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1 Introduction and GEM distribution

Let (Wj)∞j=1 be a sequence of independent random variables, with Wj following the beta distribution

Be (1 − α, θ + jα), j ∈ N = {1, 2, . . .}, (0 ≤ α < 1, θ > −α). Let the standard simplex of the infinite

dimension be denoted by

∆ =

(pj)∞j=1; pj ≥ 0, j ∈ N ,
∑
j∈N

pj = 1

 .

A random vector Z= (Zj)∞j=1 on ∆ is a transform of (Wj)∞j=1 by the residual allocation, Patil and Taillie

(1977) and Pitman (1996a):

Z1 = W1, and Zj = (1 − W1) · · · (1 − Wj−1) Wj , j = 2, 3, . . . (1)

Note that Z1 + · · · + Zj + (1 − W1) · · · (1 − Wj) = 1. The distribution of Z, in the case α = 0, is known

as the GEM (Generalized Engen-McClosky) distribution. See, e.g. Johnson et al. (1997) or Pitman and

Yor (1997). Hence, we call the distribution of Z, defined by (1), the two-parameter GEM distribution,

and express it as GEM (θ, α).

Regard Z of GEM (θ, α) as a sequence of random probabilities of an infinite number of categories

indexed by N , and let X= (X1, . . . , Xn) be a random sample from Z, that is, an i.i.d. sequence on N n,

with the random probabilities:

P (X = (x1, . . . , xn) | Z = (z1, z2, . . . )) =
n∏

j=1

zxj , xj ∈ N , j = 1, . . . , n, (z1, z2, . . . ) ∈ ∆. (2)

In this paper, GEM (θ, α) is characterized by its product moments, and sampling distributions of some

statistics of a random sample X are obtained based on the characterization. The main statistics are the

frequencies of categories in a sample in the order of appearance, the intervals between new categories and

the number of distinct observations. Three theorems on the sampling distributions are stated in Section

2, and their proofs and related results are given in Sections 3–5.

For GEM (θ, 0) the frequencies of categories in a sample from Z in the order of their sequence numbers

were discussed by Donnelly and Joyce (1991), and Yamato and Nomachi (1997). The distribution of

ordered frequencies of a sample in the order of appearance was discussed by Sibuya and Yamato (1995).

2 Main results on sampling distributions

For a random sample X= (X1, . . . , Xn) from GEM (θ, α), the following statistics are defined. First, a

sequence (B1, . . . , Bn) is defined by

B1 := 1 and Bj :=
j−1∏
i=1

I[Xj �= Xi], j = 2, . . . , n, (3)
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where I[ · ] is 1 if the bracketed event is true and 0 if false. That is, Bj = 1 if Xj is a new category, or a

new number, and = 0 otherwise.

Kn :=
n∑

j=1

Bj = 1 +
n∑

j=2

I[Xj �= Xk, k = 1, . . . , j − 1], (4)

is the number of different categories of X . A realization Kn = k is sometimes assumed without explicitly

being mentioned.

ν1 := 1, and νj := min

{
� ;

�∑
i=1

Bi = j

}
, j = 2, . . . , k,

is the ‘time’ when the j-th category appears first in X, and the j-th category is denoted by

X̃j := Xνj , j = 1, . . . , k.

Especially, X̃1 = X1. The number of components which are equal to X̃j is denoted by

Cnj :=
n∑

i=1

I[Xi = X̃j], j = 1, . . . , k. (5)

The number of components between new categories, or the ‘waiting time’ for a new category, is defined

by

Dnj := νj+1 − νj , 1 ≤ j < k, and Dn,1 := n, if k = 1. (6)

That is, Dn1 is the number of observations before X̃2, and Dnj is the number of observations between

X̃j and X̃j+1 including the former. If k > 1,

“ Dnj = dj , j = 1, . . . , k − 1 ” ⇔ “ X̃j = Xνj = Xd1+···+dj−1+1, j = 2, . . . , k ”,

and d1 + · · · + dk−1 < n. The ‘still waiting time’ is similarly defined by

Dnk := n − νk + 1, if k > 1, and Dn1 := n,

as a convention.

The main results of this paper are as follows.

