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Abstract

As an estimator of a real estimable parameter, we consider a linear com-
bination of U-statistics which include V-statistic and limit of Bayes estimate
(Toda and Yamato [9]). In the case that the kernel of the estimable param-
eter is degenerate, we show functional limit theorems (invariance principles)
for the linear combination of U-statistics. As their applications we give the
asymptotic distribution of a linear combination of U-statistics.
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1 Introduction

Let θ = θ(F ) be a real estimable parameter or a real regular functional of a dis-
tribution F and g(x1, ..., xk) be its kernel of degree k. Let X1, ..., Xn be a random
sample of size n from the distribution F . U-statistic Un is well-known as estimators
of θ(F ), which is given by

Un =

(
n

k

)−1 ∑
1≤j1<···<jk≤n

g(Xj1, . . . , Xjk
), (1.1)
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where
∑

1≤j1<···<jk≤n denotes the summation over all integers j1, . . . , jk satisfying
1 ≤ j1 < · · · < jk ≤ n. We put

ψj(x1, . . . , xj) = E[g(X1, . . . , Xk) | X1 = x1, . . . , Xj = xj ], j = 1, ..., k

σ2
j = V ar[ψj(X1, . . . , Xj)], j = 1, ..., k.

In this paper we assume that

σ2
1 = · · · = σ2

d−1 = 0 and σ2
d > 0 (d ≤ k).

That is, the U-statistic and/or the kernel g is degenerate of order d − 1. So
Eψd(X1, . . . , Xd) = θ and almost surely (a.s.) ψ1(X1) = θ, . . . , ψd−1(X1, . . . , Xd−1)
= θ. We put

g(1)(x1) = ψ1(x1) − θ,

g(c)(x1, . . . , xc) = ψc(x1, . . . , xc) −
c−1∑
j=1

∑
(c,j)

g(j−1)(xi1 , . . . , xij ) − θ

for c = 2, 3, ..., k, where the sum
∑

(c,j) is taken over all integers such that 1 ≤ i1 <

· · · < ij ≤ c. By the degeneracy, g(1) = · · · = g(d−1) = 0, g(d) = ψd − θ. (See, for
example, Lee [6], and Koroljuk and Borovskich [4].)

Let D[0, 1] be the space of all real functions on [0, 1] which are right continuous
and have left-hand limits. We consider a random process given by {U[nt] : 0 ≤ t ≤
1} which belongs in D[0, 1], where [x] is the greatest integer not greater than x.
The functional limit theorem based on {U[nt] : 0 ≤ t ≤ 1} is given by Theorem
5.5.4 of Koroljuk and Borovskikh [4]. We take the sub-space D[0, 1] instead of
D[0,∞) of Theorem 5.5.4 of Koroljuk and Borovskikh [4]. Under the condition
Eg(X1, . . . , Xk)

2 < ∞ , nd/2td(U[nt] − θ) converges in distribution to
(

k
d

)
J t

d(g
(d)) as

n→ ∞ in the space D[0, 1]. That is,

nd/2td(U[nt] − θ)
D−→

(
k

d

)
J t

d(g
(d)), (1.2)

where

J t
d(f) =

∞∑
i1=1

· · ·
∞∑

id=1

(f, ei1 · · · eid)
∞∏
l=1

Hrl(i)(wj(t), t),

e1, e2, ... is an orthonormal basis of L2(F ), w1(t),w2(t),... are independent standard
Brownian motion on [0, 1] such that Ewj(t) = 0, w2

j (t) = t (j = 1, 2, . . .), and

rl(i) =
∑d

j=1 I(ij = l) is the number of indices among i = (i1, ..., id) equal to l. H is
the Hermite polynomial of two variables whose generating function is given by

exp[zτn1 − z2τn2/2] =

∞∑
m=0

zm

m!
Hm(τn1, τn2)
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(Borovskikh and Korolyuk [2]). Jt
d(f) can be also expressed by the multiple stochas-

tic integral (see Borovskikh [1], pp.178–179). The other functional limit theorem for
Un is as follows ( Borovskich [1], pp.176). For the U-statistic Un, we consider a
random process {Un(t) : 0 ≤ t ≤ 1} given by

