
On the Donnelly-Tavar´e-Griffiths formula
associated with the coalescent

著者 Yamato Hajime
journal or
publication title

Communications in statistics. Theory and
methods.

volume 26
number 3
page range 589-599
URL http://hdl.handle.net/10232/00006218



ON THE DONNELLY-TAVARÉ-GRIFFITHS
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ABSTRACT

We evaluate the moments of the Donnelly-Tavaré-Griffiths formula appearing in the

n-coalescent with mutation, which characterizes this formula. The formula is also charac-

terized by using Waring distribution and Yule distribution. The asymptotic distributions of

the related statistics are obtained as n tends to infinity.

1. INTRODUCTION

Let Cn denote the set of all ordered partitions of a positive integer n, that is,

Cn = {(c1, ..., ck) : 1 ≤ k ≤ n, ci > 0 (i = 1, ..., k) and c1 + · · · + ck = n}.

The Donnelly-Tavaré-Griffiths formula is a probability distribution of random ordered par-

tition Cn = (Cn1, ..., Cnk) on Cn defined by

P (Cn = (c1, ..., ck)) =
αk

α[n]
· n!
ck(ck + ck−1) · · · (ck + ck−1 + · · · + c1)

,(1)

where α is a positive constant, 1 ≤ k ≤ n, (c1, ..., ck) ∈ Cn and α[n] = α(α+1) · · · (α+n−1).

This distribution was named Donnelly-Tavaré-Griffiths formula by Ewens (1990), based on

the paper by Donnelly and Tavaré (1986) and an unpublished note by Griffiths. Joyce

and Tavaré (1987) derive this distribution using the linear birth process with immigration.

The distribution can be derived as the distribution of frequencies of order statistics from

GEM distribution (Donnelly and Tavaré (1991)). Considering the frequencies of the sample
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associated with the order of appearance of the sample from an infinite random propor-

tions, it has the distribution (1) if and only if the size-biased permutation of the infinite

random proportions has the GEM distribution (Donnelly (1986) and Sibuya and Yamato

(1995)). The distribution (1) can also be derived by using urn models. One is a Pólya-like

urn (Hoppe(1984) or Sibuya and Yamato(1995)). The random clustering process in Sibuya

(1993) is equivalent to this model. Another model is an urn with a continuum of colors

(Blackwell and MacQueen (1973) or Yamato (1993)). Pitman’s Chinese restaurant process

gives also the distribution (1) (see, for example, Donnelly and Tavaré (1990)). Many prop-

erties of the Donnelly-Tavaré-Griffiths formula are derived, concerning with the distribution

given by (1) (see, for example, Hoppe (1987) or Ewens (1990)).

For the n-coalescent with mutation, we denote by Dn1 the number of individuals of new

equivalence class with the youngest allelic type, by Dnj the one with the j-th youngest

allelic type (j = 1, 2, ...) and by Dnk the one with the oldest allelic type. Then the random

ordered partition Dn = (Dn1, ...,Dnk) on Cn has the probability distribution given by

P (Dn = (d1, ..., dk)) =
αk

α[n]
· n!
d1(d1 + d2) · · · (d1 + d2 + · · · + dk)

,(2)

where (d1, ..., dk) ∈ Cn (see Donnelly and Tavaré(1986)). Ethier (1990) derives this distribu-

tion using a diffusion model. For Dn = (Dn1, ...,Dnk), its rearrangement
−
Dn= (Dnk, ...,Dn1)

in a reverse order has the probability given by (1). Distinguishing between the distributions

given by (1) and (2), we shall call the distribution given by (2) Donnelly-Tavaré-Griffiths

II formula and abbreviate it DTG II(n, α). The purpose of this paper is to show properties

of DTG II, which is different from the properties of the Donnelly-Tavaré-Griffiths formula

given by (1).