Theorem 1 Let Z be a random vector of GEM (θ, α), and X be a sample of size n from Z. The joint

probability distribution of the number Kn of distinct observations X̃j of X, and the number Cnj (5) of

observations which are the same as X̃j, j = 1, . . . , Kn, in X is

P (Kn = k, Cn1 = c1, . . . , Cnk = ck) =
n!θ[k:α]

θ[n]

k∏
i=1

(1 − α)[ci−1]

(
∑k

j=i cj)(ci − 1)!
, (7)
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where 1 ≤ k ≤ n, cj > 0, j = 1, . . . , k; c1 + · · · + ck = n; x[j] = x(x + 1) · · · (x + j − 1) and θ[k:α] =

θ(θ + α) · · · (θ + (k − 1)α).

Conversely, let Z be a random vector on ∆, and X be a random sample from Z. If the components

of Z do not tie a.s., and the joint distribution of (Kn, Cn1, . . . , CnKn) has the distribution (7), then the

size-biased permutation V of Z has GEM (θ, α).

The distribution (7), in the case α = 0, is known as DTG (Donnelly-Tavaré-Griffiths) sampling formula,

and we call (7) as the two-parameter DTG distribution, and express it as DTG (θ, α).

In the following two theorems, statistics are assumed of a sample X of size n from a random GEM (θ, α)

vector.

Theorem 2 The joint distribution of Kn and Dnj, j = 1, . . . , k − 1, (6), is

P (Kn = k, Dn1 = d1, . . . , Dn,k−1 = dk−1) =
θ[k:α]

θ[n]

k∏
i=1

(1 − iα +
i−1∑
j=1

dj)[di−1], (8)

where dk = n − (d1 + · · · + dk−1) > 0.

For α = 0, this distribution is called as DTG II formula (Yamato (1997)), and we term it the two-

parameter DTG II distribution, and express it as DTG II (θ, α).

Theorem 3 The number Kn (4) of different categories has the probability distribution,

P (Kn = k) =
θ[k:α]

θ[n]

c(n, k; α)
αk

, k = 1, 2, . . . , n, (9)

where c(n, k; α) = (−1)n−k C(n, k; α), and C(n, k; α) is the C-number of Charalambides and Singh (1988).

This is a marginal distribution of (7) and (8). Pitman (1999) derived the distribution (9) of Kn by a

different method.

The C-number is a type of generalized Stirling number defined by the polynomial identity

(st)(n) =
n∑

k=1

C(n, k; s) t[k], t(k) = t (t − 1) · · · (t − k + 1),

or equivalently (st)[n] =
∑n

k=1 c(n, k; s) t[k]. In terms of the unsigned Stirling number of the first kind[
n
m

]
, and the Stirling number of the second kind

{
n
m

}
,

c(n, k; α)
αk

=
n∑

r=k

[
n

r

]{
r

k

}
(−α)r−k,

and c(·, ·; ·) satisfies the recurrence formula

c(n + 1, k; s) = (n − k s) c(n, k; s) + s c(n, k − 1; s), (10)
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with the initial conditions c(0, 0; s) = 1, c(n, 0; s) = 0 (n > 0), and c(0, k; s) = 0 (k > 0), ∀s. See Pitman

(1999) and Yamato and Sibuya (2000) for further discussions.

3 Two-parameter DTG distribution

The two-parameter GEM distribution is characterized as follows.

Proposition 1 A random vector V = (V1, V2, . . . ) on ∆ has GEM (θ, α) if and only if

E[V c1−1
1 (1 − V1)V c2−1

2 (1 − V1 − V2)V c3−1
3 · · · (1 − V1 − · · · − Vk−1)V ck−1

k ]

=
θ[k:α]

θ[c1+···+ck]

k∏
i=1

(1 − α)[ci−1], ∀k, c1, . . . , ck ∈ N . (11)

For GEM (θ, 0), this proposition was shown by Sibuya and Yamato (1995).

Proof. Recall that a beta distribution with any parameter is uniquely determined by its moments, and

that for a random variable U of the beta distribution Be (a, b), E[U r(1 − U)s] = a[r]b[s]/(a + b)[r+s]. If

V = (V1, V2, . . . ) is a GEM (θ, α) random vector, then (11) is obtained directly from this moment and (1).