Un(t) =
k∑

c=d

(
k

c

)(
n

c

)−1

S[nt],c, 0 ≤ t ≤ 1, (1.3)

where S[nt],c =
∑

1≤i1<···<ic≤[nt] g
(c)(Xi1 , . . . , Xic). The random process {Un(t) : 0 ≤

t ≤ 1} belongs in D[0, 1]. Under the condition E | g(c) |2c/(2c−d)<∞ for c = d, . . . , k,

nd/2Un(t)
D−→

(
k

d

)
J t

d(g
(d)). (1.4)

As an estimator of θ(F ), Toda and Yamato [9] introduce a linear combination
Yn of U-statistics as follows: Let w(r1, . . . , rj ; k) be a nonnegative and symmetric
function of positive integers r1, . . . , rj such that j = 1, . . . , k and r1 + · · · + rj =
k, where k is the fixed degree of the kernel g. We assume that at least one of
w(r1, . . . , rj; k)’s is positive. We put

d(k, j) =
∑+

r1+···+rj=k
w(r1, . . . , rj; k)

for j = 1, 2, ..., k, where the summation
∑+

r1+···+rj=k is taken over all positive integers
r1, ..., rj satisfying r1 + · · · + rj = k with j and k fixed. For j = 1, . . . , k, let
g(j)(x1, ..., xj) be the kernel given by

g(j)(x1, . . . , xj) =
1

d(k, j)

∑+

r1+···+rj=k
w(r1, . . . , rj ; k)g(x

r1
1 , . . . , x

rj

j ), (1.5)

where
g(xr1

1 , . . . , x
rj

j ) = g(x1, . . . , x1︸ ︷︷ ︸
r1

, . . . , xj, . . . , xj︸ ︷︷ ︸
rj

).

Let U
(j)
n be the U-statistic associated with this kernel g(j)(x1, . . . , xj) for j =

1, . . . , k. The kernel g(j)(x1, . . . , xj) is symmetric because of the symmetry ofw(r1, . . . , rj; k).
If d(k, j) is equal to zero for some j, then the associated w(r1, . . . , rj; k)’s are equal

to zero. In this case, we let the corresponding statistic U
(j)
n be zero.

Then the linear combination Yn of U-statistics is given by

Yn =
1

D(n, k)

k∑
j=1

d(k, j)

(
n

j

)
U (j)

n , (1.6)

3



where D(n, k) =
∑k

j=1 d(k, j)
(

n
j

)
. Since the w’s are nonnegative and at least one of

them is positive, D(n, k) is positive.

If w(1, 1, . . . , 1; k) = 1 and w(r1, . . . , rj; k) = 0 for positive integers r1, . . . , rj

such that j = 1, . . . , k − 1 and r1 + · · · + rj = k, then d(k, k) = 1, d(k, j) = 0
(j = 1, . . . , k − 1) and D(n, k) =

(
n
k

)
. The corresponding statistic Yn is equal to

U-statistic Un given by (1.1).

If w is the function given by w(r1, . . . , rj ; k) = k!/(r1! · · · rj !) for positive integers
r1, . . . , rj such that j = 1, . . . , k and r1 + · · · + rj = k, then d(k, j) = j!S(k, j)
(j = 1, . . . , k) and D(n, k) = nk, where S(k, j) are the Stirling number of the second
kind. The corresponding statistic Yn is equal to V-statistic Vn given by

Vn =
1

nk

n∑
j1=1

· · ·
n∑

jk=1

g(Xj1, . . . , Xjk
).

If w is the function given by w(r1, . . . , rj; k) = 1 for positive integers r1, . . . , rj

such that j = 1, . . . , k and r1 + · · · + rj = k, then d(k, j) =
(

k−1
j−1

)
(j = 1, . . . , k)

and D(n, k) =
(

n+k−1
k

)
. The corresponding statistic Yn is equal to the limit of Bayes

estimate (LB-statistic) Bn which is given by

Bn =

(
n+ k − 1

k

)−1 ∑
r1+···+rn=k

g(Xr1
1 , . . . , X

rn
n ),

where
∑

r1+···+rn=k denotes the summation over all non-negative integers r1, ..., rn

satisfying r1 + · · · + rn = k (see Toda and Yamato [9] and for the limit of Bayes
estimate see Yamato [10]).