In Section 2 we evaluate the moments, which characterize DTG II. In section 3, we state

Waring distribution, Yule distribution and the related distributions, which appear in Section

4. In Section 4, we give the marginal distribution of Dn using a simple pure birth chain

instead of the distribution (2) itself. Then we give the conditional distribution of Dn,r given

Dn1, ...,Dn,r−1 for r = 1, ..., n− 1. These conditional distributions and the marginal distri-

bution of Dn1 are described using Waring distribution and Yule distribution, respectively.

The asymptotic distributions as n → ∞ of Dn1, ...,Dnr with r fixed and their sum are also

given.

2. MOMENTS

For any random ordered partition Dn of a positive integer n, we have the following.
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Proposition 1 Any random ordered partition Dn of a positive integer n satisfies

E[
t∏

j=1

(Dn1 + Dn2 + · · · + Dnj)(Dnj − 1)(rj−1)](3)

=
t∏

j=1

[(rj − 1)!(r1 + · · · + rj)]P (Dn = (r1, ..., rt))

for (r1, ..., rt) ∈ Cn, where x(r) = x(x − 1) · · · (x − r + 1) and x(0) = 1.

Proof. We have

E[
t∏

j=1

(Dn1 + Dn2 + · · · + Dnj)(Dnj − 1)(rj−1)]

=
∑

1

t∏
j=1

[(d1 + · · · + dj)(dj − 1)(rj−1)]P (Dn = (d1, ..., dl)),

where the summation
∑

1 is taken over all (d1, ..., dl) belonging to Cn. It must be dj ≥ rj

for (dj − 1)(rj−1) �= 0. Since d1 + · · · + dl = n = r1 + · · · + rt, we have l = t and dj = rj ,

j = 1, ..., t. Thus we have the relation (3). �

By Proposition 1, we get the following characterization of DTG II.

Proposition 2 A random ordered partition Dn of a positive integer n has DTG II(n, α)

if and only if the moments of Dn satisfies

E[
t∏

j=1

(Dn1 + Dn2 + · · · + Dnj)(Dnj − 1)(rj−1)] =
αt

α[n]
n!

t∏
j=1

(rj − 1)!

for (r1, ..., rt) ∈ Cn.

3. WARING DISTRIBUTIONS

We shall state Waring distribution, Yule distribution and their grouped distributions

for the next section. The Waring distribution is the probability distribution of the random

variable W taking on the values 0, 1, 2, ... such that

P (W = x) = (c − a)
a[x]

c[x+1]
, x = 0, 1, 2, ...,

where c, a are positive constants such that c > a. We shall denote this Waring distribution

by Wa(c, a). Its mean and variance are E(W ) = a/(c − a − 1) if c − a > 1 and V ar(W ) =

a(c − a)(c − 1)/[(c − a − 1)2(c − a − 2)] if c − a > 2, respectively. It holds that P (W ≥
x) = a[x]/c[x], x = 0, 1, 2, ... The Waring distribution with a = 1 is Yule distribution shifted
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to the support 0, 1, .... The Yule distribution with the support 1, 2, ... has the probability

distribution such that

P (Y = y) =
ρ(y − 1)!
(1 + ρ)[y]

, ρ > 0 and y = 1, 2, ...,

which we shall denote by Yu(ρ). (See, for example, Johnson et al. (1992), 6.10.3 and 6.10.4.)

By grouping the events {W = n},{W = n+1},{W = n+2},... with respect to W having

Wa(c, a) for a non-negative integer n, we have the probability distribution given by

P (W = x) = (c − a)
a[x]

c[x+1]
, x = 0, 1, 2, ..., n − 1,

a[n]

c[n]
, x = n.

We shall call this distribution bounded Waring distribution and denote it by BWa(n; c, a).

For n = 0, the bounded Waring distribution degenerates to zero. Similarly, bounded Yule

distribution BYu(n; ρ) is defined by

P (Y = y) =
ρ(y − 1)!
(1 + ρ)[y]

, y = 1, 2, ..., n − 1,

ρ(n − 1)!
(1 + ρ)[n−1]

, y = n.