Conversely, assume (11), which is, with k = 1, E[V c1−1
1 ] = (1 − α)[c1−1]/(1 + θ)[c1−1] meaning

that V1 has Be (1 − α, θ + α). To advance the induction step from k = j to j + 1, assume that

V1,V2/(1−V1), . . . ,Vj/(1−V1−· · ·−Vj−1) are independent and have Be (1−α, θ+α), Be (1−α, θ+2α),

. . . ,Be (1 − α, θ + jα), respectively. The expression (11) with k = j + 1 can be written as

E[V c1−1
1 (1 − V1)c2+···+cj+1(

V2

1 − V1
)c2−1(1 − V2

1 − V1
)c3+···+cj+1 · · ·

(
Vj

1 − V1 − · · · − Vj−1
)cj−1(1 − Vj

1 − V1 − · · · − Vj−1
)cj+1(

Vj+1

1 − V1 − · · · − Vj
)cj+1−1]

= E[V c1−1
1 (1 − V1)c2+···+cj+1 ]E[(

V2

1 − V1
)c2−1(1 − V2

1 − V1
)c3+···+cj+1 ] · · ·

E[(
Vj

1 − V1 − · · · − Vj−1
)cj−1(1 − Vj

1 − V1 − · · · − Vj−1
)cj+1 ]E[Bcj+1−1

j+1 ],

where c1, . . . , cj+1 are positive integers and Bj+1 is a Be (1 − α, θ + (j + 1)α) random variable. In the

above relation, replace c1 to c1 + l1 and sum over l1 = 1, 2, . . . . Then after repeating these calculations

c2 + · · · + cj+1 times, the term (1 − V1)c2+···+cj+1 disappears in both sides. Similarly for i = 2, . . . , j,

replace ci by ci + li and sum over li = 1, 2, . . . . Then after repeating these calculations ci+1 + · · · + cj+1

times, we obtain

E[V c1−1
1 (

V2

1− V1
)c2−1 · · · ( Vj

1 − V1 − · · · − Vj−1
)cj−1(

Vj+1

1 − V1 − · · · − Vj
)cj+1−1]

= E[V c1−1
1 ]E[(

V2

1 − V1
)c2−1] · · ·E[(

Vj

1 − V1 − · · · − Vj−1
)cj−1]E[Bcj+1−1

j+1 ], ∀c1, . . . , cj+1 ∈ N .
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Hence, V1,V2/(1 − V1), . . . ,Vj/(1 − V1 − · · · − Vj−1), Vj+1/(1 − V1 − · · · − Vj) are independent and

Vj+1/(1 − V1 − · · · − Vj) has Be (1 − α, θ + (j + 1)α), and the induction is complete. �

Let X be a sample of a random vector Z on ∆, and let V = (V1, V2, . . . ) be the size-biased permutation

of Z. Because of (2) and (1), it is shown in Lemma 3 of Sibuya and Yamato (1995), that

P (Kn = k, X1 = · · · = Xc1 , Xc1+1 = · · · = Xc1+c2 , . . . , Xc1+···+ck−1+1 = · · · = Xc1+···+ck
) (12)

= E[V c1−1
1 (1 − V1)V c2−1

2 (1 − V1 − V2)V c3−1
3 · · · (1 − V1 − · · · − Vk−1)V ck−1

k ], ∀c1, . . . , ck ∈ N .

Assume V has GEM (θ, α). Since GEM (θ, α) distribution is invariant under size-biased permutation

(Pitman (1996a)), the assumption that V = (V1, V2, . . . ) has GEM (θ, α) includes the case where Z itself

is GEM (θ, α). Note that none of the components of Z tie almost surely if W1, W2, . . . are independent

and have continuous distributions (Gnedin(1998)).

Proposition 2 For any integers k (1 ≤ k ≤ n) and c1, . . . , ck ∈ N satisfying c1 + · · · + ck = n,

P (Kn = k, X1 = · · · = Xc1 , Xc1+1 = · · · = Xc1+c2 , . . . , Xc1+···+ck−1+1 = · · · = Xc1+···+ck
)

=
θ[k:α]

θ[n]

k∏
i=1

(1 − α)[ci−1]. (13)

Now we are ready to prove Theorem 1. The probability (13) depends only on k and c1, . . . , ck, and

does not depend on (X̃1, . . . , X̃n) nor arrangements of (X1, . . . , Xn). Hence, the number of arrangements

such that (Cn1, . . . , Cnk) = (c1, . . . , ck) is
(

n − 1
c1 − 1

) (
n − c1 − 1

c2 − 1

)
· · ·

(
n − c1 − · · · − ck−1 − 1

ck − 1

)
.

Multiply (13) by the number of arrangements to get (7).

Conversely, suppose that a random vector Z on ∆ has components which do not tie almost surely.

Suppose that the statistics (Kn, Cn1, . . . , CnKn) of a sample from Z has DTG (θ, α). It means that (13)

is valid, hence (12) and (11) are also valid. Hence, by Proposition 1, the size-biased permutation has

GEM (θ, α), and Theorem 1 is proved.

The results stated in Proposition 1, Proposition 2 and Theorem 1 are stated in formulae (7) and (8)

of Pitman (1995) in a different context.

