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ABSTRACT. In Part I of this paper ([14]), we have formulated the infinitesimal
mized Torelli problem for an algebraic surface with ordinary singularities S. In
this Part II, we formulate the cohomological infinitesimal mized Torelli problem
for such S, which enable us to deal with the problem more easily. We give some
cohomological sufficient conditions under which the infinitesimal mixed Torelli
problem is affirmatively solved. We also give some examples.
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In this Part II, we inherit terminology and notation from Part 1.

§4 Cohomological infinitesimal mixed Torelli problem

In this section we consider the following problem for a given algebraic surface
S with ordinary singularities:

Is the homomorphism >

(4.1) 7: HY(S,05(b)) — @y { @1 Home(H P (0, [1]), HPHH(Q5 7 [1])}

defined by taking the contraction ©s(bs) ® % [1] — Qf,’{_.l[l] and cup-product
in Theorem 3.17 is injective ? ‘

We call this problem cohomological infinitesimal mized Torelli problem. Note
that if the cohomological infinitesimal mized Torelli problem is affirmatively
solved, then the infinitesimal mized Torelli problem formulated in §3 is also
affirmatively solved under the condition H(S,0s5(bs)) ~ H'(S,05). To con-
sider the cohomological infinitesimal mixed Torelli problem we shall first prove
the injectivity of the natural map H(S,0s) — H(X,Ox(—log Dx)) derived
from the short exact sequence in Theorem 3.19 in Part I.
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4.1 Proposition. The map
H'(D§,©py(~Zc§ — t5)) — H'(D, Op; (-XtX))
18 injective.

The proof of this proposition will be completed after a few lemmas. First,
we will prove general facts about a double covering w : C; — C between compact
Riemann surfaces, or connected, compact complex manifolds of dimension 1. We
denote by ¢ the branch locus of the double covering 7 : C; — C, and by [X(]
the line bundle over C determined by the divisor ¥¢. Due to Wavrik’s result
([18]), there exists a complex line bundle F' over C' such that;

(i) F®2 = [Zc|, and
(ii) C} is a submanifold of F' and the bundle map F' — C realizes the double
covering 7 : C; — C.

The transition functions of the line bundle F' are given as follows: We choose a
covering {U;, Ux} of C by polycylinders having the following properties;

(i) U;NZc=0, and Uy N Zc # 0,
(ii) on Uy, Xc has the equation uy = 0 where u, is a local coordmate on Uy,
(111) 1(U ) — U(O) U(l) U(O) U(l) @

(iv) on U( Y v=0,1, themapﬂ'lsglvenbyuj -v( v)

where u; and v( )

local coordinates on U; and U ]( v) , respectively, and
(v) on Uj\& := 7~ Y(Uy), the map 7 is given by uy = v2 where v, is a local
coordinate on U .

We deﬁne. . 1 " Ui(o) A UJ@) £0
Tl -1 it u@nu® £,

= gﬁ(;),

where gf\ ) denotes the coordinate-transformation function, i.e., vy = g(o) (v(o))
Then { fw fxj} are the transition functions of the line bundle F over C We
may think that C; is a submanifold of F' defined by ¢2 = 1 on n~1(U;), and by
£2 = uy on 7~ }(U,) where & and & ) are fiber coordinates of F' over U; and Uy,
respectively. :

4.2 Lemma. There exists an ezact sequence of Oc-modules

(4.2) 0 — O¢ — m0O¢, — Oc(F_l). — 0.

Proof. We use the same notation as before. The homomorphism m.0O¢, —
Oc(F~1) of Og-modules is defined as follows: for a local cross-section
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» (Ui(o),cbz(-o)), (Ui(l),qﬁ,gl)) of mOc, over U;, we put
i) = ¢ (us) — 91" (ws).
For a local cross-section (U f ,0x) of m.O¢, over Uy, we put

$a(v2) = da(=va)

Ux

Ya(uy) =

We note that the right-hand-side of this is invariant by the transformation vy —
—vy, and so it defines a holomorphic function on Uy. We can see that the

collection {@Z)i,%} defines a local cross-section of Og(F~1!). Indeed, if Ui(o) N
(0) 0) _ (0 0) (0 1) _Q 1 1

U;” # 0, Wehaveqﬁg)—qﬁg)onUi( nU; ), ¢§) —qﬁ»;-) onUi()ﬂUjg)and

fij = 1. Hence

If Ui(o) N Uj(‘l) # (), we have ¢£ ) — ¢(1) on U(O) N U(l) qﬁ ¢(0) on U(l) N U(O)
and f;; = —1. Hence

i = — 1) = _(¢§°) - ¢§.1?) = fi;'; on U;N U;.
If Uy N U; # 0, we have |

pa(va) = 60 (v <°>) on U¥nU®, and
¢)\(’U)\) = ¢1(:1)('U§1)) ‘on Ufz N Ui(l).

Hence . o o
pa(—vx) = 6P () on UF nUL

and

%@A): da(vn) — da(—va) g(o)( ) 1160 (@) — ¢§1)(v§°5)}

Ux
= fr (Wi)¥i(w;) on UxNU;.

Thus the collection {t;,%} certainly defines a local cross-section of O¢(F~1).
We define the homomorphism 7,0¢, — Og(F~!) in (4.2) by the correspondence

0% d)(l)) —sp;  over U;, and
(}5)\ — ’g[))\ over U,\.

The fact that the kernel of the homomorphism m,.Oc, — O¢(F~1) is O¢ is
obvious. The surjectivity of the homomorphism 7,.0¢, — Oc(F~!) at a point
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p & Yicy is also obvious. We will show the surjectivity of this homomorphism at
a point p € Xcy. Let 9 be a local cross-section of Og(F~!) at the point p. We
may think of it as a holomorphic function defined around p. Let

P(ur) = TRoaruf
be the power series expansion of ¥ with center p. We put

1
d(vx) = Yo §akvik+1

Then, since uy = v2, we have

() = da(va) — ¢,\(—’U>\).

L

Thus the homomorphism 7,0g, — Og(F~!) is surjective at the point p € Zc.

Q.E.D.

Let m : C; — C and Xc¢ be the same as before, and let 3t be a set of finite
distinct points of C with ZcN Xt = f. We put Tt; := n~1(Zt).

4.3 Lemma. With the notation similar to that in Part I, (3.31), we have
an ezxact sequence of Oc-modules

(4.3) 0 — O¢(—Xc—2t) — B¢, (—Xt1) — O¢(—Xt) ® (DC(F"I) — 0.

Proof. Since m,(m*O¢c(—%t)) ~ O¢c(—Xt)@7O¢,, tensoring the sheaf O¢(—Xt)
to the exact sequence in (4.2), we have the exact sequence of O¢-modules

(4.4) 0 — O¢(=3t) — m(1*Oc(~Xt)) — O¢c(—Tt) ® Oc(F~1) — 0.