4. MARGINAL AND CONDITIONAL DISTRIBUTIONS

We consider the following urn model (Yamato (1990), Example 1.1). There are many

red balls of mass one, and a single black ball of mass α > 0. An urn contains only the black

ball at the beginning. A ball is randomly chosen from the urn in proportion to its mass and

replaced along with a red ball. Let Y1 be 1. Let Yj+1 be equal to Yj or Yj + 1 if the color of

the ball chosen at the (j + 1)-th trial is red or black, respectively, for j = 1, 2,... Then we

have a pure birth chain {Yj ; j = 1, 2, ...} with states 1, 2, .... Its initial state is Y1 = 1 and

the transition probabilities are

P{Yj+1 = yj | Y1 = y1, ..., Yj = yj} =
j

α + j
(4)

P{Yj+1 = yj + 1 | Y1 = y1, ..., Yj = yj} =
α

α + j

for j = 1, 2, ... and all states y1(= 1), y2, ..., yj . The equivalent model is obtained from a

Pólya-like urn (Hoppe (1984)) and sampling from Ferguson’s Dirichlet process (Blackwell

and MacQueen (1973) or Yamato (1993)). In this model we let Y1 = 1, and Yj+1 be Yj or
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Yj + 1 if the (j + 1)-th observation (or the color of the ball chosen at the (j + 1)-th trial)

is equal to any one of the previous ones or a new one, respectively, for i = 2, 3,... Pitman’s

Chinese restaurant process (see, for example, Donnelly and Tavaré (1990)) gives also the

equivalent model, in which Yj+1 is equal to Yj + 1 or Yj if the (j + 1)-th person sits at a

new empty table or not, respectively.

For the first n observations Y1, ..., Yn of this chain {Yj ; j = 1, 2, ...} , we put

Dn1 = l such that Y1 = · · · = Yl < Yl+1, 1 ≤ l ≤ n,

Dni = l such that YDn,i−1+1 = · · · = YDn,i−1+l < YDn,i−1+l+1, Dn,i−1 + l ≤ n

for i = 2, ..., n. That is, Dn1 is the number of observations equal to Y1, Dn2 is the number

of observations equal to the first one which exceeds Y1, and so on.

Proposition 3 For the pure birth chain given by (4), Dn = (Dn1, ...,Dnk) has the DTG

II(n, α), where k is the number of different observations among the first n observations. That

is, the probability distribution of Dn is given by (2).

Proof. For (d1, ..., dk) ∈ Cn, we have

P (Dn1 = d1, Dn2 = d2, ...,Dnk = dk)

= P (Y1 = · · · = Yd1 < Yd1+1 = · · · = Yd1+d2 < · · · < Yd1+···+dk−1+1 = · · · = Yn).

Writing the right-hand side as the products of the conditional probabilities and using the

transition probabilities (4), we get that Dn has the DTG II. �

For any ordered partition (d1, ..., di, di+1, ..., dk) ∈ Cn such that di ≥ di+1 (i = 1, ..., k −
1), we have P (Dn = (d1, ..., di−1, di, di+1, ..., dk)) ≤ P (Dn = (d1, ..., di−1, di+1, di, ..., dk)),

because of d1 + · · · + di−1 + di ≥ d1 + · · · + di−1 + di+1. Therefore for any permutation

(d0
i1

, d0
i2

, ..., d0
ik

) of a partition (d0
1, d

0
2, ..., d

0
k) ∈ Cn such that d0

1 ≥ d0
2 ≥ · · · ≥ d0

k,

P (Dn = (d0
1, d

0
2, ..., d

0
k)) ≤ P (Dn = (d0

i1 , d
0
i2 , ..., d

0
ik

)) ≤ P (Dn = (d0
k, d0

k−1, ..., d
0
1)).

The marginal distribution of Dn is given by the following.

