Α	A	S	А	Y	Ρ	I	F	G	Ν	F	G	S	V	D	100
			3	10			320	.		330)		34	40			350	.		360	
	GA	CCA	GAA	GCG	AGA	IGA I	CGC	IGC	CII	1110	CGG/		CGIU	JAA	CCA.	AG4	AIC	IGG.	AGGI	CIIG	
101	D	Q	K	R	F	I	A	А	F	F	G	Ν	۷.	N	Q	F	S	G	G	L	120
				/U		~ ~ ~	380		TIO	39U 79U	J		4l 0.7.0/	JU	~ . ~		410	~ • ~		420	
101	AA	ALL	UGI	UAG	AGA	GAL T) I AAI N	յլլ	TAC	TGAA	AAL,		UTGU	JGA	UAU T	GAL T	UAAI N	UAU	UUA. O	ATAC .	140
IZT	К	F	V,	К 20	E	I	N A A O	Ρ	I		1	Ŷ	U 10	D 20	I	Ι	170	Ι	ų	Y AOO	140
	00	тто	4 000	3U 000	тоо	т	440 0 TO	<u>от</u> и	TTA	40U TOOC)))	тоо	40 TO O	DU DAT	том	пот	47U	то	- A AI	480	
1 / 1	00 D	116 0	են հ	սկս հ	166	LI AA IZ	4610	JTA V	ATTA V	1666	յեն Ե	166		JAL	I U AI	սել ւ	010	ATG w	u AAI M	JTAU V	160
141	Р	U	A	А 00	u	n	0 500	ï	ï	ն 510	л N	u	۲ ج	1 00	ų	L	0 500	ΥY	IN	т Б / О	100
	A A	отл	4 000	90 тее	ATO	тос	000 1000	тее	тот		י דדי	000	U. ACTI	20 20 Ti		о ло	USU		о тто	040 2014	
161	- AA - N	UTA V	ւսս Բ	140	ATU C	nuu e	AUC.	100	101	UAAU N		D D	АС П Т	יד טכ ד	600 A	UAU T	, 100, D	AUA E	u n T	V N	100
101	IN	I	ч Б	А 50	U	u	560	А	L	570		Г		20	А	1	БОЛ	L	L	۳ 009	100
	СA	сле	тсл	00 TCC	CC A	тет	000 1999	этт		070 0740	, 2001	оот	о Ота	оо 2тт	тте	сла	080 1993	ο Λ Λ ⁻	телі	0000 2700	
181	F	UAU T	TUA D	Λ Λ	DUP D	V	A N	F	۸U ا	Т	A A		u W	F	. nu ₩	M M	ι Δ	N	10A	nuo C	200
101	L	I	6	10	U	v	620	'	n	830	ĥ	L	т 6/	10	m	191	650	14	Q	660	200
	٢٨	ee A	0 191	λλΤ	слт	rege	STOC.	тее	тее	000 Галп	, ΓΤΤΙ	ngg	-0 ۱۸۸۸	τΟ ΛΑΡΙ	ΩAT	тер	COD	٨٨Τ	۰ ۸ ۸ ⁻	A DDT	
201	H	юод П	۸uo	I AA	I	000 G	лоо Р	D	D	n DAU	F	ն ն	مممر لا	T	I	R	IUA II I	I AA	N	G G	220
201		8	6	70	1	u	680	'	1	690	່	u	7	าก่	1		710	1	11	720	220
	GC	GΔΔ	۵G۵	, O ATA	000	юст	ETGT.	٨٨٨		OOC OG AG	ς ΔG.	AGT		38 A.	TCG	AGT		GΤΔ		200	
221	Δ	K	F	n. C	G	1001	V	N	n D	F	R	V	T	N	R	V	T	Ϋ́	Ϋ́	T	240
1			7	30	J	-	740	. 1	0	750	ົ	r	7f	30		Y	770	'	'		210
	ΔA	CTT	ст́я	ΩΔΔ	TTC			CGT	CGA	1000	- FGGI	рде	ne vi		λeg	ото	ото.	٨			
												UAU	UUA	יד בוב	80.0			•			

Fig. 3-5. Nucleotide sequence of PpChi-IV cDNA with its deduced amino acid sequence.

			10			20			30			4()		5	50			60	
	GCTG	TGGT	GAG4	4GGC	GGG	TTAC	CITG	GTT	GCAA	GAC	TT(GCCGC	CTAC	GTGA	ACA	AT/	ΑΔ(CTTC	CAAT	
1	A V	V	R	G	G	Υ	₩	L	Q	D	L	ΡL	_ \	/ N		Ι	Ν	F	Ν	20
			70			80			90			100)		1	10			120	
	TACG	AGAC	GCAT	IGTO	GTA	CTAC	CGC	GTT	TGCA	GGC	TT(GGACO	CCTT	TCCT	CG	TAC	CAC	GGT	FGTG	
21	ΥE	Т	Н	V	Y	Y	А	F	Α	G	L	DF	2 3	3 S	\ \	1	Q	V	V	40
		1	30			140			150			160)		-17	70			180	
	GCTC	CGAC	CACC	CGAC	CAA	TGG(CCA	GTA	CGCG	ACG	itt:	TGTGO	GCCA	ACGG	CGA	4AC	GAG	CTCA	4AAC	
41	A P	Т	Т	D	Ν	G	Q	γ	Α	Т	F	V A	4 1	Δ	, k	<	S	S	Ν	60
		1	90			200			210			220)		-23	30			240	
	CCTT	CCGT	TGTO	GACC	GCIT	ССТО	CTC	CAT	CGGC	GGA	GG	TGCAC	GCAA	ATT	ΤT	400	ACA	ATT:	FGGC	
61	ΡS	V	V	Т	L	L	S	Ι	G	G	G	A A	A N	l F	-	Γ	Т	F	G	80
		2	50			260			270			280)		29	90			300	
	GAAA	TGGT	GAGC	CACA	ATCI	CACO	CAG	GCG	GCAG	GCC	TT	CATTO	GACA	AGC A	GTA	ATC	TC	GCTO	GCT	
81	ΕM	V	S	Т	S	Т	R	R	Q	A	F	Ι [) (3 S		Ι	S	L	Α	100
		3	10		:	320			330			340)		35	50			360	
	CGCC	ΑΑΤΑ	CAGI	IT AC	CGA.	AGG/	ACT	GGA	ССТА	GAC	TG	GG AGT	ГСАС	CGC	AAA	AGC	CA/	4AC/	AGAG	
101	RQ	Y	S	Y	Е	G	L	D	L	D	W	E S	S F) (1 8	S	Q	Т	Е	120
		3	70		:	380			390			400)		4	10			420	
	ATGG		TTTC	GCC	GC T.	АСТО	GCT	ACA	GGAA	TGG	CG	CGCGC	GCTO	GCGC	ATA	400	GAC	GGCT	ГСАА	
121	ΜE	Ν	L	A	L	L	L	Q	Е	W	R	A A	4 A	A H		Г	Е	А	Q	140
		4	30			440			450			460)		47	70			480	
	TCGT	CAGG	CAAT	FACC	CGA	GCT	гст	ССТ	CACA	GCT	GC.	TG TGA	AGCI	ACC	AG ⁻	TCA	AT	тста	GCTC	
141	S S	G	N	Т	E	L	L	L	Т	A	A	VS	3 1	/ [1 8	3	Ι	L	L	160
		4	90		_	500			510			520)		53	30			540	
	TACA	CGGG	TGTO	CGGT	ΓΔΑ΄	TCA	GGT	CTG	GCCG	ATT	AC	CGCT	- F T C A	ACA	.CA ⁻	ΓΑΓ	тт	GGAC	CTGG	
161	Y T	G	V	G	N	D	V	W	P	I	Т	A F	= N	и. 1 Т	· \	/ /	1	D	W	180
		5	50			560			570	-		580	י ר ו		59	90-	_	2	600	
	GTGA	ACGT	GATE	GACC	CTA	TGA"	ΓΤΑ	CCA	CGGC	TCA	TG	GGAGO	- CCA4		СŢА	4CT	GGG	CGAA	ACAC	
181	V N	V	M	Т	Y	D	Y	Н	G	S	W	FF	ך כ	T		Г.	G	F	Н	200
		. 6	10		. 1	620	•		630	-		640	ו		65	50		-	660	200
	ACAG	CATT	ΑΤΑΓ	GAC	000	ς α Δί	стс	CGA	CGTC	GAC	AC.	TGAT	- Face	GAA	.TC4	4.A.C	.ΔΔ(CITGO	GCTG	
201	ΤA		Y	D	P	N	S	D	V	D	Т	י מ	γC)]	N		N	W		220
20.		6	70	2		680	-	2	690			700]		7.	10			720	220
	TCAG	CAGG	CATO	G A A	AGC.	AGA(GAT	GTGC	TTG	GG.	ACITI	- GCT1	тст	AT(GGA		GCAC	GTGG	
221	S A	G	M	 Ŋ	Δ.	D	K.	M	С		G	1 4	Δ F	: γ	′ (3	K	n. D	W	240
	• • •	7	30	-	•••	740	•••		750	_		760	י י ר		77	70		<u> </u>	 780	2.0
	GTTC	TTGC	CAGI	СТТ	FGCI	 Γ.ΑΔί	CAC	CGG	AGTA	GGG	GCC	GCCTO	- 3004		.GTC	G	GGG	CGAC	0000	
241	VI	Ā	S	1	A	N	Т	G	V	G	A	P 4	Δ 1	T S	1	3	G	D	P	260
211		7	9ñ	-		800		ä	810	ŭ,		. 820	יי ר	Ŭ	83	RN	ä	Ľ	840	200
	ΔΤΔΔ	ΩΔΤΔ	TGCZ	ΔGΔſ	.ΔTi	000 NTRN	GΔC	TΤΔ		ΔΔΓ	:GCJ		-	A COG	стí		ΓGΔſ	GCΔ	16AT	
261	T T	γ	Δ	n	I	V	T	Y	N	N	Δ.	G	3 4	ιου. Δ	. 1	/	F	[]	n	280
201	1 1		50	0		, 088			870			88	י ר		80	'n.	-	~	gnn	200
	τορμ	стас	TGTZ	тси	١ ١ Δ	GTAT	ΓΔG	ττδ	CAAG	тет	īGΔſ	CTTG	ACTI	TGG A	тс	, 195	sτΔ	TGAC	:000	
281	S T	T	V	S	M	Y	S	Y	K	S	n	1 -	T V	l I	n oc 1	auc 3	Ϋ́	n	N	300
201	· ·	ģ	10	0	. in	920.	0	'	930	Ŭ	0	940	יי		95	50	'	U	960	000
	ССТБ	ΔΤΔΟ	τδτη	COD	FGCI	G A A I	AGT	TCΔ	GTAT	1909	CΔſ	GAGTA	- - 	стт	та	Т.Г.	- 1996	ττδί	OTTC.	
301			I	Λ.	Δ.	unn K	V	0	V	٨	юд. П	S I	()	21	140		ß	Υ	F	320
501	. 0	ά	70	-		ggn.	Ŧ	2	gan		3	1000	, , 1	· L	10	- 10	u.	'.	, 1020	020
	GCCT	1999	, Ο ΔΩΤΙ	Г <u>С А</u> Т	Г.С. АІ	9999 6670	2GA	TGO	GAAT	ТТС	TC	DOU - DATTS	- - -	n ag	Ωλſ	ים. דאר	ΔT	3047	ETGA	
321	∆ W	٥٥٥٥ ٨	1	H	0.	n D	D D	Δ	N	F	S		A S) A	, n	au i G	M	N N	*	340
	- "				8	0	0								 	-		14		
Fig.	3-6. N	ucle	eotid	le s	eq	uen	ce	of]	PpC	∑hi-	٧b	cDN	NA 1	with	ı its	s d	ed	uce	d an	nino

Fig. 3-6. Nucleotide sequence of PpChi-Vb cDNA with its deduced amino acid sequence.

第2項 推定分子量·推定等電点

各遺伝子の推定分子量・推定等電点の算出の結果を Table 3-8 に示す。

 Table 3-8. Theoretical isoelectric points and

 molecular masses of PpChi candidate genes.