4 Intervals between new observations

Because of the independence of the sample X given Z, from (13),

P (Kn+1 = k, X1 = · · · = Xc1 , . . . , Xn−ck+1 = · · · = Xn, Xn+1 = Xc1+···+cj)

=
cj − α

θ + n
P (Kn = k, X1 = · · · = Xc1 , Xc1+1 = · · · = Xc1+c2 , . . . , Xn−ck+1 = · · · = Xn), 1 ≤ j ≤ k ≤ n.
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Hence,

P (Xn+1 = X̃j | Kn = k, X1 = · · · = Xc1 , Xc1+1 = · · · = Xc1+c2 , . . . , Xn−ck+1 = · · · = Xn)

= (cj − α)/(θ + n), 1 ≤ j ≤ k ≤ n, (14)

P (Xn+1 �= X1, . . . , Xn | Kn = k, X1 = · · · = Xc1 , Xc1+1 = · · · = Xc1+c2 , . . . ,

Xn−ck+1 = · · · = Xn) = (θ + kα)/(θ + n), 1 ≤ k ≤ n. (15)

The sequence X1, X2, . . . as equivalent class of X̃j, j = 1, 2, . . . , is generated by an urn model, Pitman

(1995, 1996b).

Consider the random binary sequence B1, B2, . . . , (3). Since the conditional probabilities (14) and

(15) depend only on the number Kn = k of distinct observations,

P (Bj+1 = 1 | B1 = b1, . . . , Bj = bj) =
θ + (b1 + · · · + bj)α

j + θ
, (16)

and

P (Bj+1 = 0 | B1 = b1, . . . , Bj = bj) =
j − (b1 + · · · + bj)α

j + θ
, j = 1, 2, . . . (17)

For 1 ≤ k ≤ n and d1, . . . , dk−1 ∈ N ,

P (Kn = k, Dn1 = d1, . . . , Dnk = dk) = P (B1 = 1, B2 = · · · = Bd1 = 0, Bd1+1 = 1, Bd1+2 = · · ·

= Bd1+d2 = 0, Bd1+d2+1 = 1, . . . , Bd1+···+dk−1+1 = 1, Bd1+···+dk−1+2 = · · · = Bd1+···+dk
= 0).

Hence, (8), or Theorem 2, is proved.

The following propositions deal with the marginal distributions of DTG (θ, α).

Proposition 3 For r such that 1 ≤ r < n and for d1, . . . , dr ∈ N ,

P (Dn1 = d1, . . . , Dnr = dr) =
θ[r+1:α]

θ[d(r)+1]

r∏
i=1

(1 − iα +
i−1∑
j=1

dj)[di−1], (18)

provided that d(r) := d1 + · · · + dr < n.

Proof: For d1 + · · · + dr < n, we have

P (Dn1 = d1, . . . , Dnr = dr) = P (B1 = 1, B2 = · · · = Bd1 = 0, Bd1+1 = 1, . . . ,

Bd(r−1)+1 = 1, Bd(r−1)+2 = · · · = Bd(r) = 0, Bd(r)+1 = 1).
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Hence (18) is obtained using (16) and (17). �

If k = 1, Dn1 = n by convention of (8), and

P{Dn1 = n} = (1 − α)[n−1]
/

(1 + θ)[n−1],

from (16) and (17). Otherwise, k > 1 or Dn1 < n, as a special case of (18),

P{Dn1 = d1} = (θ + α)(1 − α)[d1−1]
/

(1 + θ)[d1−1].

Hence, Dn1 − 1 has the bounded Waring distribution BWa (n − 1, 1 + θ, 1 − α) (see Yamato (1997)).

The following proposition extends this result.

Proposition 4 Let r, d1, . . . , dr−1 ∈ N be such that 1 < r ≤ n and d(r − 1) = d1 + · · · + dr−1 < n. If

r < k,

P (Dnr = dr | Dn1 = d1, . . . , Dn,r−1 = dr−1) =
(θ + rα)(d(r − 1) + 1 − rα)[dr−1]

(d(r − 1) + 1 + θ)[dr]
, 1 ≤ dr < d(r − 1),

(19)

and if r = k or dr = n − d(r − 1),

P (Dnr = dr | Dn1 = d1, . . . , Dn,r−1 = dr−1) =
(d(r − 1) + 1 − rα)[dr−1]

(d(r − 1) + 1 + θ)[dr−1]
. (20)

Proof: For dr = 1, 2, . . . , n− d(r − 1)− 1, dividing (18) by the equation with r − 1 instead of r we have

(19). For dr = n − d(r − 1), dividing (8) with k = r by (18) with r − 1 instead of r we have (20). �

The probabilities (19) and (20) show that the conditional distribution of Dnr − 1 given d(r − 1) is the

bounded Waring distribution BWa (n − d(r − 1) − 1, d(r − 1) + 1 + θ, d(r − 1) + 1 − rα).