We also have the following commutative diagram of exact sequences of Oc¢-
modules: ‘

0 — Oo(~3t) s 1, (1*0c(~Xt))

I [

0— @o(——zc - Et) — W*@CI (—Etl)

T [

0 0.
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We will show that this diagram gives an isomorphism

(45) 100, (—t1)/Oc(~S¢ — 5¢) = my (7*Oc(=5¢)) /06 (= t).
To prove the surjectivity of the homomorphism in (4.5), we will first show that -
(4.6) {';T(@C’l(—ztl)ﬂ-—l(p)) + (O (—Xt)p) = T O (=Xt) r-1(p)

for any point p € C. If p € X, (4.6) obviously holds. Assume p € Zc¢. We put
q := m1(p), and let u and v be local coordinates around p and ¢ with center
p and g, respectively. We may assume that the map 7 : C; — C is given by
v — u = v? at q. For a local cross-section a(v)n*(8/0u) of 7*©¢(—%t) around
q where a(v) is a holomorphic function of v, we express a(v) as

a(v) = a(0) + val(v)

where a1 (v) is a holomorphic function of v. Then we have
~ 1 0
tr(za1(v)(5-)) + wﬂ(a(o)(—))

= (v (0) + a(O)7* (o) = aV)r* (),

which shows (4.6) holds for the point p € Xc. Thus (4.6) holds for any point
p € C. To prove the injectivity of the homomorphism in (4.5), it suffices to
show that, for any point p € C and a local holomorphic cross-section 6; of
T+0c, (—Zt1), if t7(01,) belongs to &7 (Oc(—Xt),), then ; , belongs to the
image ©¢(—Xc — Lt), in m,0O¢, (—Xt1),. Since this is obvious if p & X¢, we
assume p € Xc. We take the same local coordinates v and v around p and
q := 7 1(p), respectively, as before. For a local cross-section 6; = a1 (v)(8/dv) of
Oc, (—Xt1) at ¢, we assume that there exists a local cross-section 6 = a(u)(8/0u)
of ©¢(—3t) at p such that t7(6;) = wr(f). Then

2a; (v)vrm* (_3_) a(v?)m* (581‘})

Hence a(0) = 0, that is, 8 belongs to ©c(—Xt — X¢). This means 6; belongs to
the image of O¢(—Xc¢ — Xt) in m,O¢, (—Xt1) at p. Now the exact sequence in
(4.3) follows from (4.4) and (4.5).

Q.E.D.

4.4 Remark. In the proof of Lemma 4.3, the equality in (4.6) is essential.
This equality telles that the double branched covering map n : C; — C is locally
stable in the sense of J. N. Mather.



Snon TsuBor

Proof of Proposition 4.1 We may assume that D5 is irreducible, and so
it suffices to show that the homomorphism

(4.7) HY(C,0¢c(~Xc — Tt)) — H*(Cy,0¢, (—t1))

derived from the exact sequence in (4.3) is injective. For this purpose, we count
the degree of the line bundle ©¢(—Xt) ® Oc(F~1). We denote by &¢ and g(C)
the canonical line bundle and the genus of the curve C, respectively. Then, since
F®2 = O ([Zc]), we have

deg (O¢(~=2t) ® Oc(F~1)) = —deg Ao — deg F — #3t
= —2(g(C) —1) — %#Ec — #5t.

Now we have
—2(g(C) —1) — %#Zc _ 45t <0

with the exception of the following cases:

(i) g(C) =1, Tc =90, and 3t = 0,

(i) g(C)=0,%c =10, and 0 < #Xt < 2,
(iii) g(C) =0, #Zc =2, and 0 < #5¢ < 1,
(iv) g(C) =0, #Xc =4, and It = 0.

Hence, excluding the exceptional cases listed above, we have
(4.8) H°(C,00(-%t) ® Oc(F™1)) =0,

and so the the homomorphism in (4.7) is injective as required. Now we check the
exceptional cases listed above, case by case. In the case (i), we have O¢(—Xt) ®

Oc(F1) ~ Oc(F~1). Assume H°(C,O¢(F~1)) # 0. Then the line bundle

Oc(F~!) has a global cross-section. Since deg F~! = —(1/2)#Xc = 0, this
global section vanishes nowhere. This fact implies F' = 1, contradicting to
F # 1. Thus we conclude (4.8) holds, and so the homomorphism in (4.8) is also
injective for this case. The case (ii) could not happen. Indeed, if g(C) = 0 and
Y =0, it follows from the Hurwitz formula

(4.9) 29(C1) — 2 = 2(29(C) — 2) + #%«.

that g(C1) = —1, which is a contradiction.
Next we will show that the homomrohism

(4.10) H°(C1,0¢,(~%t1)) — H°(C,8c(=%t) ® Oc(F™))

is surjective in the cases (iii) and (iv). Note that in these two cases, C' = P*(C).
By the duality,

HY(C, O¢c(-%t) @ Oc(F1)) ~ HY(C, 822(Zt) ® Oc(F)).
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Since . ,
deg [RE2(Zt) ® Oc(F)] = —4 + #3t + 5#2c <0,

we conclude
HYC,0c(-%t) ® Oc(F~1)) = 0.

Hence by the Riemann-Roch theorem,
dim H°(C, O¢c(—Zt)® Oc(F1)) = deg [Oc(—Xt) @ Oc(F~H)]+1—¢(C)
(411) =3 %#Zc sy
_ { 2 if #Xe=2, #5t =0,
Sl 1 i #Bc=2, #5t =1, or #Tc =4, #Tt =0.

By the Hurwitz formula, if #Xc¢ = 2, then g(C1) = 0; and if #%¢ = 4 then
g(C1) = 1. Therefore we have

dlmHO(Cl, @cl (—Ztl))

__{3 if #%c=2, #5t=0,

(4.12) ) :
1 if #Xec=2, #Xt =1, or #Xc =4, #Xt = 0.

On the other hand, since C' = P*(C), we have
dim H°(C, ©¢(—Zc — Zt))

_{1 if #%c=2, #5t=0,
L0 if #Te=2, #Tt=1, or #Tc =4, #5t = 0.

By (4.11), (4.12) and (4.13), we have

(4.13)

dim H°(C,0¢(—%t) ® Oc(F~1))
— dim H°(Cy, ¢, (~t1)) — dim HY(C, O¢(—Sc — t)),
which means the homomorphism
H°(C1,00,(—Xt1)) — H°(C,00(—%t) @ Oc(F1))
is surjective. Therefore the horﬁomorphism |
HY(C,00(~Sc — £t)) — H'(C1, 8¢, (~St1))
in the lemma is also injective for these cases.

" Q.E.D.
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4.5 Corollary. If the map
H°(X,0x(~logDx)) ® H°(D§, ©p3 (~Z¢s — %t§)) — H°(Dx, ©py (~EtX))
is surjective, then the natural map
H'(S,05) — H'(X,0x(—logDx))
18 1njective.
Proof. Let ([0x],[0pz]) be the element of |
Ker{H'(X,0x(—logDx)) ® H'(D$,©ps (—Xc5 — Xts))

— HY(D%,Op3 (—Zt%))}

corresponding to an element [] € H'(S,Og) by the isomorphism in Theorem
3.26, (ii). The homomorphism H(S,O0g) — H(X,0x(—logDx)) is the map
which assignes [fx] to []. We assume [fx] = 0, then Lg([0px]) = wvx([0x]) =0
(cf. Part I, (3.31)). Then, by Theorem 4.1, we have [fps] = 0, and so by
Proposition 3.26, (ii), we have [f] = 0.