In the following, for D(n, k) we suppose that

nk

D(n, k)
is nondecreasing and converges to

k!

d(k, k)
as n→ ∞. (1.7)

For the V-statistic Vn, relation (1.7) is satisfied because of d(k, k) = k! and nk/D(n, k) =
1. For the LB-statistic Bn, relation (1.7) is satisfied because of d(k, k) = 1 and
nk/D(n, k) = nk/

(
n+k−1

k

)
. On the other hand, the U-statistic Un does not satisfy

relation (1.7) because of nk/D(n, k) = nk/
(

n
k

)
and so the U-statistic is not included

in the following discussion.

For the U-statistic and the V-statistic with the non-degenerate kernel, their
functional limit theorems are discussed by Miller and Sen [7], Sen [8], Denker [3]
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and Koroljuk and Borovskich [4]) and others. Kondo and Yamato [5] discusses the
functional limit theorems for a linear combination Yn of U-statistics with a non-
degenerate kernel.

For the U-statistic with a degenerate kernel, the functional limit theorems are
given by Koroljuk and Borovskich [4] and Borovskikh [1], as stated in the previous
paragraph. In Section 2, we show functional limit theorems for a linear combination
Yn of U-statistics with a degenerate kernel.

As an application of these functional limit theorems, in Section 3 we give the
asymptotic distribution of Yn. In Section 4, we give the proofs of lemmas and
theorems in the previous sections.

2 Functional Limit Theorems for Y-statistic

For the kernel g(j)(x1, . . . , xj) given by (1.3), we put for c = 1, . . . , j and j = 1, ..., k

ψ(j),c(x1, ..., xc) = E[g(j)(X1, ..., Xj) | X1 = x1, ..., Xc = xc]

=
1

d(k, j)

∑+

r1+···+rj=k
w(r1, . . . , rj; k)Eg(x

r1
1 , ..., x

rc
c , X

rc+1

c+1 , ..., X
rj

j ).

The U-statistics U
(j)
n , j = 1, . . . , k corresponding to to the kernel g(j) have the

following properties.

Lemma 2.1

E[U (j)
n ] = θ, k − d− 1

2
≤ j ≤ k

or

E[U (k−j)
n ] = θ, 0 ≤ j ≤ d− 1

2
.

Lemma 2.2 The order of degeneracy of U
(k−j)
n is at least d − 2j − 1 for 1 ≤ j ≤

(d− 1)/2 and
ψ(k−j),d−2j(x1, ..., xd−2j) = θ+ (2.1)

1

d(k, k − j)

(
k − d+ j

j

)
w(1k−2j, 2j; k)[ϕd,d−2j(x1, ..., xd−2j) − θ],

where for 1 ≤ j ≤ (d− 1)/2

ϕd,d−2j(x1, ..., xd−2j) = E[ψd(x1, ..., xd−2j, Xd−2j+1, Xd−2j+1, ..., Xd−j , Xd−j)] (2.2)
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and
w(1r, 2s; k) = w(1, 1, · · · , 1︸ ︷︷ ︸

r

, 2, 2, · · · , 2︸ ︷︷ ︸
s

; k).

We note that for 1 ≤ j ≤ (d− 1)/2,

Eϕd,d−2j(X1, ..., Xd−2j) = θ. (2.3)

From Lemmas 2.1 and 2.2, we have the following results: If d = 2l + 1 and l
is a positive integer, then EU

(k)
n = EU

(k−1)
n = · · · = EU

(k−l+1)
n = EU

(k−l)
n = θ.

The orders of degeneracy of U
(k−1)
n ,..., U

(k−l+1)
n , U

(k−l)
n are at least 2(l − 1), ..., 2, 0,

respectively. If d = 2l and l is a positive integer, then EU
(k)
n = EU

(k−1)
n = · · · =

EU
(k−l+2)
n = EU

(k−l+1)
n = θ. The orders of degeneracy of U

(k−1)
n ,...,U

(k−l+2)
n ,U

(k−l+1)
n

are at least 2l − 3, ..., 3, 1, respectively.

Lemma 2.3 In case of d = 2l,

EU (k−l)
n − θ =

1

d(k, k − l)

(
k − l

k − d

)
w(1k−d, 2l; k)[Eψd(X1, X1, ..., Xl, Xl) − θ]. (2.4)

For the statistic Yn, we consider a random process given by {Y[nt] : 0 ≤ t ≤ 1}
which belongs in D[0, 1]. We shall show the functional limit theorem for Yn based
on {Y[nt] : 0 ≤ t ≤ 1}. For this purpose, we must consider at the same time the

functional limit theorems of the U-statistics U
(k)
n , U

(k−1)
n ,...,U

(k−l)
n (d = 2l + 1) and

U
(k)
n , U

(k−1)
n ,...,U

(k−l+1)
n (d = 2l). So we suppose that E[g(Xj1, Xj2, ..., Xjk

)2] < ∞
for all j1, j2, ..., jk such that 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ k.