Name	Theoretical pI/Molecular mass
PpChi-Ia	5.85 / 30759.4
PpChi-Ib	8.34 / 34299.9
PpChi-IIa	5.84 / 28721.5
PpChi-IIc	6.37 / 30446.5
PpChi-IV	4.55 / 27789.6
PpChi-Vb	4.17 / 36853.6

第3項 データベースとの比較

cDNA クローニングによって得られた塩基配列をデータベースから得られるロボ ティックにアノテーションされた推定 mRNA の塩基配列と比較した結果, PpChi-IIa, IIc, IV, Vb では完全に一致したが, PpChi-Ia および Ib では推定 mRNA とは異なる配列があった。ゲノム配列と比較した結果,推定 mRNA 配列と本研究で 得られた cDNA の配列は,何れもゲノム配列と完全に一致する領域があり,本配列 の違いはエキソンの違いに起因することが明らかとなった(Fig. 3-7)。推定 mRNA と取得 cDNA 配列は何れもフレームシフトによるストップコドンの出現は無く,N 末端と C 末端配列は一致した。キチン分解活性に必須な酸触媒残基であるグルタミ ン酸残基(PpChi-Ia では 113Glu, PiChi-Ib では 131 残基目)は両方の配列で保持 されているが,塩基触媒残基であるグルタミン酸残基(PpChi-Ia では 122Glu, PiChi-Ib では 140 残基目。Fig. 3-7 のアスタリスクで示している)が cDNA にはあ るが,推定 mRNA には相当する領域にグルタミン酸残基は見当たらなかった。

50

 CAGGCTGGTTTACGTTGAGGAAATTTCAAATCTAGTGTCTACTGTGAC GCCTGGTTTACGTTGAGGAAATTTCAAAATCTAGTGTCTACTGTGAC L V Y V E E 1 S K S S V Y C D * 	G CAGGCCTGGTTTACGTTGAGGAAATTTCAAAATCT <mark>AG</mark> TGTCTACTGTGAC
gaaaccg <mark>gaag</mark> gtgaggtgaaatcgtggagttggttggtggtggtggtgggatatggattgggtgggagaaacggtgagaaaggtgggaggtgg	GAAACCGGAGGTGAGGTCGAAATCCTGGAGTTCGTTCGGCTGTCCTCAGATATCCATTGCCTTCGACAAAACCCTCACAAGATCGCAGTGCT
391 gaaacggcag	GAAACCGGAGGTGAGGT
Genome seq.	Genome seq.
PpChi-Ib cDNA	Predicted mRNA

ЕТА 6 Е L Е I L 0 F V P L S S D I H C L R 0 N P H K I A V L

VYCD

Fig. 3-7. Sequence comparison between PpChi cDNA and predicted mRNA.

Genomic and predicted mRNA sequences for chitinase candidate genes were obtained from web site of National Center for Biotechnology Information, NCBI (http://www.ncbi.nlm.nih.gov/gene). White texts with black (exon terminal) and gray (intron terminal) background indicate the consensus sequence for an intron: M-A-G-[cut]-G-T-R-A-G-T (donor site) ... intron sequence Y-rich-N-C-[cut]-G (acceptor site).

第4項 相同性比較

得られた cDNA から推定されるアミノ酸配列と他の植物由来のキチナーゼとの構 造依存的マルチプルアライメントを行った(Fig. 3-8 および 3-9)。PpChi-Ia および Ib はクラス I キチナーゼではあるが, ループ I およびループ II の抜けたクラス I 様 のキチナーゼであることが分かった。PpChi-IIa および IIc はループ領域が全てそ ろったクラス II, PpChi-IV は触媒ドメインのループ I, II, IV, V および C 末端ルー プの欠損したクラス IV, PpChi-Vb は他のクラス V キチナーゼと同様の a/8 ドメイ ン領域を持つクラス V キチナーゼであることが分かった。系統樹解析においても, PpChi-Ia, Ib, IIa, IIc はクラス I および II キチナーゼと, PpChi-IV はクラス IV および II-L と, PpChi-Vb はクラス V キチナーゼと, それぞれ遺伝的な距離が近い ことが明らかとなった。

Fig. 3-8. Multiple sequence alignments among PpChi-Ia, Ib, IIa, IIc, and IV, and other plant GH19 chitinases.

I, II, II-L, and IV indicate plant class I, II, II-L, and IV chitinases, respectively. Identical residues are shown in white with a black background. Similar residues, constituting more than half of them, are shown in white with a gray background. Dashes indicate gaps. OsChia1b, class I chitinase from *Oryza sativa* (Q7DNA1); RSC-a, class I chitinase from *Secale cereale* (Q9FRV1); CHI-26, class II chitinase from *Hordeum vulgare* (P23951); RSC-c, class II chitinase from *S. cereale* (Q9FRV0); Chia4-Pa2, class IV chitinase from *Picea abies* (AAQ17051); BcChi-A, class II-L chitinase from *Bryum coronatum* (BAF99002).

III IIIb V man.	Hevamine FI Chi-A TRC-1 Pr Chi-A Cobi-A Cobi-V Evicite V Evicite V Evicite V	27 25 27 153 24 26 1 22	Starsen hum) 3 37 214 1
III IIIb V man.	Hevanine PLCki-A TBC-2 PrOki-A CrOki-A CrOki-A Croki-V ESCHEVS Chitotriosid ase	71 70 74 198 73 72 45 72	hhhhhh hhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh	54 55 425 2
III IIIb V man.	Hevanine PI Cki-A PP-Oti-A Orbi-A NOti-V EXCH-SUS Chitoriosidase	126 125 127 251 125 123 96 123	hbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	7 15 192 3
III IIIb V man.	Hevamine PLChi-A TBC-4 PrChi-A C-Chi-A NOV-V PSCHEVS Chitoriosidase	173 168 172 297 170 170 143 174	GRI KVWLTAAPOCPEPDR hhhhhhh SSSSS SSSSS 200 GRI KVWLTAAPOCPEPDR PLDAALNT GLEPVYWVCFYNN GEYNN 200 GRI KNEVYSSSS YDAA NLGPALOT GLEPVYWVCFYNN GEYNN 200 MKNEVYSSSS YSSIAPEDDAA OVOSHYGA WEKYGHOLD DY 200 KKNEVYSSSSS YSSSSSS FPDDA OVOSHYGA WEKYGHOLD DY 200 KKNEVYSSSSSSSS YSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	
III IIIb V man.	Hevanine PI Chi-A TRC-5 Pr Chi-A Cr Chi-A NChi-V E-SG18-V-5 Chitorio sidase	210 204 211 334 229 225 202 202 227	hhhhh hhhh hhhh hhhh hhhh hhh hhh hhh hhh hhh hhh hh h	
III IIIb V man.	Hevanine PLChi-A TBC-6 PrChi-A CrChi-A NChi-V ENGITEVO Chitoriosidase	252 246 250 374 283 279 256 287	C/βdomain SGV VPPOVISE SGV VPPOVIER SGV VPOVIER SGV VDO SGV VDO	37 13 457 2
III IIIb V man.	Hevanine PrOni-A TRC-7 PrOni-A COni-A NOni-V PrOni-V PrOni-V Contervisidase	264 258 262 384 335 336 308 343	hhhhhh hhhhhh hhhhhh hhhhhh hhhhhh 29 i Ba K GS A MYGG WILWSKFYD KN GYSS SLDSV 29 29 i Ca K GS A MYGG WINRYYD ON GYSS A MYHGS 29 c Cs · I K K O GK HG F Y SA · D G SI MSN NY F RY FM OA OSMIAS 30 c Co · C K SS GT L PG F F SS N OD I DA IL PK I AS DT WGG. 31 K Y O · Y AK E K R · L GG Y F WSY N OD I DA IL PK I AS DT WGG. 37 K Y O · Y AK E K R · L GG Y F WSY N OD I DA IL PK I AS DT W GG. 37 K Y O · Y AK E K R · L GG Y F WSY N OD I DA IL PK I AS DT W GG. 34 K Y O · Y AK E K R · L GG Y F WSY N OD I DA IL PK I AS DT W GG. 34 K Y O · Y AK E K R · L GG Y F WSY N OD I DA IL PK I AS DT W GG. 34 K Y O · Y AK E K R · L GG Y F WSY N OD I DA IL PK I AS DT W GG. 34 K Y O · Y AK E K R · L GG Y F WSY N OD I DA I A S O N WOL SET A S O N WGU SF QEMK 34 K Y O · Y AK E K R · L GG Y F AWAH H CO NA N F SI A S A GM N · · · · · · · · · · · · · · · · · ·	32 13 070 7

Fig. 3-9. Structure-based sequence alignments among PpChi-Vb, plant GH18 chitinases and mammal chitinases.

III, IIIb, and V indicate plant class III, IIIb, and V chitinases, respectively. "mam." indicates GH18 chitinases from mammals. Identical residues are shown in white with a black background. Similar residues, constituting more than half of them, are shown in white with a gray background. Dashes indicate gaps. "h" and "s" indicate a-helices and b-strands, respectively. The α -helices and β - strands shown on the top of sequences are the secondary structures of Hevamine (PDB ID: 2HVM). The a-helices and b-strands at the bottom of the sequences are the secondary structures of human chitotriosidase (PDB ID: 1HKK). Hevamine, plant class III chitinase from *Hevea brasiliensis* (P23472) ; PLChi-A, plant class III chitinase from pineapple leaves (BAG38685); TBC-1, plant class IIIb chitinase from *Tulipa bakeri* (Q9SLP4); PrChi-A, plant class IIIb chitinase from *Pteris ryukyuensis* (BAE98134); CrChi-A, *C. revoluta* chitinase-A (BAD98525); Tabacco class V, plant class V chitinase from *Nicotiana tabacum* (CAA54374); Chitotriosidase, chitinase from *Homo sapiens* (AAG10644).

Fig. 3-10. Phylogenetic analysis of PpChi-Ia, Ib, IIa, IIc and IV, and other GH19 chitinases.

A phylogenetic tree was constructed based on an alignment of partial amino acid sequences of all GH-19 chitinases by using the neighbor-joining method (Saitou and Nei 1987) implemented in the Clustal W program. The sequence regions used for the alignment are indicated in Fig. 3-8. Phylogenetic analyses were conducted in MEGA6 (Tamura et al. 2007).

Fig. 3-11. Phylogenetic analysis of PpChi-V and GH18 chitinases.

A phylogenetic tree was constructed based on an alignment of partial amino acid sequences of all GH-18 chitinases by using the same method in Fig. 3-10. The sequence regions used for the alignment are indicated in Fig. 3-9.

第5節 考察

cDNA クローニングによって得られた塩基配列とデータベースから得られる推定 mRNA の塩基配列とを比較した結果, PpChi-IIa, IIc, IV, Vb は完全に一致した。 しかし, PpChi-Ia および Ib においては推定 mRNA とは異なる配列が得られた。ゲ ノム配列と比較した結果, 得られた塩基配列と推定 mRNA の塩基配列の違いはエキ ソンの違いであった (Fig. 3-7)。本研究で得られた cDNA の配列とゲノム DNA の 配列を比較して, エキソンの配列を確定した。確定したエキソンの配列には, キチ ン分解活性に必須な触媒残基であるグルタミン酸残基が存在していた。一方, デー タベースに登録されている推定 mRNA には, このグルタミン酸残基は存在していな かった。従って, 本研究で得られた cDNA の配列が, PpChi-Ia および Ib の mRNA の正しい塩基配列であると判断した。

得られた cDNA から推定されるアミノ酸配列と他の植物由来のキチナーゼとの構 造依存的マルチプルアライメントを行った結果(Fig. 3·8 および 3·9), PpChi-Ia お よび Ib はクラス I キチナーゼに属するが, ループ I およびループ II が抜けたクラス I 様のキチナーゼであることが分かった。このループの有無が, キチン分解活性に何 らかの影響を与えることが予想される。PpChi-IIa および IIc はループ領域が全てそ ろったクラス II, PpChi-IV は触媒ドメインのループ I, II, IV, V および C 末端ルー プの欠損したクラス IV, PpChi-Vb は他のクラス V キチナーゼと同様の a/8 ドメイ ン領域を持つクラス V キチナーゼであることが分かった。系統解析によって, PpChi-Ia, Ib, IIa, IIc はクラス I および II キチナーゼと、PpChi-IV はクラス IV および II-L と, PpChi-Vb はクラス V キチナーゼと遺伝的な距離が近いことが明ら かとなった。これらのことから, ヒメツリガネゴケの 6 種のキチナーゼ候補遺伝子 の cDNA を取得することができたと判断した。

56

第4章 ヒメツリガネゴケ由来キチナーゼ(PpChi)の発現系・精製法の構築

第1節 緒論

ヒメツリガネゴケの茎葉体より抽出した mRNA を鋳型に RT-PCR 法によって 6 種のキチナーゼ候補遺伝子の cDNA を合成し,クローニングによって制限酵素サイ ト付き PpChi 遺伝子を得た。本章では, PpChi の性質について調べるために,それ ぞれの PpChi 遺伝子を発現し,組換えタンパク質を精製する実験系の構築を目的と した。