Q.E.D.

In order to consider the cohomological Torelli problem we need to ana-
lyze the hyper-cohomology groups HC(Q%, [1]), H'(Q%, [1]), HO(Q%,[1]), and
H'(Ox.,[1]).

4.6 Proposition.
(i) HO(Q%, [1)) =~ HO(X, 0%),
(ii) there exists the following exact sequence
0 — HO(D%, by )/Im{HO (X, ) © H(Ds-, b, )} |
— HY(Q%, [1]) — Ker{H(X,Q%) & H'(Ds~,Omegap, )
— HY(D%, 9. )} —0,
where the homomorphism H°(X, Q%) @& H°(Dg-, 2} ) — HO(QL,. + ) is defined

by (wx,wp*) — Vxwx — g*wps (vx : D%y — X, g: D% — DS cf. Part
I, (1.4)) for (wx,w}) € H(X, QL L)@ H(Ds-, 03 £ and the homomorphism
HY(X,Q%) ® H'(Ds-,Qh,) — HY(D¥,Qb, ) is defined by @g),%z) —
vywl) — grwh) for (wgp,wgz) € H'(X,0Y) ® H'(Ds-Qb_.),

(if) HO(QY 1)) = Ker{HO(X, ) ® H*(Ds-, Rb,) — HO(D, Vb )}
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where the homomorphism H(X, Q%) & H°(Dg-, Qng) — HO(D%, 0} + ) is the
same one as in (ii) above, o

(iv) there exists the following exact sequence
KGT{HO(D;O OD}) D HO(EtX7(CEtx) @HO(ZI%,(CE%) - HO(Zt}aCEt})}
Im{H%(X,0x) ® H%(D§,Opx) ® H(Xts,Cxts)}
— HYOx,[1]) — Ker{H(X,0x) @ Hl(Dg,(’)DE)
- Hl(D}?ODE})} — 0,

—

where the homomorphism H?(D%, Ops ) @ H(Stx, (me) ® HO(Sty, Csty) —
H°(%t%,Csyr ) is defined by

(¢D§{,02tx>02t§) - ¢D§(|Et§c - V;qzt;( Cotx + gi"zt} Cxty
(V}szx : Et} e Etx, g|2tj( : Et} — Etg)

for ((PD;C,CEtx,CEtg) € HO(D}‘{,OD;() 7 HO(th,Cgtx) &) HO(Ztg,Cz;tg), the
homomorphism

HO(X,0x)® H°(D%,0p3) ® H°(ts,Cxig)
- KG’I‘{HO(D}, OD}) &) HO(Etx,(Cz;tx) EBHO(Etg«,(CEtg)
— HO(Zt,Csex )}
is defined by
(éx,8Dg, csts) — (Vi ®x — 9" 0Dy, Dx|stx — flnsy Cotsr PD5|Sey — Vs|nesCoits)

for (¢X1¢D§>02ts) € HO(X, Ox) @ HO(DE,ODE) @ HO(Zts,CEtS), and the
homomrphism H'(X,0x) ® H'(D%,Ops) — H'(D%,Opx ) is defined by

(85, 853) — vk — g*05)

for (¢, (1)) € H'(X,0x) ® H'(D%,Opy).

Proof. First, we recall the definition of the hyper-cohomology H* (% [1]). It is
defined as the cohomology of the complex

K Q% ) =K"" Q%) =s( @ C'Ua,%,))
a€O0b(0y)

where X, — § is the cubic hyper-resolution of S in (1.4) in Part I, and C*(U,),
o € Ob(0z), are the Céch complex with values in Q5  with respect to the Stein
covering U, of X,. The system of open coverings {Z/{a}QGOb(D;) are such one
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that satisfies the conditions (i) through (iv) in (2.7) and the condition (v) in
(3.16) in Part I. The cobundary map

DW[1] := D+ : K9(Q% [1]) = KTH1(0F )
= 5(Dacobmy) C° Uar %))
— KHHQE [1]) = K92 (Q%,)
= 5(Dpcon@,) C° U, V% )4+

of the complex K*(€2% [1]) is defined as

DO =D = P {Bigyes(-1)7d)" + (-1)sP7}
a]+r=q+1

where.
i

dﬁfj’;”)* : O (Ua, U,) = CT(Uo, O, ) (ej=(0-1---0) e 73),

58"+ C" (Un, ¥,) — C™+ (Up,, %)
(the Céch coboundary map), '

€j =Olo+0¢1+"'+05j_2
for a = (ap, 01, @2) € Ob(0z)) and j with 1 < j < 3, and

lo| = ap + a1 + g
(cf. (2.14) in Part I). Here we understand €; = 0. _
(i) By the definition of HO(Q%_[1]), it is KerD®[1] where
DO : K@%, [1]) = C°Ux, %) — K'(2%,[1]) = C" (Ux, O%)

Here we denote C™(Ugor), 0% wony)» T = 0,1, simply by CT(Ux, Q%) since X =
X(001), (001) € Ob(02). In what follows we will use the similar notation for other
C™(Uy, %), o € Ob(0z). Since the coboundary map DO)[1] is simply —5&?’0),
that is, (—1) x {the Céch coboudary map}, we have H°(Q%, [1]) ~ H°(X,Q%).

(ii) The hyper-cohomology H*(Q,[1]) is defined to be
Ker DO[1]/Im DO[1],

using the following part of the complex K*(Q%_[1]):
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1
KOk, 1) 228 k(g 1) 22 K20k, (1)
Where |
Ko(Qk, [1]) = CO(UX,Q ) & C°(Upy, Upy ),
(4.14) Kl(Q}(. [1]) = Cl(uX,Qk) D Cl(uDg, Q}DE) 85 CO(UD;(,Qlef), and
Kz(Qko'[l]) = C2(Z/{X,Qk) () Cz(uDg, o g) @D CI(L{D;{, QID;()

Since X(OOI) = X, X(OlO) = Dg, X(Oll) = D;C’ we have

_(1,00% 1,0)% 1,0 (1,0)
DO1] = d(601),2 ~ dE010)),3 - 55001)) — d(o10) and
(4.15)
— g(1,1)* (1,1)* (1,1) (1,1) (1,0
D(l)m - d(001),2 - d(010),3 - 5(001) 5(010) + 5(011):
where

dgtl)ool))*2 = vk : C%(Ux, Q) — C°(Upy, Q});(),
digioys = 9% : C°(Upy, b)) — C(Upy, b)),
are the maps defined to be pulling back cochains, and
Stont)  COUx, ) — C(Ux, ),
oi0) : C°Upg, by) — C* (Upg, Rby),
are the Céch coboundary maps, etc.. The quotient space
- Ker DV[1]NC°(Ups,, Qps )/Im DO1] N C®(Upy,, Uy )

is a subspace of Ker DM[1]/Im D([1], which is isomorphic to
H(D%,Qpy )/Im{H°(X, Q) ® H°(D§, Qb )}-
There exists a homomorphism from Ker DM[1]/Im D©[1] to
i 1 1 p* Ol 1/ p* Ol
Ker{H\(X, k) ® H'(D}, @b, ) — H* (D}, %bs )}

which is defined by assigning
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[0x,0p3,0ps.] € Ker DM[1]/Im DO)[1]

to ([0x], [0ps]) € HY(X,Q)) ® H' (D%, Q] +), where

(HX,HDE,GD;() € Ker D(l)[l],
and “[ |” denotes cohomology classes. Note that
Ker DV[1] C C'(Ux, Q%) ® C*(Upy, Ups) & C°(Upy, Dby )-
This homomorphism is obviously surjective. Assume that the image of