Theorem 2.4 We suppose that

E[g(Xj1, Xj2, ..., Xjk
)2] <∞

for all j1, j2, ..., jk such that 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ k. We assume (1.7).
Then in case of d = 2l + 1 (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2td(Y[nt] − θ)
D−→ k!

(k − d)!

l∑
j=0

tj
1

(d− 2j)!j!
· w(1k−2j, 2j; k)

w(1k; k)
J t

d−2j(ξd,d−2j), (2.5)

where

ξd,d−2j(x1, ..., xd−2j) = ϕd,d−2j(x1, ..., xd−2j) − θ (0 ≤ j ≤ d− 1

2
).
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In case of d = 2l (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2td(Y[nt] − θ)
D→ k!

(k − d)!
{

l−1∑
j=0

tj
1

(d− 2j)!j!
· w(1k−2j, 2j; k)

w(1k; k)
J t

d−2j(ξd,d−2j)

+
1

l!

w(1k−d, 2l; k)

w(1k; k)
[Eψd(X1, X1, ..., Xl, Xl) − θ]}. (2.6)

We note that w(1k−2j, 2j; k)/w(1k; k) = 1/2j for the V-statistic and w(1k−2j, 2j; k)
/w(1k; k) = 1 for the LB-statistic, respectively.

Corollary 2.5 In case of d = 2l + 1 (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2td(V[nt] − θ)
D−→ k!

(k − d)!

l∑
j=0

tj
1

(d− 2j)!j!2j
J t

d−2j(ξd,d−2j).

In case of d = 2l (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2td(V[nt] − θ)
D→ k!

(k − d)!
{

l−1∑
j=0

tj
1

(d− 2j)!j!2j
J t

d−2j(ξd,d−2j)

+
1

l!2l
[Eψd(X1, X1, ..., Xl, Xl) − θ]}.

Corollary 2.6 In case of d = 2l + 1 (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2td(B[nt] − θ)
D−→ k!

(k − d)!

l∑
j=0

tj
1

(d− 2j)!j!
J t

d−2j(ξd,d−2j).

In case of d = 2l (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2td(V[nt] − θ)
D→ k!

(k − d)!
{

l−1∑
j=0

tj
1

(d− 2j)!j!
J t

d−2j(ξd,d−2j)

+
1

l!
[Eψd(X1, X1, ..., Xl, Xl) − θ]}.

We consider another functional limit theorem for Yn. Let K
(c)
n be the Y-statistic

given by (1.6), based on the kernel g(c). We consider a random process {Yn(t) : 0 ≤
t ≤ 1} which belongs in D[0, 1]:

Yn(t) =
k∑

c=d

(
k

c

)
D([nt], c)

D(n, c)
K

(c)
[nt].
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Theorem 2.7 We suppose that

E[| g(Xj1, Xj2, ..., Xjk
) |2] <∞

for all j1, j2, ..., jk such that 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ k. We assume (1.7).
Then in case that d = 2l + 1 (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2Yn(t)
D−→ k!

(k − d)!

l∑
j=0

tj
1

(d− 2j)!j!
· w(1d−2j, 2j; d)

w(1d; d)
J t

d−2j(ξd,d−2j). (2.7)

In case that d = 2l (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2Yn(t)
D→ k!

(k − d)!
{

l−1∑
j=0

tj
1

(d− 2j)!j!
· w(1d−2j, 2j; d)

w(1d; d)
J t

d−2j(ξd,d−2j)

+
1

l!

w(2l; d)

w(1d; d)
[Eψd(X1, X1, ..., Xl, Xl) − θ]}. (2.8)

We put

Vn(t) =
k∑

c=d

(
k

c

)
[nt]c

nc
K

(c)
V,[nt], Bn(t) =

k∑
c=d

(
k

c

)(
[nt]+c−1

c

)
(

n+c−1
c

) K
(c)
B,[nt],

where for c = d, · · · , k, K(c)
V,n and K

(c)
B,n are the V-statistic and the LB-statistic based

on the kernel g(c), respectively. We note that w(1d−2j, 2j; d)/w(1d; d) = 1/2j for the
V-statistic and w(1d−2j, 2j; d) /w(1d; d) = 1 for the LB-statistic, respectively. By
Theorem 2.7 we get the asymptotic distributions of Vn(t) and B(t), respectively.