第2節 実験材料

第1項 材料および試薬

プライマーの合成は, Life Technologies 社に依頼した。制限酵素 *Nde*I, *Bam*HI, *Eco*RI は TOYOBO 社, QuikChange II Site-Directed Mutagenesis Kit は Agilent Technologies 社, トリプトンはナカライテスク株式会社, 酵母エキスは関東化学株 式会社, キチンは生化学工業株式会社より購入した。Phenyl Superose カラムはファ ルマシア社, Mono-Q カラム, SP Sepharose Fast Flow, HiTrap SP HP カラム, HiTrap Q HP カラム, GSTrap FF カラム (1 ml) は GE ヘルスケア社より購入し た。その他の試薬は,全て市販の特級またはそれに準ずるものを用いた。

第2項 プライマー

インサートチェックに用いたプライマーは,第3章,第2節,第2項,Table 3-1. と同様のものを使用した。サイトダイレクト,GST融合タンパク質のクローニング に用いたプライマーは,Table 4-1.に示した。

第3項 コンピテントセルの調製

コンピテントセルは、第3章、第2節、第3項と同様に調製した。

第4項 培地の調製

形質転換体の培養に用いた培地は、アンピシリン(100 µg/ml) 含有の LB 培地 (1% トリプトン, 0.5% 酵母エキス, 1% NaCl, pH 7.2)を使用した。

 Table
 4-1. Primers for site-directed mutagenesis, subcloning to several expression vectors, and sequencing

Primer	Sequence $(5' \rightarrow 3')$
PpChi-Ib_SD_f	TTGGCCTTTAAGGCCTCAATCTGGTTTTGGAACA
PpChi-Ib_SD_r	TGTTCCAAAACCATATTGAGGCCTTAAAGGCCAA
PpChi-Vb_SD_f	GGTGGCGACCCCATAACTTATGCAGACATC
PpChi-Vb_SD_r	GATGTCTGCATAAGTTATGGGGGTCGCCACC
PpChi-Ib_f_BamHI	<u>GGATCC</u> CAGAATTGCAACAGCAC
PpChi-Ib_r_EcoRI	<u>GAATTC</u> CTAAGCGAAAGATTTTTGGTTT
PpChi-IIa_f_BamHI	<u>GGATCC</u> TGCAACAAGACTGTGA
PpChi-IIa_r_EcoRI	<u>GAATTC</u> CTACATTGATGCATAGGCCA
PpChi-IIc_f_BamHI	<u>GGATCC</u> CACGGACGCAAG
PpChi -IIc_r_EcoRI	<u>GAATTC</u> TTAAATTGATGCATATGCCAGA
pGEX_f_seq_primer	GGGCTGGCAAGCCACGTTTGGTG
pGEX_r_seq_primer	CCGGGAGCTGCATGTGTCAGAGG

Single and double underlines indicate BamHI and EcoRI restriction sites, respectively.

第5項 グリコールキチンの調製

グリコールキチンは、Yamada と Imoto (1981)の方法に従って調製した。キチン5gを42%水酸化ナトリウム溶液100 ml に懸濁し、室温で真空ポンプを用いて減 圧下(-20 mmHg)で4時間膨潤させた。ガラスフィルター(17G-1)上でろ過し、 同水酸化ナトリウム溶液200 ml で洗浄した。キチンが15g以下になるまでプレス した後、細かく粉砕し、-70℃に冷却した氷50gを加え激しく撹拌して、ゲル化し た。ゲル中の水酸化ナトリウム濃度が14%になるように18%水酸化ナトリウム溶液 を加え、氷中で撹拌しながら、エチレンクロロヒドリン10 mlを30分かけて滴下し た。室温で一晩放置した後、氷中で撹拌しながら無水酢酸10 mlを30分かけて滴下 してアセチル化した。30分撹拌した後、酢酸で中和した。これを透析膜(MW12,000 カット)に移し、4℃で流水(水道水)により2日間透析した。透析膜内液を取り 出してミキサーで撹拌した後、蒸留水に対して透析を続けた。2日後、同様に透析膜 内液を取り出してミキサーで撹拌し、さらに蒸留水で2日間透析を続けた。透析後、 透析膜内液を遠心分離し、上清をエバポレーターで 6 倍濃縮した溶液をグリコール キチン標品とした。得られたグリコールキチンをオートクレーブ(120 ℃, 15 分) した後、分注し4℃で保存した。

第3節 実験方法

第1項 部位特異的変異導入

クローニングした PpChi-Ib, Vb 遺伝子には, コーディング領域内に制限酵素 NdeI サイトが存在していた。コーディング領域内に NdeI サイトがあると, ベクター交換 の際に不都合があるため, QuikChange II Site – Directed Mutagenesis Kit を用い て, 添付されているプロトコールに従ってアミノ酸配列に置換が生じないように コーディング領域内の NdeI サイトの1塩基を変異させた。プライマーは Table 4-1. に示したものを使用し,反応組成は Table 4-2-1 に,反応条件は Table 4-2-2 および 3-2-3 に示した。サーマルサイクラーによって変異鎖合成反応を行った後,37 °C 以 下に冷やした反応溶液に DpnI (10 U/μl) を 0.2 μl 添加し,37 °C で 1 時間反応させ る事でテンプレートプラスミドの分解を行った。反応溶液を大腸菌 DH5□コンピテ ントセルと混合し,常法に従って形質転換体を得た。

Component	Amount
$10 \times \text{Reaction Buffer}$	1.0 µl
Template DNA (1-10 ng)	0.5 µl
dNTP Mix	0.8 µl
PfuUltra HF DNA polymerase (2.5 U / μ l)	0.4 µl
Primer f (5 µM)	0.5 µl
Primer r (5 µM)	0.5 µl
Distilled water	6.3 µl
Total	10.0 µl

Table 4-2-1. Reaction mixture for site-directed mutagenesis.

Table 4-2-2. Cycling parameters for site-directed mutagenesis in PpChi-Ib gene.

Temperature	Time	Cycle
95 °C	0.5 min	× 1
95 °C	0.5 min	
55 °C	1.0 min	× 12
68 °C	4.0 min	

 Table 4-2-3. Cycling parameters for sitedirected mutagenesis in PpChi-Ib gene.

8	1	8
Temperature	Time	Cycle
95 °C	0.5 min	× 1
95 °C	0.5 min	
55 °C	1.0 min	× 12
68 °C	4.5 min	

第2項 制限酵素処理

制限酵素サイトが付加されたことが確認された PpChiのプラスミドと,発現用ベクターpET22bのプラスミドを制限酵素 *Nde*I, *Bam*HIによって酵素処理した。

Table 4-3. Mixture of restriction enzyme reaction.

Component	Insert	Vector
$10 \times M$ buffer	1 µl	2 μ1
PpChi/pGEM	3 µl	—
pET22b		10 µl
BamHI (10 units/µl)	1 µl	1 µl
NdeI (20,000 units/ml)	1 µl	1 µl
Distilled water	4 µ1	6 μ1
Total	10 µl	20 µl

第3項 発現用ベクターへのサブクローニング

1) アガロースゲルからの DNA 断片の抽出

制限酵素処理した反応液はアガロース電気泳動に供し,第2章,第3節,第6 項に示した手順でアガロースゲルから DNA 断片を抽出した。

2) ライゲーション反応

ゲルから抽出した DNA を低量し,発現用の pET22b Vector とのモル比を 3:1 とし, Table 4-4.に示す組成で 4 °C で一晩 (または,室温で 1 時間) ライゲーショ ン反応を行った。

Component	Amount
2×Rapid Ligation Buffer	5.0 µl
pET22b Vector	1.0 µl
T4 DNA Ligase (3 Weiss units/ml)	1.0 µl
PCR products	2.0 µl
Distilled water	1.0 µl
Total	10.0 µl

Table 4-4. Reaction mixture for ligation.

第4項 形質転換

コンピテントセルに *E. coli* DH5αを用いて, 第2章, 第3節, 第7項と同様に行った。

第5項 インサートチェック

第2章, 第3節, 第8項と同様に行った。プライマーはT7とT7-ter.を使用した。

第6項 E. coli BL21(DE3)によるリコンビナント PpChiの発現

それぞれのクローンのシングルコロニーをアンピシリン含有 LB 培地 3 ml に接種 し, 37°C で一晩振とう培養した。培養液をアンピシリン含有 LB 培地 100 ml に 1 ml 加え, OD₆₀₀ = 0.4~0.8 になるまで 37°C で振とう培養した。その後, 100 mM IPTG を添加し(PpChi-Ia, Ib, IIa, IIc, IV, Vb それぞれの終濃度は 0.1, 0.1, 1.0, 1.0, 1.0, 1.0 mM), さらに 24 時間, 18°C で培養を継続した。菌体は 4°C, 10,000 rpm で5分間遠心することにより回収し, 菌体量の7倍量の20mM Tris-HCl (pH 8.0) を加えて懸濁した後, 超音波にて破砕した。破砕液を遠心分離し, 上清を可溶性画 分(粗酵素), 沈澱物を不溶性画分とした。

第7項 キチナーゼ活性測定

グリコールキチンを用いて、Imoto と Yagisita (1971)の方法に従ってキチナー ゼの活性を測定した。0.2%グリコールキチンを含む 0.1 M の緩衝液 (PpChi-Ia, PpChi-IV, pH 4.0; PpChi-Vb, pH 5.0) 0.25 ml に酵素サンプル溶液 10 µl を加え, 37 °C で 15 分間煮沸した。これに 0.5 M 炭酸ナトリウムを含む 0.05%フェリシアン 化カリウム溶液 1 ml を加え, 15 分間煮沸した。その後水中で冷却した後, 420 nm における吸光度を測定した (吸光度 A)。また、反応系に酵素サンプル溶液と同量の 蒸留水を加えた反応液を同様に反応させ, 420 nm における吸光度を測定した (吸光 度 B)。吸光度 B から吸光度 A を差し引いた値 (⊿420 nm) をキチナーゼ活性とし た。1 unit は、37 °C で 1 分間に N·アセチルグルコサミンを 1 µmol 遊離させる量 とした。

第8項 SDS-PAGE

SDS-PAGE は、0.1% SDS および 5% 8-メルカプトエタノール存在下で試料を 3 分間煮沸処理後、15%ポリアクリルアミドゲルを用い、Laemmli らの方法(1970) に従って行った。泳動後のタンパク質の染色にはクマシーブリリアントブルーR-250 を用いた。不溶性画分は 1%SDS で溶解して試料とした。サイズマーカーは PageRuler Unstained Protein Ladder #26614 (Thermo Scientific 社)を用いた。

第9項 タンパク質の定量

タンパク質の定量は 280 nm の吸収値と BCA 法により測定した。牛血清アルブミンで検量線を作成し, Thermo Scientific 社の PIERCE BCA Protein Assay Kit を用いて行った。

第10項 組換えタンパク質の精製

1) PpChi-Ia

第8項で得られた可溶性画分を10 mM 酢酸ナトリウム緩衝液(pH 5.0)で透析し, 凝集したタンパク質を10,000×gで20分間遠心分離することにより除去し,その上 清を同緩衝液で平衡化したSP Sepharose Fast Flow カラム(10 mm×50 mm)に 供した。非吸着タンパク質を洗浄後,0.5 M NaCl を含む同緩衝液で吸着タンパク質 を2 ml ずつ溶出した。活性の高かった画分を10 mM トリス・塩酸緩衝液(pH 8.0) で透析し、同緩衝液で平衡化した HiTrap Q HP カラム(1 ml)を用いた陰イオン交 換クロマトグラフィーに供した。流速0.5 ml/min,塩化ナトリウム濃度を0から0.5 M まで40分の直線的塩濃度勾配により、吸着タンパク質を溶出・分離した。最も活 性の高かった画分を10 mM 酢酸ナトリウム緩衝液(pH 5.0)で透析し、同緩衝液 で平衡化した HiTrap SP HP カラム(1 ml)を用いた陽イオン交換クロマトグラ フィーに供した。流速0.5 ml/min,塩化ナトリウム濃度を0から0.5 M まで40分 の直線的塩濃度勾配により、吸着タンパク質を溶出・分離した。組換えタンパク質 は精製後、SDS-PAGEにより確認した。

2) PpChi-IV

第8項で得られた可溶性画分を10 mM 酢酸ナトリウム緩衝液 (pH 4.0) で透析後, 凝集したタンパク質を10,000×g で 20 分間遠心分離することにより除去した。得ら れた上清を10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で透析し,4 M 硫酸アンモニウ ムを含む 80 mM 酢酸ナトリウム緩衝液 (pH 5.0) と 3:1 で混合し,1 M 硫酸アンモ ニウムを含む 20 mM 酢酸ナトリウム緩衝液 (pH 5.0) で平衡化した Phenyl Superose カラム (0.5×5 cm)を用いた疎水相互作用クロマトグラフィーに供した。流速 0.5 ml/min,同緩衝液にて非吸着画分を溶出後,硫酸アンモニウムの濃度を1 から 0 M まで 40 分の直線的濃度勾配により,吸着タンパク質を溶出・分離した。最も活性の 高かった画分を 10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で透析し,同緩衝液で平衡 化した Mono-Q カラム (5×50 mm)を用いた陰イオン交換クロマトグラフィーに供 した。流速 0.5 ml/min,塩化ナトリウム濃度を0 から 0.2 M まで 40 分の直線的塩 濃度勾配により,吸着タンパク質を溶出・分離した。組換えタンパク質は精製後, SDS-PAGE により精製度を確認した。