[0x,0px,0ps ] in H'(X,Qk)® H'(D§, g) is zero. Then there exists an
element ,

(¢x,¥py) € C°(Ux, ) ® C°(Upg, Upy)
such that —586%(,0)( = 0x and —6%’1%))(;)[); = Op;. Now, we have

(6x,0ps,0p%) — DO[1]((¢x, ¢p3)) = (0,0,0ps, —vix +9*¢py), and

DW[1]((0,0,60ps, —vxex +9*¢ps))
= DW([1)((6x,0p3,0p3)) — DV[IDO[1]((px, p3)) = 0

That is, (6x,0pz,0py ) is cohomologus to an element of

Ker DW[1]N C%(Ups,, Qs ) in Ker DV[1]/Im DO1] ~ H} (Q, [1))-

Consequently, the sequence in (ii) in the proposition is exact.

(iii) By the definition of H°(QY%,), it is the kernel of
DO : KO(Q, [1]) — K (Q%.[1])

where K0(Q% [1]), K1(QY,[1]) and D[1] are the same ones as in (4.14) and
(4.15), respectively. By the definition of D()[1], Ker D()[1] is isomorphic to

Ker{H°(X,0%) ® H*(D%,0p;) — H’(D%, b ) }-
(iv) The hyper-cohomology H*(Ox,) is defined to be

Ker DV[1]/Im DO[1],
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using the following part of the complex K*(Ox,[1]):

K0x. 1) 220, k10 (1) 228 k20, 1)

where
K%(Ox,[1]) := C°(Ux, Ox) & C°(Up;, Opy) ® C°(Zts, Crs),
K'(Ox,[1]) = C*(Ux, Ox) ® C*(Upy, Opy) ® C°(Upy,, Opy,)
(4.14) SC(Stx,Csiy) ® C°(Tts,Cxypy), and
K?(Ox,[1]) := C*(Ux,Ox) ® C*(Upy,Opz) @ Ol(UD;;, Oby,)
®CO(ItY, Crss, ).
Since .
Xoo1 =X, Xowo =Dg, X100 = Xts,
Xoi1 = D%, X101 =Xtx, X110 =23t and Xy11 = ¥t%,
we have

DO1] = {dS, + gl — 55
(0,0)* (0,0) % (0,0) (0,0)* (0,0)%
+{d(010),1 - d(om),s - ,5(010)} + {"'d(mo),a + d(mo),z
(4'15)’ = {dggi)ol))ﬁ - dgbl:)))fa} + {dggbol))fz - dggl%);,‘a
A — AR} — 05 ~ 608
and v
DM1] = {d@sy= — 0o} + {—diors — doio)
H{ASD + 550} — A0, + Ay,
(A15)" = (A — S} + {dSr — A9, + dSy,
~0oo) — O(oior + Soinys
where
diosts — diaoys * CO(Ux, Ox) @ C°(Bts,Cxys) — CO(Ztx, Cxy x)
diootyz = doions : C°(Ux, Ox) ® C°(D%, Opy) — C°(D, Oby,)

diora — ooy : C°(Upy, Opy) @ C°(Zts, Csis) — C°(Tts, Cryy)
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Aoy — dGioys : CH{Ux, Ox) @ C'(Upy, Opy) — C*(Upy,, Opy)
Ao — dSos + Aoy : CO(Ups ,Ops ) ® CO(Stx, Csey ) ® CO(Bt%, Cyy)
' — C%(Zt%, Csix )
are the alternative sums of the maps defined to be pulling back cochians, and
Soay : C°Ux, Ox) — C*(Ux, Ox),
8o : C°(Upy, Opy) — CY{Ups, Opy)
Sosr) : CHUx, Ox) — C*(Ux, Ox),
8%y : Cr(Upy, Opy) — C*(Upy, Opy), and
Son) : C°(Ups., Opy, ) — C*(Upsx,, Opy,)
are the Céch coboundary maps. The quotient space of
Ker DO[1] N {C°(Ups,, Ops,) ® C°(Stx, Cxiy) ® CO(StE, Crey )}
devided by o |

Im DO[1] N {C°(Ups,, Opy,) ® C°(Stx, Crix) ® C°(St5, Crey )}

is a subspace of Ker D) /I'm D which is isomorphic to

KGT{HO(D}, OD;() D HO(Etx,Cth) D HO(Zt*S,CgtE) —_ HO(Zt},Cgt*X}
Im{HO(X,Ox) ® HO(D%, Opy) ® HO(Zts,Cxes)}

There exists a homomorphism from Ker D /Im DO to

Ker {H'(X,0x) ® H'(D%,Opy) — H' (D%, Ops,)}
which is defined by assigning

0%, 052, 05:  csex, esug) € Ker DO(1]/Im DO1]
to (%], [pBi]) € HX(X, Ox) ® H'(Dj, Opy), where
(‘ng; V’gg, ‘P(Doé ,Cstx s Cuty ) € Ker D(l)[l].
Note that Ker D([1] is a subspace of

C(Ux, Ox)®C (Upy, Oy )OC°(Ups,, Ops, )®C° (Bt x, Csity )®C° (Tts, Crty )
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Assume that the image of
[Qagp) %0(12, (P(DO;(’CZ‘.tX: CZtg] in Hl(Xa OX) 52 Hl(Dg'a ODE)

is zero. Then there exists an element
(W ¥D2) € C°(Ux, Ox) & C°(Upy, Opy)

such that &pg?) = wg) and 5¢(D0£ = (pgi . Now, we have

(¥, wg%, sogg; Csts Csey) + DO((w, @bg’%))

= (0,0, gog%{ + i) — 9*bpy, cxix +¢§?|)ztx’ Cxts + ¢g)£{mg)’
and
0 « (0 * - (0
DWII((0,0,05) + kv’ = 9°¥Dg, emtx + Vi cois + D) mss)

= DO[L((p%, ¢b3, #BL s ezt exey)) + DOLDO (P, v, )) = 0

That is, ((pg}), wgg , w(,f);( 1 Csitx, Cxty ) is cohomologus to an element of
Ker DO N {C°(Ups,, Ops, ) ® CO(Btx, Crry) ® CO(Stf, Crey )}

in Ker DV[1]/Im DO(1] ~ H*(Ox, [1]). Consequently, we have the exact se-
"quence in (ii) in the proposition.
Q.E.D.