Corollary 2.8 In case of d = 2l + 1 (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2Vn(t)
D−→ k!

(k − d)!

l∑
j=0

tj
1

(d− 2j)!j!2j
J t

d−2j(ξd,d−2j).

In case of d = 2l (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2Vn(t)
D→ k!

(k − d)!
{

l−1∑
j=0

tj
1

(d− 2j)!j!2j
J t

d−2j(ξd,d−2j)

+
1

l!2l
[Eψd(X1, X1, ..., Xl, Xl) − θ]}.
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Corollary 2.9 In case of d = 2l + 1 (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2Bn(t)
D−→ k!

(k − d)!

l∑
j=0

tj
1

(d− 2j)!j!
J t

d−2j(ξd,d−2j).

In case of d = 2l (l = 1, 2, . . .), in the space D[0, 1] we have

nd/2Bn(t)
D→ k!

(k − d)!
{

l−1∑
j=0

tj
1

(d− 2j)!j!
J t

d−2j(ξd,d−2j)

+
1

l!
[Eψd(X1, X1, ..., Xl, Xl) − θ]}.

Thus, we know that for the V-statistic and the LB-statistic the asymptotic dis-
tributions of nd/2td(V[nt] − θ) and nd/2td(V[nt] − θ) are equal to the ones of nd/2Vn(t)
and nd/2Bn(t), respectively.

3 Asymptotic distribution of Y-statistic

The Hermite polynomial Hm(τ1, τ2) of two variables with τ2 = 1 is equal to the
Hermite polynomial Hm(τ1) of one variable. We use the notation Jd(f) given by

Jd(f) =

∞∑
i1=1

· · ·
∞∑

id=1

(f, ei1 · · · eid)

∞∏
l=1

Hrl(i)(Zj),

where Z1,Z2,... are independent standard normal random variables. The asymptotic
distribution of nd/2(Yn − θ) can be obtained from Theorem 2.4 by putting t = 1, as
follows.

Theorem 3.1 We suppose that

E[g(Xj1, Xj2, ..., Xjk
)2] <∞ (3.1)

for all j1, j2, ..., jk such that 1 ≤ j1 ≤ j2 ≤ · · · ≤ jk ≤ k. We assume (1.7). Then in
case of d = 2l + 1 (l = 1, 2, . . .), we have

nd/2(Yn − θ)
D→ k!

(k − d)!

l∑
j=0

1

(d− 2j)!j!
· w(1k−2j, 2j; k)

w(1k; k)
Jd−2j(ξd,d−2j). (3.2)

In case of d = 2l (l = 1, 2, . . .) we have

nd/2(Yn − θ)
D→ k!

(k − d)!
{

l−1∑
j=0

1

(d− 2j)!j!
· w(1k−2j, 2j; k)

w(1k; k)
Jd−2j(ξd,d−2j)
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+
w(1k−d, 2l; k)

l!w(1k; k)
[Eψd(X1, X1, ..., Xl, Xl) − θ]}. (3.3)

We have that w(1k−2j, 2j; k)/w(1k; k) = 1/2j for the V-statistic Vn and = 1 for the
LB-statistic Bn, respectively. Therefore, we get the asymptotic distributions of the
V-statistic Vn and the LB-statistic Bn, respectively (Yamato and Toda [11]):
In case of d = 2l + 1 (l = 1, 2, . . .) we have

nd/2(Vn − θ)
D→ k!

(k − d)!

l∑
j=0

1

(d− 2j)!j!2j
Jd−2j(ξd,d−2j). (3.4)

In case of d = 2l (l = 1, 2, . . .) we have

nd/2(Vn − θ)
D→ k!

(k − d)!
{

l−1∑
j=0

1

(d− 2j)!j!2j
Jd−2j(ξd,d−2j) (3.5)

+
1

l!2l
[Eψd(X1, X1, ..., Xl, Xl) − θ]}.