3) PpChi-Vb

第8項で得られた可溶性画分を10 mM 酢酸ナトリウム緩衝液 (pH 4.0) で透析後, 凝集したタンパク質を10,000×g で 20 分間遠心分離することにより除去した。得ら れた上清を10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で透析し,同緩衝液で平衡化し た HiTrap Q HP カラム (1 ml) を用いた陰イオン交換クロマトグラフィーに供した。 流速 0.5 ml/min,塩化ナトリウム濃度を0から0.3 M まで40分の直線的塩濃度勾 配により,吸着タンパク質を溶出・分離した。組換えタンパク質は精製後,SDS-PAGE により確認した。

第 11 項 大腸菌 Rosetta-gami によるリコンビナント PpChi の発現

第6項で得られた発現プラスミドと大腸菌 *Rosetta-gami*のコンピテントセルを用いて形質転換した。得られた形質転換体のシングルコロニーをアンピシリン含有 LB 培地 3 ml に接種し、37 °C で一晩振とう培養した。培養液をアンピシリン含有 LB 培地 100 ml に 1 ml 加え, OD₆₀₀=0.4~0.8 になるまで 37 °C で振とう培養した。その後、100 mM IPTG を添加し(PpChi-Ib, IIa, IIc の終濃度はそれぞれ 1.0 mM), さらに 48 時間、18 °C での振とう培養を継続した。菌体は 10,000×g で 5 分間遠心 することにより回収し、菌体量の 7 倍量の 20 mM Tris-HCl (pH 8.0) を加えて懸 濁した後、超音波にて破砕した。破砕液を遠心分離し、上清を可溶性画分(粗酵素)、 沈澱物を不溶性画分とした。

第12項 GST 融合タンパク質の発現と精製

1) GST 融合タンパク質の発現

第2章,第3節,第9項で得られたpGEM-T Vector に連結した各遺伝子(PpChi-Ib, IIa, IIc)のプラスミドを鋳型に, Table 4-1.に示した *Bam*HI および *Eco*RI サイト を付加したプライマーを用いて Table 4-5-1.および Table 4-5-2.に示す条件で PCR を行った。

Table	4-5-1.	Reaction	mixture	for	PCR
Innic	- - - -	ICCACHOR	mature	IUI .	

Component

 $10 \times EXTaq$ Buffer

dNTP Mix (2.5 mM)

Forward primer (10 µM)

Reverse primer (10 µM)

Template DNA

Distilled water

Total

TaKaRa EX Taq (0.5 units/µl)

Table 4-5-2. PCR condition Temperature Time Cycle 95 °C 1.0 min X 1 95 °C 0.5 min 55 °C 0.5 min $\times 30$ 72 °C 1.0 min 72 °C 10.0 min ×1

得られた PCR 産物を,	第3章,	第3節,	第3項から第8項までと同様にクローニ
ングした。			

Amount

1.0 µl

0.5 µl

0.8 µl

0.4 µl

0.5 µl

0.5 µl

6.3 μl 10.0 μl

得られた組換えプラスミドと, pGEX-6P-3 Vector のプラスミドを制限酵素 *Bam*HI および *Eco*RI によって酵素処理した後,第4章,第3節,第1項から第5 項までと同様に行い,大腸菌 BL21(DE3)の形質転換体を得た。インサートチェック に使用したプライマーは Table 4-1.に示した pGEX_seq_primer を用いた。

得られた形質転換体を用いて,第4章,第3節,第8項と同様の手順でGST融合 タンパク質を発現した。添加された IPTG の終濃度は PpCh-Ib, IIa, IIc それぞれ 1.0, 1.0, mM である。

2) GST 融合タンパク質の精製

GST 融合タンパク質は、GSTrap FF カラム(1 ml, GE Healthcare Life Sciences 社)を用い、取扱説明書に従って精製した。カラムへの送液は、ペリスタポンプ(流 速 0.5 ml/min)を用いた。カラムを Binding buffer により平衡化した後、1)で得 られたサンプルの上清を供した。非吸着タンパク質を洗浄後、PreScission cleavage buffer を 5 ml 流し、同 buffer に溶かした PreScission Protease(0.5%)を 1 ml を シリンジにより注入した。注入後、カラムの上下端を密閉し、4°C で 4 時間静置し た。同 buffer 3 ml をシリンジにより注入し、タンパク質を溶出した。組換えタンパ ク質は精製後、SDS-PAGE により確認した。使用した緩衝液の組成は Table 4-6 に 示した。

	Reagents	Conc.
Binding buffer (PBS, pH 7.3)	NaCl	140 mM
	KCl	2.7 mM
	Na ₂ HPO ₃	10 mM
	$\mathrm{KH}_2\mathrm{PO}_4$	1.8 mM
PreScission cleavage buffer (pH 8.0)	Tris-HCl	50 mM
	NaCl	100 mM
	EDTA	$1 \mathrm{mM}$
	DTT	1 mM

Table 4-6. Buffer used for purification of GST fusion protein.

第13項 Brevibacillus によるリコンビナント PpChi の発現

1) Brevibacillus の形質転換

第4章,第3節,第14項で得られた pGEX-6P-3 vector と各遺伝子 (PpChi I-b, II-a, II-c) を連結したプラスミドを制限酵素 *Bam*HI および *Eco*RI によって処理し インサート配列を調製した。pNCMO2 vector を同制限酵素で処理した後,第3章, 第3節,第3項から第8項までと同様の手順でインサート配列と連結しプラスミド を得た。TaKaRa *Brevibacillus* Expression System II のプロトコールに従って,各 遺伝子が連結された pNCMO2 vector プラスミドを *Brevibacillus* のコンピテントセ ルに形質転換した。

2) Brevibacillusの形質転換組換え体を用いた目的タンパク質の発現

2 ml の 2SYNm (2% グルコース, 4% Bacto Soytone, 0.5% Bacto Yeast Extract, 1 mM CaCl₂・2H₂O, 50 µg/ml ネオマイシン) および 2 ml の TMNm (1% グルコー ス, 1% ファイトンペプトン, 0.5% エルリッヒ カツオエキス, 0.2% 粉末酵母エ キス S, 0.001% FeSO₄・7 H₂O, 0.001% MnSO₄・4 H₂O, 0.0001% ZnSO₄・7 H₂O, 10 µg/ml ネオマイシン, pH 7.0 に調整) を分注した試験管に形質転換体のシングル コロニーをそれぞれ植菌し, 30°C, 150 rpm, 48 時間振とう培養した。培養液を遠 心分離 (5000×g, 5 分間) し, 上清を分離した。沈殿は等量の PBS (0.8% NaCl, 0.02% KCl, 0.115% Na₂HPO₄, 0.02% KH₂PO₄) で懸濁した。上清および沈殿の懸
濁液を用いて SDS-PAGE とキチナーゼの活性により遺伝子発現を評価した。

第14項 タンパク質の巻き戻し(透析法)

1) 透析法

pET22b vector に連結した PpChi-IIa が組み込まれた *E. coli* BL21(DE3)の形質転 換体を第4章,第3節,第8項と同様に培養し,得られた沈殿物をさらに7倍量の 20 mM Tris-HCl (pH 8.0) を加えて懸濁した後,超音波にて破砕した。破砕液を遠 心分離し,沈澱物を回収した。マイクロチューブに沈殿物5 mgを取り,8 M 尿素 溶液 [0.584 M Tris-HCl (pH 8.6), 8.125 M 尿素, 5.37 mM EDTA] 1 ml を加え て懸濁した。懸濁液に 2・メルカプトエタノール 5 µl を加えて,マイクロチューブ内 を窒素で満たし,1時間還元させた。得られた還元溶液に,限界まで溶かしたシスチ ンを含む 8 M 尿素溶液 200 µl を加えて 8 M 尿素透析溶液[0.1 M Tris-HCl (pH 8.), 8 M 尿素,1 mM EDTA, 3.6 mM 2・メルカプトエタノール,シスチンを限界まで溶 解] 100 ml を用いて,流速 0.1 ml/min, 66 時間かけて透析を行った。透析は,Fig. 3・22.に示すように,尿素を含まない透析液 400 ml で徐々に希釈した。

2) 組換えタンパク質の精製

尿素溶液を用いた透析により得られた粗酵素溶液を 10 mM リン酸ナトリウム緩 衝液(pH 7.0) で透析し,同緩衝液で平衡化した HiTrap Q HP カラム(1 ml)を用 いた陰イオン交換クロマトグラフィーに供した。流速 0.5 ml/min,塩化ナトリウム 濃度を 0 から 0.5 M まで 40 分の直線的塩濃度勾配により,吸着タンパク質を溶出・ 分離した。組換えタンパク質は,SDS-PAGE と活性測定により確認した。 第1項 E. coli BL21(DE3)によるリコンビナント PpChiの発現

E. coli BL21(DE3)の形質転換体を IPTG により誘導し,24 時間 18°C で培養後, 得られた可溶性画分と不溶性画分の SDS-PAGE の結果を Fig. 4-2 に示した。 PpChi-Ia, IV, Vb では目的タンパク質が検出され,キチナーゼ活性も確認されたた め,精製を進めた。PpChi-Ib, IIa, IIc では,目的タンパク質は可溶性画分に確認 されず,活性もなかったため,別の発現方法を試みた。

Fig. 4-2. SDS-PAGE for expression or recombinant PpChi by BL21 (DE3).

A, PpChi-Ia; B, PpChi-Ib; C, PpChi-II-a; D, PpChi-IC; E, PpChi-IV; F, PpChi-V-b. Lane M, standard marker proteins (kDa); lane 1, supernatant of induced culture; lane 2, precipitation of induced culture; lane 3, supernatant of non-induced culture; lane 4, precipitation of non-induced culture, respectively.

- 1) PpChi-Ia
- a) SP Sepharose Fast Flow カラムを用いた陽イオン交換クロマトグラフィー
 10 mM 酢酸ナトリウム緩衝液 (pH 5.0) での透析後に得られた上清を SP Sepharose Fast Flow カラムを用いた陽イオン交換クロマトグラフィーに供した。
 その結果を Fig. 4-3. と Fig. 4-4.に示した。活性の高かった画分 4, 5, 6 を混合し,
 HiTrap Q HP カラムで精製した。

Fig. 4-3. SP Sepharose FF cation-exchange column chromatography of recombinant PpChi-Ia.

Sample solution obtained after dialysis against 10 mM sodium acetate buffer (pH 5.0) was applied to a column of SP Sepharose FF equilibrated with the same buffer. The column was washed with the equilibration buffer, and adsorbed proteins were eluted with NaCl from 0.5 M in the buffer. The fraction no.4-6 were collected as active fraction.

(kDa)	M	<u>A</u>	N	w	2	3	4	5	6	7	M
5 8 -	1111										=
30 _ 25 _ 20 _									1		
15 —											-
10 —											2

Fig. 4-4. SDS-PAGE of SP Sepharose FF cation-exchange column chromatography of recombinant PpChi-Ia.

Lane M, standard marker proteins (kDa); lane A, sample solution dialyzed 10 mM sodium acetate buffer (pH 5.0); lane N, non-adsorbed fraction; lane W, wash fraction; lane 2, fraction no. 2; lane 3, fraction no. 3; lane 4, fraction no. 4; lane 5, fraction no. 5; lane 6, fraction no. 6; lane 7, fraction no. 7.

b) HiTrap Q HP を用いた陰イオン交換カラムクロマトグラフィー

SP Sepharose Fast Flow カラムで得られた活性画分 4, 5, 6 を 10 mM トリス-塩酸緩衝液 (pH 8.0) で透析し, 同緩衝液で平衡化した HiTrap Q HP カラムを用い た陰イオン交換クロマトグラフィーに供した。その結果を Fig. 4-5. と Fig. 4-6.に示 した。活性の高かった画分 1 を, さらに HiTrap SP HP カラムで精製した。

Fig. 4-5. HiTrap Q HP anion-exchange column chromatography of recombinant PpChi-Ia. Sample solution obtained after dialysis against 10 mM Tris-HCl buffer (pH 8.0) was applied to a column of HiTrap Q HP equilibrated with the same buffer. The column was washed with the equilibration buffer, and adsorbed proteins were eluted with a linear gradient of NaCl from 0 to 0.5 M in the buffer. The fraction no.1 was collected as active fraction.