4.7 Remark In the exact sequence in (ii) in the proposition above, by
use of the Céch cohomology, the image of H!(Ox,[1]) in Ker{H(X,0x) ®
H'(D3,0py) — H'(D%,Ops )} is described as a subspace consisting of every
element

(©%, 90%%) € H'(Ux,0x) ® H' (Upy, Opy)
such that there exists an element
(wgi,thx,cEtg) € C°(Upy,, Ops,) ® CO(tx, Csiy ) ® C°(TtE, Crer)
which satisfies the conditions

(i) 305} = viol) — gL,

.. 0 .
(i) @3 mex — ViCoty +97Cmey =0,



16

Suon Tsusol

Assume that the map

H°(X,0x(~logDx)) ® H°(D$%,8ps (—Ecs — Lt%)) — H°(Dk, Ops (—t%))

in Theorem 3.26, (i) in Part I is surjective. Then, by the same theorem, any

cohomology class of H(S,0(bs)) ~ H'(S,0s) is represented as a pair of coho-

mology classes .
(6x], [0ps]) € HY(X,0x(—log Dx)) & H'(D3, ©py (—%cs — %t§))

which satisfies the condition that

wk ((0x]) = 0g* ([0(p3)) in H* (D, Ops (~Ztk)).

- We denote by [6] (resp. [ bg]) the image of

[0x] (resp. [OD*]) in H'(X,0x) (resp. in H'(D§,©px(—2c))).

We denote by 7 (resp. 7(1)) the composite of the homomorphlsm T in (4.1)
and the projection to the factor

Homc(H(Q%,[1]), H (2%, [1]))  (resp. Home(H(Q%, [1]), H*(Ox, [1]))-

4.8 Lemma.
(i) The condition T?(([0x], [0ps])) = 0 is equivalent to the combination of
the following two conditions: :

(a) The homomorphism
[0%]1: H°(X,0%) — Ker{H'(X, Q%) — H'(Dx,Qby)}

defined by taking cup-product of each element of HO(X,0%) with [GX] through
contraction “| ” is zero map.

(b) The homomomhism
T3 (([0x], ¥pg]) : HO(X, Q%)
— HO(DX,Q1 )/ Im{H°(X, Q} )@HO(DS,Ql *)}

induced by 7 (([0x], [6pg]) when the condition (a) above is satisfied (cf. Propo-
sition 4.6, (i), (ii)), is zero map.

(ii) The condition 7 (([8x], [0pz])) = 0 is equivalent to the combination of
the following two conditions:

(c) The homomorphism
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([6%1, 6D )| : Ker{H(Q%) & H*(Qpy) — HO(Qpy )}
— Ker{H'(Ox) @HI(OD*) — HI(OD* )}

defined by taking cup-product of a cohomology class of Ker{H°(Q2% )GBH ot £)
— HO(OL, + )} with the pair of cohomology classes (1], 6] +]) through contrac-
tion “|” is zero map.

(d) The homomorphism
T (0], [0p3))’ : Ker{H(Q%) ® HO(Q},) — HO(Qh )}
— Ker{HO(OD;{) D HO(CEtx) S HO(CEtg) - HO(CZt}}
/Im{H®(Ox) ® H*(Ops) & H®(Csys)}

induced by 7V (([0x], [BDE])) when the condition (c) above is satisfied (cf. Propo-
sition 4.6, (iil), (iv)), is zero map.

Proof The essential part of the proof of the lemma is to prove that [0%]|Qx
really belongs to Ker{H'(X,Q%) — H'(D%,Qp, )} for any Qx € H(X,Q%),
a holomorphic 2 forms on X, and that ([f'], 6] S]) |(wx,wpy) really belongs to

(4.16) KeT{Hl(Ox)@Hl(ODE) —+H1(0D;{)}

for any (wx,wpy), a pair of holomorphic 1-forms on X and D} satisfying the
condition vx *wx = g*wpy If the above facts are proved, the lemma follows from
Proposition 4.6 and Theorem 3.17 in Part I. In order to prove these facts, we
choose Stein coverings Ux = {W;, Wy} of X, Ups = {V}, Vfo), V(l)} of D% and
Upy, = {Ua} of Dj, and calculate various Céch cohomology calsses with respect
to these coverings. The coverings Ux = {W;, Wx}, Ups ={V}, V(O) V(l)} and
Ups, = {U,} are chosen as follows:

(4.17)

The covering Ux = {W;, Wy} is such one of X that consists of polycylinders
having the following properties:

(1) W;NY¥tx = 0, WanXtx #0

(2) vgt(Wy) = V(O) U V(l) V)SO) N V)Sl) # 0, where vx : D% — X is
the cpmposite of the normalization nx : D¥ — Dx and the inclusion
D X.

(3) If W; N Dx # 0, then Dx has the equation y; = 0 on W; where z;, y;
are local coordinates on W;.

(4) If Dx has the equation z)yy = 0 on W) where x,, y» are local coordi-
nates on W.

(5) If W;NDx # 0, then the map vy : D} — X is given by u; — (z;,y;) =
(u;,0) on V; = v* (W;), where u; is a local coordinate on V;.
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(6) On V/\(O)' (resp. V;l)), the map vy : D% — X is given by ug\o) —

(@rya) = @?,0) (resp. ul) — (zx,y2) = (0,ul")), where vl (resp.

uf\l)) is a local coordinate on V,\(O) (resp. on V/\(l)).
We define Upy, := {V]',V)EO),V,\(I)}, which is a Stein covering of D%. The

covering Upy, = {U,} is such a Stein covering of D§ for which Ups = {g7"(Us)},
where g : D% — DY is the lifting of the map fip, : Dx — Ds.

(i) By the definition of [¢%], there exists a Céch 1-cocycle
(4.18) {65} € Z*(Ux,©x(—log Dx))

such that the cohomology class [f’] is represented by the image of {6;;} in
the Céch cohomology group H!(Ux,Ox). Let {Q;} € Z°Ux, Q%) be a Céch
0-cocycle which represents Qx € HO(X,0%). Then, [0%]|Qx € HO(X,0%) is
represented by the Céch 1-cocycle {6;;];} in H! (Ux, Q%). Since 6;; is tangent
to X, it is represented as

. 0 -0
(4.19) Hij = a”(a—wj) + bijyj(a—yj)

‘ 0 0
(resp. 0;x = a }\-’,U)\(ax)\) + szA(ayA))
on each W; N W; (resp. W; N Wy, where a;; and b;; (resp. a;x and b;y) are

holomorphic functions on W; N W; (resp. W; N Wy). Therefore, if we represent
Q; (resp. ) as :

Q; =cjdzj ANdy; Qi =cadoy Adyx

on each W; (resp. W)), where c; (resp. c) is a holomorphic function on W;
(resp. Wy). Then we have

0ij | = asjc; dy; — bijcsy;dz;
(resp. 0;x[Qx = airea dyx — bircayadzy).
Hence
*0,:1Q; =0 sp. V%0 =0, P00 =0
VX 7'.7|_ v 3 (resp' VX 'I,Al_ A ’ VX zAI_ A ).