In case of d = 2l + 1 (l = 1, 2, . . .) we have

nd/2(Bn − θ)
D→ k!

(k − d)!

l∑
j=0

1

(d− 2j)!j!
Jd−2j(ξd,d−2j).

In case of d = 2l (l = 1, 2, . . .) we have

nd/2(Bn − θ)
D→ k!

(k − d)!
{

l−1∑
j=0

1

(d− 2j)!j!
Jd−2j(ξd,d−2j)

+
1

l!
[Eψd(X1, X1, ..., Xl, Xl) − θ]}.

The asymptotic distribution of Yn can also be derived directly by same methods as
the asymptotic distribution of Bn by Yamato and Toda [11].

If we put t = 1 in Vn(t), we have

Vn(1) =
k∑

c=d

(
k

c

)
K

(c)
V,n,

which is the expression of V-statistic corresponding to the H-decomposition of U-
statistic, where K

(c)
n is the V-statistic based on the kernel g(c) which contains θ for

10



c = d, . . . , k. Thus Corollary 2.8 also yields the asymptotic distribution of Vn given
by (3.4) and (3.5). The asymptotic distribution of V-statistic is also given by

(
k

d

) ∫ ∞

−∞
· · ·

∫ ∞

−∞
{ψd − θ}Q(dx1) · · ·Q(dxd),

where Q is a centered Gaussian random measure with covariance function EQ(A)
Q(B) = F (A∩B)−F (A)F (B) for any Borel sets A, B (see, for example, Borovskikh
[1], p.113). From (3.4) and (3.5), we know that the asymptotic distribution of Vn is

not affected by the U-statistics U
(·)
n with lower degrees in the expression of (1.6) for

V-statistic (Yamato and Toda [11]).

4 Appendix

We can prove Lemmas 2.1, 2.2 and 2.3 by methods similar to those in the proofs
of Lemmas 2.1, 2.2 and 2.4 of Yamato and Toda (2001). We state here the idea
of the proofs of these Lemmas. We consider the solution of r1, . . . , rj satisfying
r1 + · · · + rj = k with k and j(= 1, . . . , k) fixed. If j is large, then the solution
contains necessarily r· equal to 1. If j ≥ k − (d − 1)/2, then the solution contains
r· equal to 1 whose number is at least 2j − k(≥ k − d + 1). For example, in case
of rj = · · · = rj−k+d = 1, we have Eg(Xr1

1 , · · · , Xrj

j ) = Eψd−1(X
r1
1 , · · · , Xrj−1

j−1 ) = θ,
because of ψd−1 = θ.

Proof of Theorem 2.4: We shall show the case of d = 2l given by (2.6). By a
similar method we can show the case of d = 2l + 1 given by (2.5). We put

Y[nt] − θ =
l−1∑
r=0

Y ∗
[nt],r + Y ∗

[nt],l +
k−l−1∑
r=1

Y ∗∗
[nt],r, (4.1)

where

Y ∗
[nt],r = d(k, k − r)

(
[nt]
k−r

)
D([nt], k)

(U
(k−r)
[nt] − θ), r = 0, 1, . . . , l,

Y ∗∗
[nt],r = d(k, r)

(
[nt]
r

)
D([nt], k)

(U
(r)
[nt] − θ), r = 1, . . . , k − l − 1.

For Y ∗
[nt],r, r = 0, 1, . . . , l − 1, we have

I1n = sup
0≤t≤1

| nd/2tdY ∗
[nt],r −

k!d(k, k − r)

(k − r)!d(k, k)
trn

d−2r
2 td−2r(U

(k−r)
[nt] − θ) |

11



≤ max
k≤j≤n

d(k, k − r)

(k − r)!
| j

(k−r)jr

D(j, k)
− k!

d(k, k)
| ·( j

n
)rn

d−2r
2 (

j

n
)d−2r· | U (k−r)

j − θ | .

From (1.7), for any ε > 0 there exists a positive integer N such that

| j
(k−r)jr

D(j, k)
− k!

d(k, k)
|< ε for j ≥ N.

Thus we have

I1n ≤ max{ 1

nd/2
max

k≤j≤N

d(k, k − r)

(k − r)!
· | j

(k−r)jr

D(j, k)
− k!

d(k, k)
| ·jd−r· | U (k−r)

j − θ |, (4.2)

ε
d(k, k − r)

(k − r)!
sup

0≤t≤1
n

d−2r
2 td−2r | U (k−r)

[nt] − θ |}.