Fig. 4-6. SDS-PAGE of HiTrap Q HP anion-exchange column chromatography of recombinant PpChi-Ia.

Lane M, standard marker proteins (kDa); lane 1, fraction no. 1; lane 2, fraction no. 2; lane 3, fraction no. 3; lane 4, fraction no. 4; lane 5, fraction no. 5; lane 6, fraction no. 6.

c) HiTrap SP HP カラムを用いた陽イオン交換クロマトグラフィー

HiTrap Q HP カラムで得られた活性画分 1 を 10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で透析し,同緩衝液で平衡化した HiTrap SP HP カラムを用いた陽イオン交換 クロマトグラフィーに供した。その結果を Fig. 4-7. と Fig. 4-8.に示した。活性の高 かった画分を SDS-PAGE に供したところ, 画分 4 で単一のバンドが確認できたので, この画分を精製 PpChi-Ia とした。

Fig. 4-7. HiTrap SP HP cation-exchange column chromatography of recombinant PpChi-Ia.

Sample solution obtained after dialysis against 10 mM sodium acetate buffer (pH 5.0) was applied to a column of HiTrap SP HP equilibrated with the same buffer. The column was washed with the equilibration buffer, and adsorbed proteins were eluted with a linear gradient of NaCl from 0 to 0.5 M in the buffer. The fraction no.4 was collected as PpChi-Ia.

Fig. 4-8. SDS-PAGE of HiTrap Q HP cation-exchange column chromatography of recombinant PpChi-Ia.

Lane M, standard marker proteins (in kDa); lane A, before performing the HiTrap Q HP column chromatography; lane 1, fraction no. 1; lane 2, fraction no. 2; lane 3, fraction no. 3; lane 4, fraction no. 4; lane 5, fraction no. 5.

- 2) PpChi-IV
- a) Phenyl Superose カラムを用いた疎水相互作用クロマトグラフィー

10 mM 酢酸ナトリウム緩衝液 (pH 5.0) での透析後に得られた上清は、同緩衝液 で平衡化した Phenyl Superose カラムを用いた疎水相互作用クロマトグラフィーに 供した。その結果を Fig. 4-9.と Fig. 4-10.に示した。活性の高かった画分3を Mono-Q カラムで精製した。

Fig. 4-9. Phenyl Superose hydrophobic interaction column chromatography of recombinant PpChi-IV.

Sample solution obtained after dialysis against 10 mM sodium acetate buffer (pH 5.0) was mixed with 1/4 times volume of 80 mM sodium acetate buffer (pH 5.0) containing 4 M ammonium sulfate. The mixture was applied to a Phenyl Superose column (0.5×5 cm) equilibrated with 20 mM sodium acetate buffer (pH 5.0) containing 1 M ammonium sulfate. The column was washed with the same buffer, and adsorbed proteins were then eluted with a linear gradient of ammonium sulfate from 1.0 to 0 M in the same buffer. The fraction no.3 was collected as active fraction.

Fig. 4-10. SDS-PAGE of Phenyl superose hydrophobic interaction column chromatography of recombinant PpChi-IV.

Lane M, standard marker proteins (kDa); lane A, before performing the Phenyl superose hydrophobic interaction column chromatography; lane 1, fraction no. 1; lane 2, fraction no. 2; lane 3, fraction no. 3.

b) Mono-Q カラムを用いた陰イオン交換クロマトグラフィー

Phenyl Superose カラムで得られた活性画分 3 を 10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で平衡化した Mono-Q カラムを用いた陰イオン交換クロマトグラフィー に供した。その結果を Fig. 4-11. と Fig. 4-12.に示した。活性の高かった画分を SDS-PAGE に供したところ,画分 4 で単一のバンドが確認できたので,この画分を 精製 PpChi-IV とした。

Fig. 4-11. Mono-Q anion-exchange column chromatography of recombinant PpChi-IV. Sample solution obtained after dialysis against 10 mM sodium acetate buffer (pH 5.0) was applied to a column of Mono-Q equilibrated with the same buffer. The column was washed with the equilibration buffer, and adsorbed proteins were eluted with a linear gradient of NaCl from 0 to 0.2 M in the buffer. The fraction no.4 was collected as PpChi-IV.

Fig. 4-12. SDS-PAGE of Mono-Q anion-exchange column chromatography of recombinant PpChi-IV.

Lane M, standard marker proteins (kDa); lane 1, fraction no. 1; lane 2, fraction no. 2; lane 3, fraction no. 3; lane 4, fraction no. 4; lane 5, fraction no. 5; lane 6, fraction no. 6; lane 7, fraction no. 7.

- 3) PpChi-Vb
- a) HiTrap Q HP カラムを用いた陰イオン交換クロマトグラフィー

10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で透析後に得られた上清を同緩衝液で平 衡化した HiTrap Q HPカラムを用いた陰イオン交換クロマトグラフィーに供した結 果を Fig. 4-13. と Fig. 4-14.に示した。活性の高かった画分を SDS-PAGE に供した ところ, 画分 4 で単一のバンドが確認できたので, この画分を精製 PpChi-Vb とし た。

Fig. 4-13. HiTrap Q HP anion-exchange column chromatography of recombinant PpChi-Vb.

Sample solution obtained after dialysis against 10 mM sodium acetate buffer (pH 5.0) was applied to a column of HiTrap Q HP equilibrated with the same buffer. The column was washed with the equilibration buffer, and adsorbed proteins were eluted with a linear gradient of NaCl from 0 to 0.5 M in the buffer. The fraction no.4 was collected as PpChi-Vb.

Fig. 4-14. SDS-PAGE of HiTrap Q HP anion-exchange column chromatography of recombinant PpChiVb.

Lane M, standard marker proteins (in kDa); lane C, crude enzyme; lane D, sample solution dialyzed 10 mM sodium acetate buffer (pH 4.0); lane A, sample solution dialyzed 10 mM sodium acetate buffer (pH 5.0); lane 1, fraction no. 1; lane 2, fraction no. 2; lane 3, fraction no. 3; lane 4, fraction no. 4; lane 5, fraction no. 5.

第3項 分子量測定

SDS-PAGE による分子量は PpChi-Ia, PpChi-IV, PpChi-Vb それぞれ 29.0 kDa, 34.0 kDa, 38.4 kDa と検出された。

Fig. 4-15. Molecular masses determination

第4項 Rosetta-gamiを用いた組換えタンパク質の発現

*Rosetta-gami*の形質転換体を IPTG により誘導し, 48 時間 18°C で振とう培養後, 得られた可溶性画分と不溶性画分の SDS-PAGE の結果を Fig. 4-16.に示した。 PpChi-Ib については、目的タンパク質は確認されず、活性が非常に低かった。 PpChi-IIa については、目的タンパク質は不溶性画分に確認されたものの、活性はな かった。PpChi-IIc については、目的タンパク質は確認されず、活性もなかった。

Fig. 4-16. SDS-PAGE for expression of recombinant PpChi by *Rosetta gami.* Lane M, standard marker proteins (in kDa); lane 1, supernatant of PpChi-Ib, colony no. 1; lane 2, deposition of PpChi-Ib, colony no. 1; lane 3, supernatant of PpChi-Ib, colony no. 2; lane 4, deposition of PpChi-Ib, colony no. 2; lane 5, supernatant of PpChi-IIa; lane 6, deposition of PpChi-IIa; lane 7, supernatant of PpChi-IIc, colony no. 1; lane 8, deposition of PpChi-IIc, colony no. 1; lane 9, supernatant of PpChi-IIc, colony no. 2; lane 10, deposition of PpChi-IIc, colony no. 2.

第5項 GST 融合タンパク質の発現と精製

GSTrap FF カラム (1 ml)を用いたカラムクロマトグラフィーの結果を Fig. 4-17. と Fig. 4-18.と Fig. 4-19.に示した。得られた画分を SDS-PAGE に供したところ, 目的タンパク質は確認されなかった。また、キチナーゼ活性もなかった。

Fig. 4-17. SDS-PAGE of GST fusion protein of recombinant PpChi-Ib.

Lane M, standard marker proteins (in kDa); lane 1, crude enzyme soluble fraction; lane 2, crude enzyme insoluble fraction; lane 3, non-absorbed fraction no. 1; lane 4, non-absorbed fraction no. 2; lane 5, non-absorbed fraction no. 3; lane 6, wash fraction no.1; lane 7, wash fraction no.2; lane 8, wash fraction no.3; lane 9, elution fraction.

Fig. 4-18. SDS-PAGE of GST fusion protein of recombinant PpChi-IIa.

Lane M, standard marker proteins (in kDa); lane 1, crude enzyme soluble fraction; lane 2, crude enzyme insoluble fraction; lane 3, non-absorbed fraction no. 1; lane 4, non-absorbed fraction no. 2; lane 5, non-absorbed fraction no. 3; lane 6, wash fraction no.1; lane 7, wash fraction no.2; lane 8, wash fraction no.3; lane 9, elution fraction.

Fig. 4-19. SDS-PAGE of GST fusion protein of recombinant PpChi-IIc.

Lane M, standard marker proteins (in kDa); lane 1, crude enzyme soluble fraction; lane 2, crude enzyme insoluble fraction; lane 3, non-absorbed fraction no. 1; lane 4, non-absorbed fraction no. 2; lane 5, non-absorbed fraction no. 3; lane 6, wash fraction no.1; lane 7, wash fraction no.2; lane 8, wash fraction no.3; lane 9, elution fraction.

第6項 Brevibacillus によるリコンビナント PpChi の発現

2SYNm と TMNm 培地を用いて *Brevibacillus* の形質転換体を培養し,分離した 上清および沈殿の懸濁液を SDS-PAGE に供した結果を Fig. 4-20.と Fig. 4-21.と Fig. 4-22.に示した。BLA(*Bacillus licheniformis* α-amylase)については,予想され るサイズのタンパク質が確認されたことから,発現系は問題ないことが示された。 しかし,他 3 つのタンパク質については,予想されるサイズのタンパク質が確認さ れなかった。また,活性も検出されなかったことから,発現していないと判断した。

Fig. 4-20. SDS-PAGE of Brevibacillus expression of recombinant PpChi-Ib.

Lane M, standard marker proteins (in kDa); lane 1, supernatant of PpChi-Ib incubated by MT medium; lane 2, deposition of PpChi-Ib incubated by MT medium; lane 3, supernatant of PpChi-Ib incubated by 2SY medium; lane 4, deposition of PpChi-Ib incubated by 2SY medium; lane 5, supernatant of BLA incubated by MT medium; lane 6, deposition of BLA incubated by MT medium; lane 7, supernatant of BLA incubated by 2SY medium; lane 8, deposition of BLA incubated by 2SY medium.

Fig. 4-21. SDS-PAGE of Brevibacillus expression of recombinant PpChi-IIa.

Lane M, standard marker proteins (in kDa); lane 1, supernatant of colony no.1 incubated by MT medium; lane 2, deposition of colony no.1 incubated by MT medium; lane 3, supernatant of colony no.1 incubated by 2SY medium; lane 4, deposition of colony no.1 incubated by 2SY medium; lane 5, supernatant of colony no.2 incubated by MT medium; lane 6, deposition of colony no.2 incubated by MT medium; lane 7, supernatant of colony no.2 incubated by 2SY medium; lane 8, deposition of colony no.2 incubated by 2SY medium.

Fig. 4-22. SDS-PAGE of Brevibacillus expression of recombinant PpChi-IIc.

Lane M, standard marker proteins (in kDa); lane 1, supernatant of colony no.1 incubated by MT medium; lane 2, deposition of colony no.1 incubated by MT medium; lane 3, supernatant of colony no.1 incubated by 2SY medium; lane 4, deposition of colony no.1 incubated by 2SY medium; lane 5, supernatant of colony no.2 incubated by MT medium; lane 6, deposition of colony no.2 incubated by MT medium; lane 7, supernatant of colony no.2 incubated by 2SY medium; lane 7, supernatant of colony no.2 incubated by 2SY medium; lane 7, supernatant of colony no.2 incubated by 2SY medium; lane 8, deposition of colony no.2 incubated by 2SY medium.

第7項 タンパク質の巻き戻し(透析法)

1) 透析法

尿素溶液を用いて透析し, SDS-PAGE に供した結果を Fig. 4-23.に示した。透析 により得られた粗酵素溶液は,予想されるサイズのタンパク質が確認されたが,活 性はなかった。

Fig. 4-23. SDS-PAGE of unwinding proteins by dialysis.

Lane M, standard marker proteins (kDa); lane 1, first ultrasonication; lane 2, second ultrasonication; lane 3, Oxidation-reduction solution; lane 4, supernatant after dialysis; lane 5, deposition after dialysis.