Proposition 4 (Donnelly and Tavaré (1990), Prop. 1 of Chap. 2)Suppose that Dn have

DTG II(n, α). Let r be a positive integer such that 1 ≤ r ≤ n − 1. Then, Dn1, Dn2, ...,Dnr

has the probability given by

P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr) =
αr

(α + 1)[d(r)]
· d(r)!
d1(d1 + d2) · · · (d1 + · · · + dr)

(5)
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for d1, d2, ..., dr(= 1, 2, ..., n − 1) satisfying d(r) = d1 + · · · + dr < n. For d1, d2, ..., dr(=

1, 2, ..., n−1) satisfying d1+· · ·+dr = n, the probability P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr)

is given by (2) with r instead of k.

Remark: For r = n, it is only possible that Dn1 = Dn2 = · · · = Dnn = 1 since

(Dn1, Dn2, ...,Dnn) ∈ Cn.

Proof. In order to derive the marginal distributions of Dn, we use the pure birth chain

defined by (4). For d1, ..., dr(= 1, 2, ..., n − 1) satisfying d1 + · · · + dr < n, we have

P (Dn1 = d1, Dn2 = d2, ...,Dnr = dr) = P (Y1 = · · · = Yd1 < Yd1+1 = · · ·

= Yd1+d2 < · · · < Yd1+···+dr−1+1 = · · · = Yd1+···+dr
< Yd1+···+dr+1).

Thus we get the relation (5) by the similar method to the proof of Proposition 4. �

Especially for r = 1, from Proposition 4 we have for n ≥ 2

P (Dn1 = y) =
α(y − 1)!
(α + 1)[y]

, y = 1, 2, ..., n − 1

(n − 1)!
(α + 1)[n−1]

, y = n.

Thus we have the following corollary.

Corollary 1 (Branson(1991), Th. 4.12 and Donnelly and Tavaré (1990), 2.23) For

n ≥ 2, Dn1 has the bounded Yule distribution BYu(n; α).

Proposition 5 Suppose that Dn have DTG II(n, α). Then given Dn1 = d1, ...,Dn,r−1 =

dr−1, Dnr−1 has the bounded Waring distribution BWa(n−d(r−1)−1; α+d(r−1)+1, d(r−
1)+1), where r = 2, ..., n−1, d1, ..., dr−1 = 1, 2, ..., n−1 and d(r−1) = d1 + · · ·+dr−1 < n.

Proof. For xr = 0, 1, ..., n − d(r − 1) − 2, by (5) we have

P (Dnr − 1 = xr | Dn1 = d1, ...,Dn,r−1 = dr−1) =
α(d(r − 1) + 1)[xr]

(α + d(r − 1) + 1)[xr+1]
.

For xr = n − d(r − 1) − 1, by (2) and (5) we have

P (Dnr − 1 = xr | Dn1 = d1, ...,Dn,r−1 = dr−1) =
(d(r − 1) + 1)[xr ]

(α + d(r − 1) + 1)[xr]
. �

Since this conditional distribution depends on d1, ..., dr−1 only through their sum, we

have the following.
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Corollary 2 Given Dn1 + · · · + Dn,r−1 = d(r − 1), Dnr − 1 has the bounded Waring

distribution BWa(n− d(r − 1)− 1; α + d(r − 1) + 1, d(r − 1) + 1), where r = 2, ..., n− 1 and

r − 1 ≤ d(r − 1) < n.

By the property of Waring distribution stated in Section 2, the conditional distribution

BWa(n − d1 − 1; α + d1 + 1, d1 + 1) of Dn2 − 1 given Dn1 = d1 gives the following.

Corollary 3 For d1 = 1, 2, ..., [(n − 1)/2] and n > 2d1,

P (Dn2 > Dn1 | Dn1 = d1) =
(d1 + 1)[d1]

(α + d1 + 1)[d1]
,

where [(n − 1)/2] is the greatest integer not greater than (n − 1)/2.

For example, for n > 2, P (Dn2 > Dn1 | Dn1 = 1) = 2/(α + 2), which is greater than

1/2 for 0 < α < 2. For n > 4, P (Dn2 > Dn1 | Dn1 = 2) = 12/(α + 3)(α + 4), which is

greater than 1/2 for α < (
√

97 − 7)/2 � 1.42. Since the marginal distribution of Dn1 and

the conditional distribution of Dnr given Dn1,..., Dn,r−1, r = 2, ..., n, determines the joint

distribution of Dn, we have the following.