5 Number of distinct observations

The distribution of Kn (4) for α = 0 is STR1F (n, θ), a subfamily of the Stirling family of probability dis-

tributions, defined by P (Kn = k) =
[
n
k

]
θk/θ[n] k = 1, . . . , n, Sibuya (1988). The generalized distribution

(9) of Kn in Theorem 3 is proved as follows.

First, special cases of (9) are shown: By definition B1 = K1 = 1. From the conditional probabilities

(16) and (17), P (K2 = 1) = P (B1 = 1, B2 = 0) = (1 − α)/(θ + 1) and P (K2 = 2) = P (B1 = B2 =

1) = (θ + α)/(θ + 1). Similarly, P (Kn = 1) = P (B1 = 1, B2 = · · · = Bn = 0) = θ(1 − α)[n−1]/θ[n] and

P (Kn = n) = P (B1 = · · · = Bn = 1) = θ[n:α]/θ[n].

Assume (9) for a positive integer n, and from (16) and (17),

P (Kn+1 = k + 1 | Kn = k) =
θ + kα

θ + n
, P (Kn+1 = k | Kn = k) =

n − kα

θ + n
. (21)
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This relation and

P (Kn+1 = k) = P (Kn+1 = k | Kn = k)P (Kn = k) + P (Kn+1 = k | Kn = k − 1)P (Kn = k − 1)

show that αkθ[n]P (Kn = k)/θ[k:n] satisfies the recurrence formula (10). Hence, (9) and Theorem 3 are

proved. �

On the right-hand side of (21), we have n − kα > 0 for k = 1, . . . , n because of 0 ≤ α < 1. Since

c(n, n; α) = αn and c(n, 0; α) = 0 (n > 0), using (21) it is seen by induction that c(n, k; α) > 0 for

k = 1, . . . , n. Similarly, using (21) it is derived by induction that c(n, k; 1/2) = 2k−2n(2n− k − 1)!/[(n−
k)!(k − 1)!], k = 1, . . . , n.

Thus for θ = 0 and α = 1/2, we have

P (Kn = k) =
(

2n − k − 1
n − 1

)
2k+1−2n,

and for θ = α = 1/2,

P (Kn = k) =
k(n − 1)!
(3/2)[n−1]

(
2n − k − 1

n − 1

)
2k+1−2n,

(Pitman(1997), p.81). Using the descending factorial, the probability (9) can be written as

P (Kn = k) =
(−θ/α)(k)

(−θ)(n)
C(n, k; α), k = 1, . . . , n.

This is the same form as the probability (6.6) of Charalambides and Singh (1988), p.2564, which was

derived in a different context.

For (Cn1, . . . , Cnk) with Kn = k, define

Mj :=
n∑

i=1

I[Cni = j], j = 1, . . . , n,

which is the number of categories with frequency j, sometimes called ‘frequency of frequencies’. Note that∑n
j=1 Mj = k and

∑n
j=1 j Mj = n. For a fixed (m1, . . . , mn) satisfying

∑n
j=1 mj = k and

∑n
j=1 j mj = n,

multiply (13) by the number of ways which gives (m1, . . . , mn) to get the Pitman sampling formula,

Pitman (1995),

P (Kn = k, (M1, . . . , Mn) = (m1, . . . , mn)) = n!(θ[k:α]/θ[n])
n∏

j=1

{((1 − α)[j−1]/j!)mj /mj!}

=
(−1)n−kθ[k:α]n!

αkθ[n]

n∏
j=1

1
mj !

(
α

j

)mj

. (22)
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By the summation
∑

1 over m1, . . . , mn ∈ N satisfying
∑n

j=1 mj = k and
∑n

j=1 j mj = n with fixed k

and n, P (Kn = k) =
∑

1 P (Kn = k, (M1, . . . , Mn) = (m1, . . . , mn)). Applying to this summation an

expression of C-number given by Charalambides and Singh (1988), p.2553,

C(n, k; α) =
∑

1

n!
m1! · · ·mn!

(
α

1

)m1

· · ·
(

α

n

)mn

,

we can also get the distribution (9) of Kn.
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