2) 組換えタンパク質の精製

透析法により得られた粗酵素溶液を 10 mM リン酸ナトリウム緩衝液 (pH 7.0) で 透析し,同緩衝液で平衡化した HiTrap Q HP カラム(1 ml)を用いた陰イオン交換ク ロマトグラフィーに供した。その結果を Fig. 4-24.に示した。SDS-PAGE および活 性測定の結果から,可溶化されていないこと判断した。

Fig. 4-24. HiTrap Q HP anion-exchange column chromatography of recombinant PpChi-Ia.

Sample solution obtained after dialysis against 10 mM phosphate buffer (pH 7.0) was applied to a column of HiTrap Q HP equilibrated with the same buffer. The column was washed with the equilibration buffer, and adsorbed proteins were eluted with a linear gradient of NaCl from 0 to 0.5 M in the buffer.

Fig. 4-25. HiTrap Q HP anion-exchange column chromatography of recombinant PpChi-IIa..

Lane M, standard marker proteins (in kDa); lane A, sample solution before HPLC; lane 1, fraction no. 1; lane 2, fraction no. 2; lane 3, fraction no. 3; lane 4, fraction no. 4; lane 5, fraction no. 5; lane 6, fraction no. 6.

第5節 考察

組換え PpChi-Ia, IV, Vb は発現用ベクターpET22b に連結後, *E. coli* BL21 (DE3) の形質転換体を得て, IPTG 誘導による培養によって発現したことが確認された。ま た,培養したものを集菌・破砕後, PpChi-IV, Vb は 10 mM 酢酸ナトリウム緩衝液 (pH 4.0) で透析することにより大部分のタンパク質が取り除かれた。しかし, PpChi-Ia は 10 mM 酢酸ナトリウム緩衝液 (pH 4.0) の透析で沈殿してしまうこと がわかった。10 mM 酢酸ナトリウム緩衝液 (pH 5.0) で透析後,それぞれカラムを 用いて精製することができた。組換え PpChi-Ia, IV, Vb の SDS-PAGE による推定 分子量はそれぞれ 29.0 kDa, 34.0 kDa, 38.4 kDa であった。PpChi-IV のクローニ ングにより得られた cDNA から予測される分子量は 27.8 kDa である。理由は定か ではないが, PpChi-IV を構成するアミノ酸に偏りがあることで,SDS-PAGE の結 果にずれが生じた可能性がある。

PpChi-Ib, IIa, IIc は, PpChi-Ia などと同じ方法では,活性のある組換えタン パク質を得ることができなかった。そこで,*Rosetta-gami*による発現,GST融合タ ンパク質の発現,*Brevibacillus*による発現,タンパク質の巻き戻しを試した。しか しながら,いずれの方法でも発現させることができなかった。その原因は不明であ るが,未検討の方法を試してみるしかなさそうである。今後は,昆虫細胞での発現 系や小麦胚芽無細胞発現系などの異種発現系を試みるとともに,ヒメツリガネゴケ を大量培養してNativeのキチナーゼを抽出・精製するなどして,残り3種のキチナー ゼを取得することも検討する必要がある。

82

第5章 ヒメツリガネゴケ由来キチナーゼ(PpChi)の酵素化学的諸性質

第1節 緒論

発現が確認された三種の組換えキチナーゼ, PpChi-Ia, PpChi-IV, PpChi-Vbは, それぞれカラムを用いて精製することができた。これらの酵素化学的諸性質や抗真 菌活性の有無は, ヒメツリガネゴケにおけるキチナーゼの生理的役割を理解するた めに必要不可欠な情報である。本章では,得られた3種の組換え PpChiの酵素化学 的諸性質や抗真菌活性を比較した。

第2節 実験材料

第1項 材料および試薬

基質として、N-アセチルグルコサミンのオリゴマーを使用した。カラムは TSK-Gel amide-80 カラム(東ソー)を使用した。その他の試薬は、全て市販の特級またはそれに準ずるものを用いた。

第3節 実験方法

第1項 pHの影響

緩衝液は、グリシン-HCl (pH 2.0, pH 3.0)、酢酸ナトリウム (pH 4.0, pH 5.0)、ク エン酸ナトリウム (pH 4.0, pH 5.0)、リン酸ナトリウム (pH 6.0, pH 7.0)、トリス –塩酸 (pH 8.0, pH 9.0)、グリシン-NaOH (pH 10.0, pH 11.0, pH 12.0)を用いた。

1) 最適 pH

上記の pH 2.0 から pH 11.0 の緩衝液を用いて,第4章,第3節,第9項の方法で活 性を測定した。

2) pH 安定性

pH 2.0 から pH 11.0 の 20 mM 緩衝液それぞれ 20 μl に酵素サンプル溶液 20 μl を加 え,4°C で 12 時間保持した。40 μl のうち 10 μl を用いて,第4章,第3節,第9 項の方法で残存活性を測定した。マイクロチューブへの吸着性が疑われるタンパク 質の場合には、シリコナイズ処理したマイクロチューブまたは低吸着処理・加工さ れているマイクロチューブを用いた。

第2項 温度の影響

1) 最適温度

緩衝液は酵素の最適 pH を用いて保持温度を 0~90°C にそれぞれ設定し,第4章, 第3節,第9項の方法で活性を測定した。

2) 熱安定性

20 mM リン酸ナトリウム緩衝液 (pH 7.0) 20 µl に酵素サンプル溶液 20 µl を加え, 0~90°C で 60 分保持した後,それぞれ 10 µl を用いて,第4章,第3節,第9項の 方法で残存活性を測定した。マイクロチューブへの吸着性が疑われるタンパク質の 場合には、シリコナイズ処理したマイクロチューブまたは低吸着処理・加工されて いるマイクロチューブを用いた。

第3項 (GlcNAc) 4-6 に対する分解パターン

PpChi-Ia, IV は 5 mM 酢酸ナトリウム緩衝液 (pH 5.0), PpChi-Vb は 5 mM 酢酸 ナトリウム緩衝液 (pH 4.0) を使用した。4 mM (GlcNAc)n を含む緩衝液を 25°C で 5 分間保温し,酵素溶液を終濃度 2 μM または 1 μM になるように加えて全体を 20 μl とし, 25°C で 1, 5, 10, 20, 30 分間反応させた後,速やかに氷冷した。70%アセトニ トリルで平衡化した TSK-Gel amide-80 カラム (東ソー) に反応混合液 5 μl を供し, 同溶液を用いて溶出した (流速 0.7 ml/min, 220 nm)。

第4項 高分子基質に対する動力学的解析

基質として様々な濃度のグリコールキチン(PpChi-Ia, 0.2-3.2 mg/ml; PpChi-IV, 0.12-1.00 mg/ml; PpChi-Vb, 0.06-1.00 mg/ml)を使用した。緩衝液は, PpChi-Ia と PpChi-IV には 0.1 M 酢酸ナトリウム緩衝液(pH 5.0), PpCh-Vb には 0.1 M ク

エン酸ナトリウム緩衝液 (pH 4.0) を用いて,第4章,第3節,第9項の方法で活 性を測定した。

第5項 低分子基質に対する動力学的解析

低分子基質として 4 mM N-アセチルグルコサミン(GlcNAc)の 4 量体,緩衝液は PpChi-Ia と PpChi-IVが5 mM 酢酸ナトリウム緩衝液 (pH 5.0), PpChi-Vb は5 mM 酢酸ナトリウム緩衝液 (pH 4.0) を使用した。4 mM (GlcNAc)₄を含む緩衝液を 25 °C で 5 分間保温し,酵素溶液を加え全体を 20 μ l とした。10 分間 25 °C で反応させた 後,速やかに氷冷した。70%アセトニトリルで平衡化した TSK-Gel amide-80 カラ ム (東ソー)に反応混合液 10 μ l を供し,同溶液を用いて溶出した (流速 0.7 ml/min, 220 nm)。

第6項 抗真菌活性

1.5%寒天および 1.5%グルコースを含むポテト培地 (PDA) に 0.1 M になるように NaCl を加えてオートクレーブ処理し, プレートを作製した。前もって, PDA プレー トに糸状性真菌 *Trichoderma viride* を培養し, 菌糸が均一に生育している部位をコ ルクボーラーで抜き取った (直径 6 mm)。抜き取った寒天を別の PDA プレートの 中央に置き, 室温で 12 時間放置した。プレートの中央から 15 mm の位置にコルク ボーラーで直径 6 mm のウェルを作成し, キチナーゼサンプル 300 pmol を添加し た。抗真菌活性の有無は, ウェル周辺の菌糸伸長の阻害度から判定した。 第1項 pHの影響

1) 最適 pH

PpChi-Vb は, 酢酸ナトリウム緩衝液にて強い阻害を受けた。そのため, pH 4-5 はクエン酸ナトリウム緩衝液を用いて実験した。組換え PpChi-Ia, IV, Vb それぞ れの最適 pH は pH 5.0, pH 5.0, pH 4.0 付近であった。

Fig. 5-1. Optimum pH of each recombinant PpChi.

Closed circle (\bigcirc), open circle (\bigcirc) and triangle (\blacktriangle) indicate the results of recombinant PpChi-Ia, PpChi-IV and PpChi-Vb, respectively. The effect of pH on activity was examined after incubation at 37°C for 15 min in 0.1 M buffers. The buffers used were as follows: glycine-HCl, pH 2 and 3; sodium acetate (citric acid when PpChi-Vb), pH 4 and 5; sodium phosphate, pH 6 and 7; Tris-HCl, pH 8 and 9; glycine-NaOH, pH 10 –12. The values are shown as percentages of the maximum activity observed at pH 5.0 or pH 4.0 for each enzyme, which is taken as 100%.

2) pH 安定性

各 pH における 4°C, 12 時間後の残存活性を測定した結果, 組換え PpChi-Ia, IV, Vb それぞれ pH 3.0 - pH 10.0, pH 5.0 - pH 10.0, pH 3.0 - pH 10.0 付近で 80%以上の活性を保持していた。

Fig. 5-2. pH stability of each recombinant PpChi.

Closed circle (\bullet) , open circle (\bigcirc) and triangle (\blacktriangle) indicate the results of recombinant PpChi-Ia, PpChi-IV and PpChi-Vb, respectively. The pH stability was assessed by measuring residual activity after incubation at 4°C for 12 h in buffers with various pH values. The original activity is taken as 100% for each.

1) 最適温度

組換え PpChi-Ia, IV, Vbの最適温度は、何れも 60°C 付近であった。

Closed circle (\bigcirc), open circle (\bigcirc) and triangle (\blacktriangle) indicate the results of recombinant PpChi-Ia, PpChi-IV and PpChi-Vb, respectively. The effect of temperature on activity was examined after incubation for 15 min in 0.1 M sodium acetate buffer (pH 5.0) for PpChi-Ia and PpChi-IV, in 0.1 M citric acid buffer (pH 4.0) for PpChi-Vb. The values are shown as percentages of the maximal activity observed at 60 °C for each enzyme, which is taken as 100%.

2) 熱安定性

各温度で 60 分間熱処理した後の残存活性を測定した結果, 組換え PpChi-Ia, IV, Vb 共に 0°C - 40 °C で 80%以上の活性を保持しており, 50°C より活性の低下が見られ, 60°C でほぼ完全に失活した。

Fig. 5-4. Thermal stability of each recombinant PpChi.

Closed circle (\bigcirc), open circle (\bigcirc) and triangle (\blacktriangle) indicate the results of recombinant PpChi-Ia, PpChi-IV and PpChi-Vb, respectively. The thermal stability was examined by measuring residual activity after incubation in 10 mM sodium phosphate buffer (pH 7.0) for 1 h. The original activity is taken as 100% for each.