as required. Next we shall prove that ([0],[0p])|[(wx,wpy) belongs to the
space in (4.16) for any (wx,wpy), a pair of holomorphic 1-forms on X and Dy
satisfying the condition vx *wx = g*wpy. We represent [0'y] by a Céch 1-cocycle
{6;;} in (4.18) and (4.19) as before, and | ng] by a Céch 1-cycle

{&i5} € Z'(Upy, Opy(—Ecs — Xt)).
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Since @ ([0x]) = @([H(Dg]) in H'(D%, ©px (—Xt%)), there exists a 0-cochain

(4.20) {63} € C°(Upy,, Oy (—Zt5))
such that '
(4.21) 0% — 05 = wux (Bug. (a)vxa(8)) — @9 (c)9.(8))

for any o, B € Ips, with Vo NVp # 0, where vy : Ipy — Ix (resp. g« : Ipy, —
Ipy) is the map between the index sets of the coverings Ups, and Up, (resp. Ups,
and Ups ). We represent wx by a Céch 0-cocycle {wx,;} in {Qi} € Z°(Ux,Q%),
and wpy by a Céch 0-cocycle

(4.22) {wps,i} € Z°Upy, ps)

We put

* o ok — %
W, = VXWX,V;{(Q) =g ng,g*(a) ac ID;C,’ and

wpy, = {wi} € Z%(Upy,, b, ).

Note that the cohomology class [0x]|€2x (resp. [0p:]|wpy) is represented by
{Bux(@vx. (0 [ x0x. ()} (168D &g (0)0.(8) WD .0.(8)) 10 H'(Ux, Ox) (resp.
HI(UDE,, OD:S) By (4.21), we have

Vi (Oux.(@vx.(8) [ Wx,wx. (8)) = 9" (€gu(0)g.(8) [Wa.(8))

= VX (s (e)vxe () [VxWX,05 (8) =~ WI(Egu ()90 (8)) L9 WD35,0.(8)

= (wa(QVX*(a)VX*(ﬁ)) - w.g(gg*(a)g*(ﬁ)))w;

=035 — 0513,
where wvx (resp. wg) is the map

F(Wux* () N Wr/x*(ﬁ)a @X(_logX)) - F(Va n Vﬁ) GD;c (—Zt;())

(resp. T'(Uy. ()N Uy, (5), Ops (~5ck — Tt5)) — T(Va N Vg, O3 (—Tt%)))

Therefore, since {0%|wi} € C°(Upy,,Opy, ), we conclude that the cohomology

class ‘
([6%]wx, 0Dyl lwpy) € HY(X,0x) ® H(D§,Opy)

belongs to the space in (4.16).
' Q.E.D.

4.9 Remark In case X is regular,i.e., H*(X,Q!) = 0, the assertion (ii) of
Lemma 4.8 is meaningless. Because, if H°(X,Q!) = 0, then
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Ker{H°(Q%) ® HO(Q}J;() - HO(Q}D;{)} =0,
since the map H O(Qbé) — H°(Q} . ) is injective.
4.10 Theorem. The map
@) HY(S,05) — Homc(H(Q%, [1)), H' (%, [1]))

is injective if all of the following conditions are satisfied:
(i) The map

H(X,0x(~logDx)) ® H°(D§, ©py(~Xck — It§)) — H'(Dx, Opy (~t))
(cf. Theorem 3.26, (ii) in Part I) s surjective.

(ii) The infinitesimal Torelli concerning the cohomology H?(X,C) holds for
X, that s, the homomorphism

HY(X,0x) — Homc(H(X,Q%), HY(X, Q%))

defined by taking cup-product of each element of HY(X,0x) with that of
H°(X,Q%) through contraction “| ” is injective on the image of H'(S,Og) in
H(X,0x). |

(iii) The homomorphism
(4.23)

B : HY(Dx,Npy/x)/Im{H(X,0x) — H*((Dx,Np,/x)}
— Homc(H(X, %), H*(D%, Qb )/Im {H*(D%, Qb ) & H(X, %)}

defined by taking contraction and pull-back is injective where

Npy/x =0x/0x(~logDx)

Proof. By the condition (i), any element of H(S,Og) can be represented by a |
pair of cohomology classes

([0x],[0ps]) € H'(X,©x(~logDx)) ® H'(Ds, © py (—Zcs — Bt5))
which satisfies the condition

7% (1x]) = @" ((03)) in H'(D, O3, (~5t3)
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(cf. Theorem 3.26, (ii) in Part I), where wvx " (resp. @g") denotes the map

HY(X,0x(~logDx)) — H' (D%, ©py (—Ztk))
(resp. H'(D%,Opx(—Xcs — Xt})) — HY (D%, Opy (—Et%))

induced from the sheaf homomorphism

O©x(—logDx) — I/X*@.D} (—Et})
(resp. Opy(—Xcy — XNt5) — g.0px (=Xt%))
(cf. Theorem 3.19 in Part I). What we have to show is that if 7(2) (([0x], [0 pzl) =

0 in Homg(H?(9%, [1]), H (9%, [1])), and if the condition (ii), (iii) are fullfilled,
then ,

[0x] =0in H(X,Ox(—logDx)), and
[0pz] =0 in H(Dg%, Opz (—Xcs — Xtg)).
First, we note that if we could prove that
 [0x] =0in H'(X,©x(—logDx)),

it follows from Proposition 4.1 that [#pz] = 0 in Hl(Dg, Ops (—Xcs ~ Xtg)),
since &g" ([0(ps]) = @vx*([0x]) = 0 in H'(D%,©Opy, (—%t5)). In what follows
we shall prove that [0x] = 0 in H'(X,0x(—logDx)) if 7@ (([0x],[0p5])) = 0
in Homc(H (0%, [1]), H (2%, [1])) and all of the conditions in the theorem are
satisfied. If 7(2)(([0x], [0p])) = 0, by Lemma 4.8 (i), the homomorphism

[6%]L : HO(X, Q%) — Ker{H'(X,Q%) — H'(D, b )}

defined by taking cup-product of each element of H°(X, Q2) with the cohomology
class [0%] through contraction is zero map. Then by the condition (ii) of the
theorem, we conclude that [f%] = 0 in H*(X,0x). Then, by the long exact
sequence of cohomology groups derived from the short exact sequence of Ox-
modules '

(4.24) 0 — Ox(~log Dx) — ©x — Npy/x — 0,

there exists an element sp, € HO(Dx,Np x/X) Wwhose image in
H(X,0x(~log Dx) is 6x. We denote by 35, the image of sp,, in

HO(DX7NDx/X)/Im{HO(X7 eX) - HO(DX’NDX/X)}‘

If we regard this quotient space as a subspace of H!(X,©x (—log Dx)), then we
have: '
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Claim.

1@ (555) (2x) = 7 (([6x], 0p5])) ()

for any Qx € H°(X,0%) ~ H(Q%,[1]). (For the notation @ (([0x], 0pz))),
see Lemma 4.8 (i) (b)).

Proof of Claim. We describe the various cohomology classes, using the Céch
cohomology with respect to the coverings Ux = {W,, Wy} of X, :
Ups, = {V;, V0, Vi) of Dk in (4.17). Let [0x] be represented by a Céch
1-cocycle

{65} € Z*(Ux,Ox(~log Dx)).