By Lemma 2.2, for r = 1, · · · , l − 1, the order of degeneracy of U
(k−r)
n is at least

d − 2r − 1. Among the last term, sup0≤t≤1 n
d/2−rtd−2r | U (k−r)

[nt] − θ | converges to(
k−r
d−2r

)
sup0≤t≤1 | J t

d−2r(ψ(k−r),d−2r − θ) | in distribution as n → ∞ by (1.2) and

Lemma 2.1 if the order of degeneracy of U
(k−r)
n is d − 2r − 1 exactly. Hence by

letting n tend to ∞ and then ε tend to zero, we get that the right-hand side of (4.2)
converges to zero in probability and therefore I1n converges to zero in probability.

Since U
(k−l)
j converges to θk−l(= EU

(k−l)
j ) almost surely (a.s.) as j → ∞, for

any ε > 0 there exists a positive integer N such that | U(k−l)
j (ω) − θk−l |< ε, j > N

where ω belongs to the event E such that P (E) = 1. Then, using (1.7), we have

sup
0≤t≤1

| nd/2td
(

[nt]
k−l

)
D([nt], k)

(U
(k−l)
[nt] (ω) − θk−l) |

≤ max{ 1

nl(k − l)!
max

k≤j≤N

j(k−l)

D(j, k)
| U (k−l)

[nt] (ω) − θk−l |, ε k!

(k − l)!d(k, k)
},

for any ω ∈ E. By letting n tend to ∞ and then ε tend to zero, we get

sup
0≤t≤1

| nd/2td
(

[nt]
k−l

)
D([nt], k)

(U
(k−l)
[nt] − θk−l) |→ 0 a.s. (4.3)

Since j(k−l)jl/D(j, k) increases as j increases by (1.7), we have

sup
0≤t≤1

nd/2td
(

[nt]
k−l

)
D([nt], k)

=
n(k−l)nl

(k − l)!D(n, k)
→ k!

(k − l)!d(k, k)
, n→ ∞. (4.4)

12



Therefore by (4.3) and (4.4), we get

sup
0≤t≤1

nd/2tdY ∗
[nt],l →

k!d(k, k − l)

(k − l)!d(k, k)
(θk−l − θ) a.s. (4.5)

For Y ∗∗
[nt],r, r = 1, . . . , k − l − 1, we have

sup
0≤t≤1

nd/2td | Y ∗∗
[nt],r |≤

d(k, r)

r!
max
k≤j≤n

j(r)jk−r

D(j, k)
| U (r)

j − θ | 1

nk−r−l
, k − r − l ≥ 1.

Since j(r)jk−r/D(j, k) converges to k!/d(k, k) and U
(r)
j converges θr(= EU

(r)
j ) a.s. as

j → ∞, [j(r)jk−r/D(j, k)] | U (r)
j − θ | is bounded almost surely. Thus

sup
0≤t≤1

nd/2td | Y ∗∗
[nt],r |→ 0 a.s.

By these convergence of Y ∗
[nt],r,r = 0, 1, . . . , l and Y ∗∗

[nt],r (r = 1, . . . , k − l − 1), we
know that

sup
0≤t≤1

nd/2td(Y[nt] − θ)

has the same asymptotic distribution as that of

l−1∑
r=0

sup
0≤t≤1

k!d(k, k − r)

(k − r)!d(k, k)
trn

d−2r
2 td−2r(U

(k−r)
[nt] − θ) +

k!d(k, k − l)

(k − l)!d(k, k)
(θk−l − θ), (4.6)

where θk−l−θ is given by the right-hand side of (2.4). By applying (1.2) to each terms
of the first summation and d(k, k) = w(1k; k), we get the asymptotic distribution
(2.6).

Even if the order of degeneracy of U
(k−r)
n is larger than d − 2r − 1 for some

r(= 1, . . . , l − 1), relation (2.6) is still valid because sup0≤t≤1 n
d/2tdY ∗

[nt],r converges

to zero in probability and J t
d−2r(ξd,d−2r) = 0 by ξd,d−2r = 0: For example, we suppose

that the order of degeneracy of U
(k−r)
n is d− 2r. Then we have

I1n ≤ max
k≤j≤n

d(k, k − r)

(k − r)!
| j

(k−r)jr

D(j, k)
− k!

d(k, k)
| · 1√

n
(
j

n
)r−1n

d−2r+1
2 (

j

n
)d−2r+1· | U (k−r)

j −θ | .