第3項 (GlcNAc) 4-6 に対する分解パターン

1) PpChi-Ia

PpChi-Ia の (GlcNAc) 4-6 に対する分解パターンの結果を Fig. 5-5 に示した。 PpChi-Ia は PpChi-IV および Vb と比較すると、4 量体および 5 量体の分解速度 が遅かった (Fig. 5-5, B and C)。6 量体を2 量体と4 量体に分解した。

2) PpChi-IV

PpChi-IV の(GlcNAc) 4-6 に対する分解パターンの結果を Fig. 5-6.に示した。 **PpChi-IV**は4,5,6量体を分解した。6量体からは2,3,4量体を生成したが, 反農産物の経時変化を見ると,6量体から生じた4量体がさらに分解されて2量 体が生成していることが分かった。5量体からは2量体と3量体が生成された。4 量体からは主に2量体が生成された。

3) PpChi-Vb

PpChi-Vb の (GlcNAc) 4-6 に対する分解パターンの結果を Fig. 5-7.に示した。 PpChi-Vb は 4, 5, 6 量体を分解した。6 量体と 5 量体からは何れも 2, 3, 4 量 体が生成されたが,単量体は検出されなかった。また,4 量体を基質とした場合は, 単量体が検出されていないにもかかわらず,3 量体が生成された。クロマトグラム を確認したところ,6 量体が生成されていることを確認した。これらのことは,糖 転移反応によって 6 量体が生成された後,6 量体の加水分解によって 3 量体が形 成されることを示唆している。

A, $(\text{GlcNAc})_6$; B, $(\text{GlcNAc})_5$; C, $(\text{GlcNAc})_4$. $(\text{GlcNAc})_1$ (\bigcirc), $(\text{GlcNAc})_2$ (\bigcirc), $(\text{GlcNAc})_3$ (\blacktriangle), $(\text{GlcNAc})_4$ (\triangle), $(\text{GlcNAc})_5$ (\blacksquare), $(\text{GlcNAc})_6$ (\square) indicate the hydrolysis products, respectively. 10 µl of enzyme solution (final conc. 2µM) and 80 µl of 5 mM (GlcNAc) n were added to 10 µl of 10 mM sodium acetate buffer (pH 5.0), and the mixture was incubated at 25 °C for 1, 5, 10, 20 and 30 min. The reaction was stopped by cooling to 0 °C in an ice bath, and the reactant solution was analyzed by UFLC using a TSK-GEL Amide-80 culumn (4.6 mm × 250 mm). (GlcNAc) n was eluted with a 70% acetonitrile solution at a flow rate of 0.7 ml/min, and the absorbance was measured at 220 nm.

A, $(\text{GlcNAc})_6$; B, $(\text{GlcNAc})_5$; C, $(\text{GlcNAc})_4$. $(\text{GlcNAc})_1$ (\bigcirc), $(\text{GlcNAc})_2$ (\bigcirc), $(\text{GlcNAc})_3$ (\blacktriangle), $(\text{GlcNAc})_4$ (\triangle), $(\text{GlcNAc})_5$ (\blacksquare), $(\text{GlcNAc})_6$ (\square) indicate the hydrolysis products, respectively. 8 µl of enzyme solution (final conc. 2µM) and 10 µl of 8 mM (GlcNAc)_n were added to 2 µl of 100 mM sodium acetate buffer (pH 5.0), and the mixture was incubated at 25 °C for 1, 5, 10, 20 and 30 min. The reaction was stopped by cooling to 0 °C in an ice bath, and the reactant solution was analyzed by UFLC using a TSK-GEL Amide-80 culumn (4.6 mm × 250 mm). (GlcNAc)_n was eluted with a 70% acetonitrile solution at a flow rate of 0.7 ml/min, and the absorbance was measured at 220 nm.

Fig. 5-7. Time courses of (GlcNAc)6-4 hydrolysis and transglycosylation catalyzed by PpChi-Vb. Time-courses of the reaction products of (GlcNAc)₆₋₄ by PpChi-Vb (A, B and C) and enlarged view of time-courses (D, E and F). The reaction was conducted in 5 mM sodium acetate buffer (pH 4.0) at 25° C. Concentrations of the enzyme and the substrate were 1 μ M and 1.3 mM, respectively. \Diamond , NAG₈; \blacklozenge , NAG₇; \Box , (GlcNAc)₆; \blacksquare , (GlcNAc)₅; \triangle , (GlcNAc)₄; \blacktriangle , (GlcNAc)₃; \bigcirc (GlcNAc)₂; \spadesuit , GlcNAc. (G) Reaction model of hydrolysis and transglycosylation from (GlcNAc)₆.

第4項 高分子・低分子基質に対する動力学的解析

高分子基質であるグリコールキチンに対して、 K_m 値にはあまり差が無かったが、 V_{max} は PpChi-Ia が PpChi-IV の約3倍、PpChi-Vbの6倍の分解活性を示した。低分子基質 である (GlcNAc) 4 に対して、 K_m 値にはあまり差が無かったが、 PpChi-IV の V_{max} は、PpChi-Ia の約50倍、PpChi-Vb の約500倍の分解活性を示した。

Table 5-1. Kinetic analysis of PpChi as to glycol chitin.

	Km	$V_{\rm max}$	k_{cat}	$k_{\rm cat}/K_{\rm m}$
	(mg/ml)	(units/mol)	(s ⁻¹)	(mg/ml/s)
PpChi-Ia	0.15	3.0×10^{10}	5.0×10^{8}	3.3×10^{9}
PpChi-IV	0.24	0.9×10^{10}	1.5×10^{8}	6.3×10^{8}
PpChi-Vb	0.1	4.5×10^{9}	7.5×10^{7}	7.5×10^{8}

Table 5-2. Kinetic analysis of PpChi as to (GlcNAc)₄.

	<i>K</i> _m (M)	V _{max} (units/mol)	k _{cat} (s ⁻¹)	$k_{ m cat}/K_{ m m}$ $({ m s}^{-1}{ m M}^{-1})$
PpChi-Ia	7.4×10^{-4}	3.8×10^{8}	6.4×10^{6}	8.6×10^{9}
PpChi-IV	2.3×10^{-3}	2.1×10^{10}	3.5×10^{8}	1.5×10^{11}
PpChi-Vb	8.3×10^{-4}	3.9×10^{7}	6.4×10^{5}	7.8×10^{8}

第5項 抗真菌活性

PpChi-Ia は 300 pmol で糸状性真菌である *T. viride* の菌糸の伸長を抑制する効果 が認められたが、PpChi-IV および Vb にはなかった (Fig. 5-8)。

PpChi-IV 300 pmol

Fig. 5-8. Antifungal activity of PpChi against *T. viride.*. Test samples were placed into the wells. 1, Sterile water; 2, PpChi-Ia (300 pmol); 3, PpChi-IV (300 pmol); 4, PpChi-Vb (300 pmol). pH の影響を調べた結果,得られた組換え PpChi-Ia, IV, Vb の最適 pH はそれぞ れ pH 5.0, pH 5.0, pH 4.0 付近で, pH 安定性はそれぞれ pH 3-pH 10, pH 5- pH 10, pH 3- pH 10 付近で 80%以上の活性を保持していた。また,熱の影響を調べた結果, 得られた組換え PpChi-Ia, IV, Vb の最適温度はいずれも 60°C で,熱安定性も 0-40 °C で 80%以上の活性を保持していた。これらの結果から,得られた 3 種の組換え PpChi の pH と熱に対する安定性は,どれも似ていることが分かった。

低分子基質である(GlcNAc)4-6の分解パターンを調べた結果,それぞれの性質の違 いが明らかであった。PpChi-Iaは4量体,5量体に対する分解活性は低いが,6量 体を2量体と4量体に分解しており、高分子基質であるグリコールキチンに対して は、PpChi-IVの約3倍、PpChi-Vbの6倍の分解活性を示した。これらのことから、 ポリマーを中心に分解することが示唆された。PpChi-IVは4,5,6量体を分解し、 最終的な分解産物は、2量体が最も多かった。また、生体防御応答を引き起こすこと が可能なキチンオリゴ糖である4量体に対する分解活性は、PpChi-IVはPpChi-Ia の 50 倍, PpChi-Vb の 500 倍のであった。このことは、PpChi-IV の 4 量体基質に 対する分解活性がひときわ高いことを示している。PpChi-Vbは、4、5、6量体を同 じように分解していたが、分解産物には単量体は含まれていなかった。さらに、4 量体を基質とした場合には、単量体が生産されていないにもかかわらず、3量体が生 産されていた。これらのことから、PpChi-Vb には、糖転移活性があることが示唆さ れた。0.1 M NaCl を含む PDA 培地を用いて抗真菌活性を検討した結果, PpChi-Ia は 300 pmol で糸状性真菌である T. virideの菌糸の伸長を抑制する活性が認められ たが、PpChi-IV および Vb にはなかった。これらの結果から、PpChi-Ia は真菌細胞 壁の主成分であるキチンに直接作用し,4糖以上のオリゴ糖を遊離させ,生体防御応 答を促進する役割があると示唆された。一方, PpChi-IV は4量体を積極的に分解し, 行き過ぎた生体防御応答を抑制・終息させる役割があることが推察される。 PpChi-Vb の持つ糖転移活性は, 生体防御応答をより強く刺激できる高重合度のオリ ゴ糖を生産できる可能性がある。

95

第6章 結論

植物キチナーゼは病原性真菌の細胞壁の主な構成成分であるキチンを分解するこ とによってその侵入や増殖を抑制する生体防御タンパク質のひとつであると考えら れている。しかしながら,植物キチナーゼが非生物性ストレスによって誘導されたり, 構成的に発現したり,ある生育段階で特異的に発現したりという報告や抗真菌活性 を全く示さないキチナーゼの報告もあり,その生理的役割については,様々な可能性 が議論されている(Kasprzewska, 2003)。

植物キチナーゼの生理的役割を解明するためには、その構造および生化学的性質 と共に、発現時期や局在性、ストレスによる誘導性を調べる一方、植物が進化のどの 段階でどのようなキチナーゼを獲得したのかを調べることが重要であると考えられ た。

本研究では、進化的に古い植物の方がキチナーゼの数や種類が少ないと予測され ることから、陸上植物の中で最も原始的な植物であると考えられるコケ植物、なか でも,ゲノムプロジェクトが終了しているヒメツリガネゴケ(Physcomitrella patens)由来キチナーゼ(PpChi)について研究した。遺伝子検索の結果, 糖質加水分 解酵素ファミリー19に属するものとして, クラスⅠが3つ, クラスⅡが3つ, クラ ス IV が 1 つ、 クラス IIL が 1 つの計 8 種類, 糖質加水分解酵素ファミリー18 に属 するものとしてクラス V の 2 種類が得られた。これら 10 種のキチナーゼ候補遺伝 子と2種類のCERK 候補遺伝子について、転写量をqRT-PCR 法により定量した結 果, PpChi6種類とPpCERK2種類が有意に発現していることが判明した。それら の遺伝子転写量のプロファイルは、キチナーゼのクラスと相関が認められ、さらに、 発現の誘導に使用したキチンオリゴ糖の重合度によって転写量が異なっていた。ヒ メツリガネゴケ茎葉体より抽出した RNA を鋳型とした RT-PCR 法による cDNA ク ローニングにて、有意に発現している6種のcDNAクローンを得ることができた。 これらの cDNA の塩基配列とデータベースに登録された推定 mRNA の塩基配列と を比較した結果, PpChi-IIa, IIc, IV, Vb は完全に一致した。しかし, PpChi-Ia および Ib は、推定 mRNA と一部配列が異なっていた。ゲノム DNA の配列情報と 比較した結果, 推定 mRNA 配列と本研究で得られた cDNA の配列には, いずれも ゲノム配列と完全に一致する共通領域があり,両配列間の違いは,mRNA の配列を

登録する際のエキソンの推定位置の違いに起因することが明らかとなった。推定 mRNA と cDNA 配列は何れもフレームシフトによるストップコドンの出現は無く, N 末端と C 末端配列は一致した。キチン分解活性に必須な酸触媒であるグルタミン 酸残基もゲノム DNA と cDNA の両方の配列で保持されていた。しかし,推定 mRNA には,相当する領域にグルタミン酸残基が見当たらなかった。よって,本研究にて 得られた cDNA の配列が,本来の mRNA の配列であることが明らかとなった。

得られた cDNA から推定されるアミノ酸配列と他の植物由来のキチナーゼとを, 構造依存的マルチプルアライメントで比較した。クラスⅠキチナーゼである OsChia1b および RSC-a と比較した結果, PpChi-Ia および Ib はクラス I キチナー ゼではあるが, ループ I および II の抜けたクラス I 様のキチナーゼであった。クラ ス II キチナーゼである RSC-c および CHI-26 と比較した結果, PpChi-IIa および IIc はループ領域の全てそろったクラス II であった。クラス IV キチナーゼである Chia4-Pa2 と比較した結果, PpChi-IV は触媒ドメインのループ I, II, IV, V およ び C 末端ループの欠損したクラス IV と一致した。クラス V キチナーゼである CrChi-A および NtChi-V と比較した結果, PpChi-Vb は他のクラス V キチナーゼと 同様のDXDXE領域および□□□ドメイン領域を持つクラスVキチナーゼであること が分かった。系統樹解析においても,PpChi-Ia,Ib,IIa,IIc はクラス I および II キチナーゼと, PpChi-IV はクラス IV および II-L と, PpChi-Vb はクラス V キチナー ゼと遺伝的な距離が近いことが明らかとなった。これらのことは、ヒメツリガネゴ ケは、数は少ないものの高等植物のほとんど全てのクラスのキチナーゼを持ってい ることを示しており、植物におけるキチナーゼの機能と役割、そしてその進化を研 究するための格好の生物資源であると考えられる。