We take an element Qx of HO(X,0%), and represent it by a Céch 0-cocycle
{0} € 2°Ux, %),
and represent sp, by a Céch 0-cocycle

{s:} € Z°(Dx NUx,Npyx)-

We take 0; € I‘(W],Gx) (resp. O € T'(W,, Ox)) such that 0; dJ|DX = s; (resp.
Ordxpx = sx) for any j (resp. A), where d; =0 (resp. dx = 0) is the defining
equation of Dx in Wj (resp. Wy). We deﬁne vx(spx | Qx|px) by

{V(0;192:), v (021 22), 7" (0L )} € CO Uy, Dby ),

which does not depend on the choice of {#;,0,}. Indeed, if {6},60}} is anther
one such that 6id;p, = s; (resp. 63d\px = sx) for any j (resp A). Then,
by the exact sequence (4.23), 8, — 0} € I‘(WJ,@X( log Dx)) (resp. ) — 63 €
(W, 0x(—log Dx)). Hence 0; — 9 (resp. 65 — 6)) can be represented as

, 0 0
0;—0;= a,-(%;) + bjyj(a—y)

J

(resp. O — 9>‘ = a>\$>\( ) + bAy/\(—))

on each W; (resp. W)), where a; and b; (resp. ax and b)) are holomorphic
functions on W; (resp. W)). Therefore, if we represent §2; (resp. (2)) as

Q; =cjdzj Ndy; Qx =cadoy Adys

on each W; (resp. W)), where c; (resp. cx) is a holomorphic function on W;
(resp. W)). Then we have :

(05 — 051 = ajc; dy; — bjcjy;da;
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(resp. (6x — 64)| Q0 = axzaca dys — breayadey).
Hence
Vx (01 ) — v (0;1 Q) = v ((8; — ;) 2;) =0,
(resp. vQ"(6aL20) = v (021 20) = 1" (0 — 6L ) =0,
v O 20) — 7 (0aL ) = v (62 — 8))[ 1) = 0)

as required. Now, we show that

(4.25) - Vx(spx | Qx1px) € Z°(Upy, by, )-

Indeed, if W; N W; # 0 (resp. W; N Wy # 0), we have 6;p, = 6;p, (resp.
0ipx = Onpx) on W;NW; # B (resp. on W; N Wy # 0), and so 0; — 0; €
I'(W; N W;,0x(—log Dx)) (resp. 6; — 6y € I'(W; N Wy,0x(—log Dx)) from
which it follows that

v (0: ) — v (851 25) = vx((0; — 6;)[ ©; =0,
(resp. v (6:] Q) — v (OaL ) = v ((6: = 6:) L ) =0,
VOO %) - v O 0) = V(B - 02 =0

on V;NV; #0 (resp. on V; N V)fa) # 0, a=0,1). We denote by
Vi (sDx | Qx|Dy) the image of Vx(sDx | Qx|px) in

(426)  HO(D,Qby)/Im {HY(X, Q) & H(D5,Qbs) — H'(D, b )
Then, by the definition of Z(® in (4.23), we have

(4.27) % (507)(Qx) = v (sDx [ Qx|Dx )

for any Qx € H(X,Q%), where 55, is the image of sp, in
X X X

H%Dx,Npyx)/Im{H*(X,0x) — HO(‘DX7NDX/X)}

We consider the element

(0,0,v% (spx | 2xpx)) € K (2%, [1])
= CI(I/{X, Q‘]k) D Cl(uD;;,Q})g) @ CO(UD&,Q});{)

By the definition of DM[1] : K1(QL [1]) — K2(Q%,[1]) (cf.(4.14)) and by
(4.15), we have '

D(l) [1](((), 0, V;((SDX I_QXIDx)) = (Oa 07 68;.(;))1/;( (SDX LQX|Dx )) = 0.
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Hence (0,0,v%(spx | Qx|px)) is a 1-cocycle of the complex K'(Q% [1]). Next
we consider the element .

(6x | 2x,0,0) € K*(Qk, [1]) := C (Ux, Q%) & C'(Upy, b ) & COUpy,, Vs )

where
QXI_QX = {Qijl_Qj,a,;)\l_Q)\} € ZI(UX,Qk—).

Since
Hij e F(Wq; n Wj, @X(—log Dx)) (resp. 0;) € P(W,; N Wy, @X(—log Dx)),

we have v} (0;;] w;) =0 (resp. vx(6ial wa) =0) on V;NV; (resp. on V; N VAQ),
a = 0,1). Then, by the definition of DW[1] : K}(Q% [1]) — K2(Q%,[1] again,
we have

DO[1]((0x[ 2x,0,0)) = (=337 (0x [ 2x), 0, digoy, 0x | 2x)) =0,
since dg(l)bll))fz = v¥%. Therefore (GXLQX,O,O) also defines a 1-cocycle of the
complex K*(Q%, [1]) whose cohomology class [(0x | Qx,0,0)] in H*(Q),[1]) is
nothing but 73 (([6x], [0py]))(Q2x), that is,

@ (([6x], [6p3])) (2x) = [(6x | 0x,0,0)].
We are now going to show that (2 ([0x], [0pz]) and (0,0,v% (spx | 2x|px) are
cohomologous in H!(Q1[1]) on the assumption that x is the image of sp, in
HY(X,0x(—log Dx)). Here we should recall that we regard the quotient space
H°(Dx,Npy/x)/Im{H*(X,0x) — H(Dx,Npy/x)}
(cf. (4.23)) as a subspace of H*(X,0x(—log Dx)). The image of sp, is repre-
sented by a 1-cocycle {0; — 0;} if we take the same {6;,60,} as before. Since the
image of sp, = {si,sa} is Ox = {0:5,0:r} in H(X,0x(—log Dx)), there is a
0-cochain {6,0,} € C°(Ux,O©x(—log Dx)) such that
0i; — (0: — 6;) = 0; — 05, O — (6; — 0x) = 6; — 05.

Hence we have
(4.28)

DO1](({(6: + 67)| i, (91 + 64) [ 22},0,0))

= (—08an {(B:+0) L D, (Or+8)) [ 2}, 0, dGo0, {(60:-+05) | i, (O2+65) 0}

= (=0x | 2x, 0, vk (5Dx | 2x1Dx)
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= (0,0,vx(spx | (2xpx))) — (6x [ 9x,0,0)

Thus (0x|x,0,0) and (0,0, u}"((sDxL(QiDX)) are cohomologous in
H* (2%, [1]). Since the image of (x| Qx,0,0) in

Ker{H'(X,Q%) — Hl(Dj(,Q}j})}

is zero, by the definition of 7 (([8x], [0pz])" (cf. Lemma 4.8 (i) (b)), (4.28)
shows that .

(4.29) 3 (((0x], pg)) (Qx) = 7® (555)(Qx) = Vi (5Dx | Ux|Dx)
Then, it follows 7®((0x,0ps)) (2x) = 5@ (555) ().

g.e.d.for Claim

Since we have assumed 7'(2)((0;(,9133)) =0in
Home (H" (9%, [1], H' (2%, [1]))

, T(Z)((ex,epg))l(gx) =0 for any Qx € H°(X,0%)
~ H°(Q%, [1]). Then

WP (5x)(Qx) =0

for any Qx € H(X,0%) by the claim. Then, by the condition (iii) of the
theorem, we conclude that 0x =35p, =0.