Proposition 6 Let Dn = (Dn1, ...,Dnk) be a random ordered partition of a positive

integer n and α be a positive constant. Suppose that Dn1 has the bounded Yule distribu-

tion BYu(n; α) and given Dn1 = d1, ...,Dn,r−1 = dr−1, Dnr − 1 has the bounded Waring

distribution BWa(n − d(r − 1) − 1; α + d(r − 1) + 1, d(r − 1) + 1), where r = 2, ..., n − 1,

d1, ..., dr−1 = 1, 2, ..., n − 1 and d(r − 1) = d1 + · · · + dr−1 < n. Then Dn has the DTG

II(n, α).

It is well-known that Dn gives the Ewens sampling formula if we neglect the order of

elements of Dn = (Dn1, ...,Dnk) (see, for example, Donnelly and Tavaré (1986) or Sibuya

and Yamato (1995)). We consider the joint distribution of (Dn1, ...,Dnr) neglecting their

order for a positive integer r(< n) fixed. Given Dn1 = d1, ...,Dnr = dr, we let

Sr
nj = no. of {i : di = j(i = 1, ..., r)}, j = 1, 2, ..., d(r),

where d(r) = d1 + · · · + dr. It holds that 1 · Sr
n1 + 2 · Sr

n2 + · · · + d(r) · Sr
n,d(r) = d(r) and

Sr
n1 + · · ·+Sr

n,d(r) = r. That is, (Dn1, ...,Dnr) is the ordered partition of the positive integer

d(r) and (Sr
n1, ..., S

r
n,d(r)) is the corresponding unordered partition of d(r). (Sr

n1, ..., S
r
n,d(r))

has the following joint distribution.
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Proposition 7 Suppose that Dn have DTG II(n, α). For positive integers r and d(r)

such that r ≤ d(r) < n, (s1, ..., sd(r)) denotes an unordered partition of d(r) such that

s1, ..., sd(r) ≥ 0, s1 + · · ·+ sd(r) = r and 1 · s1 +2 · s2 + · · ·+d(r) · sd(r) = d(r). Then we have

P (Sr
n1 = s1, S

r
n2 = s2, ..., S

r
n,d(r) = sd(r)) =

αr

α[n]
· n!∏n

i=1 isisi!
, d(r) = n,(6)

αr

(α + 1)[d(r)]
· d(r)!∏r

i=1 isisi!
, d(r) = r, r + 1, ..., n − 1.

Proof. We have P (Sr
n1 = s1, ..., S

r
n,d(r) = sd(r)) =

∑
2P (Dn1 = d1, ...,Dnr = dr), where

the summation
∑

2 is taken over all distinct ordered partitions (d1, ...dr) of d(r) which give

the unordered partition (s1, ..., sd(r)) of d(r). Using the relation
∑

2[1/
∏r

j=1(
∑j

i=1 di)] =

1/
∏r

i=1 isisi!(see Donnelly and Tavaré (1986) or Sibuya (1993)), by Proposition 4 we have

(6) for d(r) = r, r + 1, ..., n − 1. For d(r) = n, we have (6) from (2) by the similar method.

�

We put D(r) = Dn1 + · · ·+Dnr for a positive integer r less than or equal to the number

k of distinct partitions in Dn.

Proposition 8 Suppose that Dn have DTG II(n, α). D(r) = Dn1 + · · · + Dnr satisfies

the relation given by

P (D(r) = j, r < k) =
[

j
r

]
αr

(α + 1)[j]
, j = r, r + 1, ..., n − 1,

P (D(r) = n) =
[

n
r

]
αr

α[n]
,

where [ ] denotes the unsigned Stirling number of the first kind.