Therefore the second term of the right-hand side of (4.2) is replaced by

ε
d(k, k − r)

(k − r)!
· 1√

n
· sup

0≤t≤1
n

d−2r+1
2 td−2r+1 | U (k−r)

[nt] − θ |,

which converges to zero in probability as n → ∞ since the order of degeneracy of
U

(k−r)
n is d− 2r and sup0≤t≤1 n

d/2−r+1/2td−2r+1(U
(k−r)
[nt] − θ) converges in distribution
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to
(

k−r
d−2r+1

)
sup0≤t≤1 |J t

d−2r+1(ψ(k−r),d−2r+1 − θ)| by (1.2). Therefore I1n converges to
zero in probability as n→ ∞. On the other hand, by the same reasoning

| sup
0≤t≤1

trn
d−2r

2 td−2r(U
(k−r)
[nt] − θ) |≤ 1√

n
| sup

0≤t≤1
n

d−2r+1
2 td−2r+1(U

(k−r)
[nt] − θ) |

converges to zero in probability. Therefore, sup0≤t≤1 n
d/2tdY ∗

[nt],r converges to zero
in probability. �

We note that in the above proof, the convergence of Y ∗
[nt],l and Y ∗∗

[nt],r (r =

1, . . . , k − l − 1) can be derived under the condition that E | g(j)(X1, . . . , Xj) |<∞
for j = 1, . . . , l.

Proof of Theorem 2.5: We note that

nd/2Yn(t) =

(
k

d

)
D([nt], d)

D(n, d)
nd/2K

(d)
[nt] +

k∑
c=d+1

(
k

c

)
D([nt], c)

D(n, c)
nd/2K

(c)
[nt]. (4.7)

By the assumption (1.7), for any ε > 0 there exists a positive integer N such that

| nd

D(n, d)
· D(j, d)

jd
− 1 |< ε for n ≥ j ≥ N.

Thus we have

sup
0≤t≤1

| D([nt], d)

D(n, d)
nd/2K

(d)
[nt] − nd/2tdK

(d)
[nt] |≤ max

d≤j≤n
| D(j, d)

D(n, d)
− (

j

n
)d | nd/2K

(d)
[nt]

≤ max{ max
d≤j≤N

| D(j, d)
nd

D(n, d)
− jd | K

(d)
j

nd/2
, ε sup

0≤t≤1
nd/2tdK

(d)
[nt]}. (4.8)

Since sup0≤t≤1 n
d/2tdK

(d)
[nt] converges in distribution by Theorem 2.4, by letting n tend

to ∞ and then ε tend to zero we have that (4.8) converges to zero in probability as
n→ ∞.

By a discussion similar to the one above, for d+ 1 ≤ c ≤ k we have that

sup
0≤t≤1

| D([nt], c)

D(n, c)
nc/2K

(c)
[nt] − nc/2tcK

(c)
[nt] |

converges to zero in probability as n→ ∞. Since nc/2tcK
(c)
[nt] converges in distribution

by Theorem 2.4, (D([nt], c)/D(n, c))nc/2K
(c)
[nt] converges in distribution for d + 1 ≤

c ≤ k. Thus for d+ 1 ≤ c ≤ k we get that

sup
0≤t≤1

| D([nt], c)

D(n, c)
nd/2K

(c)
[nt] |= sup

0≤t≤1
| D([nt], c)

D(n, c)
nc/2K

(c)
[nt] | /n

c−d
2

14



converges to zero in probability as n→ ∞.

From this convergence of [D([nt], c)/ D(n, c)]nd/2K
(c)
[nt], c = d, d + 1, . . . , k, and

the convergence in (4.8), we know that the asymptotic distribution of nd/2Yn(t) given

by (4.7) is equal to the one of
(

k
d

)
nd/2tdK

(d)
[nt]. The kernel of K

(d)
n is g(d) = ψd − θ.

Since g(d) is completely degenerate, its degree and its order of degeneracy are equal
to d. By applying (2.4) and (2.5) to this Y-statistic K

(d)
n , we get the asymptotic

distributions of nd/2Yn(t) given by (2.7) and (2.8). �
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