候補遺伝子のコード領域を pET22b に連結し, *E. coli* による発現・精製システム を構築した。得られた組換え PpChi-Ia, IV, Vb の酵素化学的諸性質を調べた。pH の影響を調べた結果,得られた組換え PpChi-Ia, IV, Vb の最適 pH はそれぞれ pH 5.0, pH 5.0, pH 4.0 付近で, pH 安定性はそれぞれ pH 3.0⁻ pH 10.0, pH 5.0⁻ pH 10.0, pH 3.0⁻ pH 10.0 の範囲で 80%以上の活性を保持していた。また,熱に対する性質 を調べた結果,得られた 3 種のキチナーゼの最適温度はそれぞれ 60°C で,熱安定性 はそれぞれ0°C -40°C の範囲で 80%以上の活性を保持していた。これらの結果から, 得られた 3 種のキチナーゼの pH と熱に対する性質はどれも似ていることが分かっ た。低分子基質である(GlcNAc)4-6の分解パターンを調べた結果,それぞれの性質の 違いが明らかであった。PpChi-Iaは4量体と5量体をあまり分解しないが,6量体 を2量体と4量体に分解したことから,ポリマーを中心に分解することが示唆され た。PpChi-IVは4,5,6量体を分解し,最終的な分解産物は,2量体が最も多かっ た。。また,低分子基質に対する動力学的解析の結果から,他2つのPpChiよりも (GlcNAc)4に対して親和性と分解速度が高かったことから,4量体の基質に対する分 解活性が高いことが示唆された。PpChi-Vbは,4,5,6量体を同じように分解して いたが,どれも単量体を生産していなかった。さらに,4量体を基質とした場合には, 単量体が生産されていないにもかかわらず,3量体が生産されていた。これらのこと から糖転移活性があることが示唆された。0.1 M NaClを含む PDA 培地で抗真菌活 性の結果,PpChi-Iaは弱い抗真菌活性を示したものの,PpChi-IV,Vb は示さなかっ た。

抗真菌活性を有する植物キチナーゼは大麦,タバコ,ライ麦,イネ等で報告され ている(Jacobsen et al. 1990; Iseli et al. 1993; Taira et al. 2002; Truong et al. 2003)。ライ麦種子由来キチナーゼ c(RSC-c)は、わずかな量(2µM)で菌糸の成 長を十分に抑制するが、ナガハハリガネゴケ由来キチナーゼ A(BcChi-A)は、100 µM でも全く抗真菌活性を確認できない(Taira et al. 2011)。PpChi-Ia は 300 pmol で 菌糸の伸長を阻害したことから、中程度の抗真菌活性を持つと言える。本研究で PpChi-Ia に抗真菌活性が確認されたことから、*P. patens*のクラス I キチナーゼが、 病原性真菌の侵入を防いでいる可能性が示唆された。

Yamada et al. (1993)は、3 量体以下のキチンオリゴ糖は、イネの培養細胞に対し てエリシター活性を持たないことを示した。本研究でも、いくつかの PpChi のキチ ンオリゴ糖に対する応答は、4 量体と 6 量体のほうが 2 量体よりも強かった。 PpChi-Ia が 4 量体や 2 量体よりも効果的に 6 量体を分解するのに対して、PpChi-IV は 4 量体、6 量体ともに効率よく分解することができた。GH19 のキチナーゼでは、 ループ領域がキチンオリゴ糖の分解に強く影響している。Taira et al. (2011)は、す べてのループ領域を持つ RSC-c のキチンオリゴ糖 6 量体に対する活性は、4 量体に 対する活性の約 100 倍であることを報告している。一方で、ループ I、II、IV、V と C 末端ループが欠失した BcChi-A は、RSC-c と比較して、6 量体では 10 倍、5 量体 では 100 倍、4 量体では 1000 倍のキチン分解活性を持つ。これらの結果から、ルー プ領域が欠失した GH19 キチナーゼは、より短い基質を分解する役割を担っている ものと考えられる。

本研究では、クラス II キチナーゼの諸性質について検討することはできなかった。 しかし、PpChi-IIa と IIc の構造は RSC-c の構造と似ていることを考慮すると、そ の酵素化学的性質も類似しているものと考えられる。すべてのループ領域を持つ PpChi-IIa と IIc は、4 量体に対する活性が低いと予想される。PpChi-IIa と IIc の 発現がキチンオリゴ糖処理によって抑制されたことを考え合わせると、コケ植物の 防御システムにおいて、病原性真菌の細胞壁よりキチンエリシターを切り出す役割 を果たしているのかもしれない。

PpChi-IVの4量体に対する活性はPpChi-Iaよりも高く、キチンオリゴ糖処理に 対するPpChi-IVの応答は、ほかのPpChi遺伝子よりも遅かった。また、4量体処 理に対する発現量は、6量体よりも多かった。病原性真菌の感染初期には、6量体よ りも重合度の高いキチンエリシターの量が多く、後半に4量体の量が増加すること により、クラスIVキチナーゼが防御システムの終盤において働いている可能性があ る。

多くのバクテリア由来 GH18 キチナーゼには,糖転移活性が確認されている。一 方,植物キチナーゼでは,ソテツ由来キチナーゼ (CrChi-A) が唯一の例であり(Taira et al. 2009),本研究にて糖転移活性を明らかにした PpChi-Vb は,2例目の報告と なる。被子植物由来クラス V キチナーゼの糖転移活性に関する報告はないことから, 被子植物由来キチナーゼの糖転移機能は,進化の過程で失われてしまったのかもし れない。クラス V キチナーゼは,糖転移活性によりキチンオリゴ糖の重合度を高め ることで,エリシター活性を促進している可能性が考えられる。しかし,キチンオ リゴ糖処理に対する発現応答は弱く,PpChi-Vbの機能は生体防御とは関係ないのか もしれない。

本研究によって明らかになった遺伝子発現のプロファイルと酵素活性に基づいて, ヒメツリガネゴケにおけるキチナーゼの生理的役割を次のように考察した(Fig. 6-1)。

ヒメツリガネゴケに病原性真菌であるカビが侵入すると、常時発現しているクラ スⅡキチナーゼが病原性真菌の細胞壁の主成分であるキチンを分解し、キチンオリ ゴ糖を遊離する。遊離したキチンオリゴ糖は、キチンエリシターとしてキチンエリ シター受容体キナーゼに認識される。キチンエリシター受容体キナーゼからのシグ ナル伝達によって,抗真菌活性をもつ PpChi-Ia の発現が誘導される。そして, PpChi-Vbが,その糖転移活性によって,より生体防御応答を強く刺激できる高重合 度のキチンオリゴ糖(4量体以上)の生産に寄与する。しかし,これらの防御応答に よって病原性真菌の感染を防ぐことができても、キチンオリゴ糖がある限り防御応 答は続いてしまう。そこで,防御応答の終盤では、PpChi-IV が積極的にキチンオリ ゴ糖を分解し、キチンエリシター受容体が認識できない4量体以下の大きさにまで してしまうことで,これらの防御応答反応を抑制・終息させるのであろう。

Fig. 6-1. Predicted functions of PpChis in vivo.

引用文献

Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. The Plant Journal 3: 31–40

Graham LS, Sticklen MB (1994) Plant chitinases. Canadian Journal of Botany 72: 1057-1083

Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agricultural and Biological Chemistry 35: 1154-1156

Iseli B, Boller T, Neuhaus JM (1993) The N-terminal cysteine-rich domain of Tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity. Plant Physiology 103: 221-226

Jacobsen S, Mikkelsen JD, Hejgaard J (1990) Characterization of two antifungal endochitinases from barley grain. Physiologia Plantarum 79: 554-562

Kasprzewska A (2003) Plant chitinases - Regulation and function. Cellular and Molecular Biology 8: 809-824

Koga D, Hirata T, Sueshige N, Tanaka S, Ide A (1992) Induction patterns of chitinases in yam callus by inoculation with autoclaved Fusarium by Inoculation with Autoclaved Fusarium oxysporum, ethylene, and chitin and chitosan oligosaccharides. Bioscience, Biotechnology, and Biochemistry 56: 280-1992

Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685

Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection.

Sience 302: 630-633

Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proceedings of the National Academy of Sciences 104: 19613-19618

Ovtsyna AO, Schultze M, Tikhonovich IA, Spaink HP, Kondorosi E, Kondorosi A, Staehelin C (2000) Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates. Molecular Plant-Microbe Interactions 13:799-807

Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Grønlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425: 585-592

Rensing SA, Lang D, Zimmer AD et al. (2008) The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. Science 319: 64-69

Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425

Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Molecular Plant-Microbe Interactions 13: 763-777

Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365-367
Selitrennikoff CP (2001) Antifungal proteins. Applied and Environmental Microbiology 67: 2883-2894

Taira T, Ohnuma T, Yamagami T, Aso Y, Ishiguro M, Ishihara M (2002) Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Biosci. Biotechnol Biochem. 66: 970-977

Taira T, Ohdomari A, Nakama N, Shimoji M, Ishihara M (2005) Characterization and antifungal activity of gazyumaru (Ficus microcarpa) latex chitinases: both the chitin-binding and the antifungal activities of class I chitinase are reinforced with increasing ionic strength. Biosci Biotechnol Biochem. 69: 811-818

Taira T, Toma N, Ishihara M (2005) Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf. Biosci Biotechnol Biochem. 69: 189-196

Taira T, Hayashi H, Tajiri Y, Onaga S, Uechi GI, Iwasaki H, Ohnuma T, Fukamizo T (2009) A plant class V chitinase from a cycad (Cycas revoluta): biochemical characterization, cDNA isolation, and posttranslational modification. Glycobiology 19: 1452-1461

Taira T, Mahoe Y, Kawamoto N, Onaga S, Iwasaki H, Ohnuma T, Fukamizo T (2011) Cloning and characterization of a small family 19 chitinase from moss (Bryum coronatum). Glycobiology 21:644-654

Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol. Biol. Evol 24: 1596-1599

Theis T, Stahl U (2004) Antifungal proteins: tergets, mechanisms and prospective applications. Cellular and Molecular Life Sciences 61: 437-455

Truong NH, Park SM, Nishizawa Y, Watanabe T, Sasaki T, Itoh Y (2003) Structure, heterologous expression, and properties of rice (Oryza sativa L.) family 19 chitinases. Biosci. Biotechnol Biochem. 67: 1063-1070

Yamada H, Imoto T (1981) A convenient synthesis of glycolchitin, a substrate of lysozyme. Carbohydr Res. 92: 160-162

Yamada A, Shibuya N, Kodama O, Akatsuka T (1993) Induction of Phytoalexin Formation in Suspension-cultured Rice Cells by N-Acetylchi to oligo saccharides. Biosci. Biotechnol Biochem. 57: 405-409

Yamagami T, Mine Y, Ishiguro M (1998) Complete amino acid sequence of chitinase-a from bulbs of gladiolus (Gladiolus gandavensis). Biosci. Biotechnol Biochem. 62: 386-389

van Hengel AJ, Tadesse Z, Immerzeel P, Schols H, van Kammen A, de Vries SC (2001) N-acetylglucosamine and glucosamine-containing arabinogalactan proteins control somatic embryogenesis. Plant Physiol. 125: 1880-1890

古賀大三(1994) 植物キチナーゼと生体防御 病原菌抵抗性植物の作出は可能か? 化学と生物 Vol. 32 712-722

平良東紀 (2016) 植物キチナーゼの構造, 抗真菌活性および進化 キトサン研究 Vol. 22 1-12

田中隆介(2014) ヒメツリガネゴケ由来各種キチナーゼの諸性質 修士論文

長谷部光泰 (2008) 植物の比較ゲノム解析からみえてきたもの 蛋白質 核酸 酵素 Vol. 53

本研究の過程において,終始御指導と御鞭撻を賜りました鹿児島大学学術研究院 理工学域理学系の内海俊樹教授,琉球大学農学部亜熱帯生物資源科学科の平良東紀 教授に心より感謝を申し上げます。

本論文の審査過程において、数々の御助言と御指導賜りました鹿児島大学同上の伊東祐二教授、九町健一准教授に深謝致します。

本研究活動において,御教示並びに御激励を賜りました鹿児島大学大学院理工学 研究科の阿部美紀子教授に厚く御礼申し上げます。

本研究を遂行するにあたり,多大なる御協力を頂きました琉球大学農学研究科生 物資源科学専攻の田中隆介さんに深く感謝致します。

本研究を進めるにあたり,御助力いただきました鹿児島大学理学部生命化学科植 物微生物研究室の皆様に感謝致します。

社会人学生として本研究を遂行するにあたり, 鹿児島大学大学院理工学研究科技 術部の皆様に多大なる御協力と御激励を頂きましたことを御礼申し上げます。そし て, 共に研究活動に励み, 貴重な御意見, 御激励を頂きました御幡晶さんに深く感 謝致します。

最後に、本研究活動を応援し、支えてくれた家族に深く感謝致します。