Proof. For j(= r, r+1, ..., n−1), using the notations in Proposition 7 we have P (D(r) =

j, r < k) =
∑

3P (Sr
n1 = s1, ..., S

r
nj = sj), where the summation

∑
3 is taken over all

unordered partitions (s1, ...sj) of j such that s1 + · · · + sj = r and 1 · s1 + 2 · s2 + · · · + j ·
sj = j. Using the representation of the unsigned Stirling number of the first kind

[
j
r

]

=
∑

3j!/
∏j

i=1 isisi! (see, for example, Riordan(1968)), from the second relation of (6) we

have P (D(r) = j, r ≤ k) =
[

j
r

]
αr/(α + 1)[j]. By the similar method and from the first

relation of (6) we have P (D(r) = n) =
[

n
r

]
αr/α[n]. �

From Propositions 4 and 8, we have the conditional distribution of Dn1, ...,Dnr given

D(r) and r < k. In addition, from Proposition 4 and the probability P (D(r) = n) of

Proposition 8 we have the conditional distribution of Dn1, ...,Dnk given k, since D(r) = n

means r = k.
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Corollary 4 For j = r, r + 1, ..., n − 1 (r < n) and positive integers d1, ..., dr satisfying

d1 + · · · + dr = j, we have

P (Dn1 = d1, ...,Dnr = dr | D(r) = j, r < k) =
[

j
r

]−1
j!

d1(d1 + d2) · · · (d1 + · · · + dr)
.

Furthermore, we have

P (Dn = (d1, ..., dk) | k) =
[

n
k

]−1
n!

d1(d1 + d2) · · · (d1 + · · · + dk)
, (d1, ..., dk) ∈ Cn.(7)

The relation (7) may be also obtained by another approach. If we neglect the order of

elements of Dn = (Dn1, ...,Dnk), Dn gives the Ewens sampling formula as stated following

Proposition 6. Thus the number k of distinct partitions in Dn has the distribution P (K =

k) = αk

[
n
k

]
/α[n], k = 1, 2, ..., n (Ewens (1972)). Dividing the equation (2) by this

probability P (K = k), we have also the relation (7).

For the asymptotic distributions as n → ∞, by Propositions 4, 5, 7 and 8 we have the

following.

Proposition 9 Suppose that Dn have DTG II(n, α). Let r be a positive integer. Then

(i) Dn1 has the Yule distribution Yu(α) asymptotically as n → ∞.

(ii) (Dn1, ...,Dnr) has the asymptotic distribution given by

P (Dn1 = d1, ...,Dnr = dr)

=
αr

(α + 1)[d1+···+dr ]
· (d1 + · · · + dr)!
d1(d1 + d2) · · · (d1 + · · · + dr)

, d1, ..., dr = 1, 2, ...

(iii) Given Dn1 = d1, ...,Dn,r−1 = dr−1, Dnr − 1 has the Waring distribution Wa(α + d(r−
1) + 1, d(r − 1) + 1) asymptotically, where d(r − 1) = d1 + · · · + dr−1.

(iv) For d(r) = r, r + 1, ..., (Sr
n1, S

r
n2, ..., S

r
n,d(r)) has the asymptotic probability given by

P (Sr
n1 = s1, S

r
n2 = s2, ..., S

r
n,d(r) = sd(r)) =

αr

(α + 1)[d(r)]
· d(r)!∏r

i=1 isisi!
,

where (s1, ..., sd(r)) denotes an unordered partition of d(r) such that s1, ..., sd(r) ≥ 0, s1+

· · · + sd(r) = r and 1 · s1 + 2 · s2 + · · · + d(r) · sd(r) = d(r).

(v) D(r) = Dn1 + · · · + Dnr has the asymptotic distribution given by

P (D(r) = j) =
[

j
r

]
αr

(α + 1)[j]
, j = r, r + 1, ...

Though this probability P (D(r) = j) is easily derived from (iv) of Proposition 9, we can

also obtain it by applying to Proposition 8 the fact that the number k of distnct partitions
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in Dn diverges as n → ∞ with probability one (Korwar and Hollander(1973), Cor. 2.2).

The asymptotic distribution of D(r)+1 is the Str1W(r+1, α) distribution by Sibuya(1988).
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