Q.E.D.

4.11 Theorem. For an algebraic surface S with ordinary singularities
such that X is irregular, i.e., ¢(X) = dim¢ H(X, Q%) > 0, the map

7 . HY(S,0x) — Home (HO(QY, [1], H'Ox, [1]))

is injective if all of the following conditions are satisfied:

(i) The map
H°(X,0x(~logDx)) ® H°(D}, ©ps (—Ec§ — Bt§)) — H°(D¥,Opy (—Ztk))
(cf. Theorem 3.26, (ii) in Part I) is surjective.

(ii) The homomorhism
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Ker {HY(X,0x)® Hl(D*,GDE(——ZcDg)) — HY(D%,0p1)}
— Homg(Ker {H° () ® H°(Q} ) — HO(Qb})},
| Ker {H'(Ox) @ H'(Opy — H'(Op3,)}
defined bg taking contraction is injective on the z’magé of
Ker {H'(X,0x(~logDx)) ® H' (D%, ©px (—Xcs — Xt5))
— H'(Dy, Op3 (~3t%))

in Ker {H'(X,0x) ® H'(D},0Opy(~Sc5)) — H'(D%,Ops)}

(iii) The homomorphism BV :
H°(Dx,N)px/x) ® H*(Zt§, Nsx /D3
T (BO(X, 6) & HO(D5, 03 (—55)) — HX(Dx, 005 (-T8))}
— Homc(Ker {H* (%) ® H*(Qp,) — H°(Qby )},

Ker{HO(OD;() ® H(Csiy) ® HO(Cztg) — HO(CZ}t;{)} |
Im{H°(Ox) ® H°(Ops) ® H°(Csxts)} )

defined by taking contraction and pull-back is mjectwe where Ngyx /ps denotes
the normal bundle of the divisor Xtg in Dy.

Proof. Let
([6x],6ps]) € H*(X,©x(—log Dx)) ® H' (D5, Opg (=c5 — Xts))
be an element such that |
wvx " ([0x]) = @g"((p3)) in H' (D, ©py (—Xt3)).

By the same reasoning as in the proof of the preceeding theorem, it suffices to
show that [0x] = 0 if 7()(([6x], [fp3])) is zero, and if the conditions (ii), (iii)
are fullfiled. From the condition that 7'(1)(([9 x],[0pz]) is zero and the condition
(ii), the images of [fx] and [fps] in H'(X,0x) and H'(D%,®py (~Xcpy)),
respectively, are zero. In order to represent various cohomology classes as Cech-
cohomology classes, we adopt the same system of Stein open coverings Ux =

(W;,Wa} of X, Upy = {V;,V\O,V{V} of Dy and Upy = {Ua} of Df as
before. Let 6x (resp. 9D§) be represented by a Cech 1- cocham

{645} € Z'(Ux,0x(~log Dx))

(resp. {65} € Z'(Upy, ©py(—Eepy — Ttpy))
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Since fx = 0 (resp. Opy = 0) in H'(X,0x) (resp. in Hl(Dg;@DZ(——Z‘cDg)),
there exists a cochain {0} € C°(Ux,Ox) (resp. {6:} € C°(Upy, O px(—epy))
such that ‘
@,;j = @z — ej (resp. Oij = 91 - 93)

for every i,5 € Ix (resp. ,j € Ips) with Wy N W; # @ (resp. U; n U; #0). We
denote by sp, (resp. sx: Dg) the cohomology class of H®(Dx,Np, /x) (resp. of
H°(Ztps, Ns Dg)) defined by the Céch 0-cycle '
{Bisipxaw;} € Z°(Dx N Wi, Np,/x/D¥%)
(resp. {ei'tﬂgthmUi} € ZO(Zth,NEtDE))

where s; = 0 (resp. t; = 0) is the defining equation of Dx (resp. of 3t Dg) in W;
(resp. U;). Then the image of sp, (resp. szt%) in H}(X,0x(~log Dx)) (resp.
in H'(D%,Ops(—Xcs — Xt5)) is Ox (resp. Opy). The condition wvx*([0x]) =
©g*([0pz]) in H'(D%,Opy, (—Xt%)) implies that there exists a 0-cochain

{67} € C°(Ups,, Op3 (~Ztpy,))

such that

(4.30) 6{0;} = wvx™({6: — ©;}) —wg” ({6: — 6;})

where 4 denotes the Céch cohomology operator.
Now, by the short exact sequence in (3.31) in Part I, the sequence of

0— F(UM 65)
— I‘(f"ll(U,;), ex(—log .Dx)) o) PO(Vgl(Ui), @DE (—ZCDE - Etpg))

— F(l/—l(Ui), C“)Dj< (—Etpg)) — 0
is exact for every U; € Ug. Therefore there exist 0-cochains

{Oi}ierx € C°(Ux, ©x(—log Dx))

and

{9;} S CO(UDE,@DE(—ECD_; — Eth))
such that | ’
(431) Gz ((0)) - 55" ({8})) = {6},

Then by (4.30) and (4.31) we have
wvx ({(0: — ©7) — (8; — ©5)}) = wg™ ({(6: — 67) — (6, — 67)}).
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Replacing {©;} (resp. {6:;}) by {©; — ©}} (resp by {6; — 6}}), we may as-
sume from the begining that {6;}icr, € C° (Z/{X,G X( log Dx)) and {6;} €
CO(UD* ,@D*( ZCD* — EtD*)) satisfy

(432)  @Ux " ((Ovxuia) = Ovxu(d)) = @9 ((Bg.(a) — O.(8))) =0
for every o, 8 € Ipy with V, NV # 0. We take an element
(4.33) (wx,wpy) EKer{HO(Q}()GBHO(QI £) -—>HO(QI;{)
We represent wy (resp. wpsz) by a Céch 0-cochain
{wx,i} € Z2°Ux, Q%) (resp. {wpsy,} € ZO(L{DE,Q}DE))

By (4.33), {wx,:} and {wps :} satisfy the condiﬁion
(4.34) VXWX, uxu(a) = g*ng’g*(a)
for every o € Ips . We put

Wy = VXWX ux.(a) = g*ng,g*(a), and

wpy ={w;} € Z°(Upsy,, Qb ) ~ H(Upy,, Qb )
By (4.34), we have

Vx Oux(e) [ WX vk () = 97 (0. (0) LWD3 0. () } |

% (Ovxuit) L0xvx.(8) = 9" (64.(5) lwDy.0.(8)}

= V3 ((Ovxa(e) = Ouxa (1)) L WX wxs (@) = 9" (05,(2) = b3, (8)) L WD 50 (o))

= VX ((Oux.(a) = Oux.(8))) Wi — 8" ((Bg. (o) — 05.(8))) L

= (07" (Oux. (@) ~ Oux()) = B5 (Bg. () ~ b.(5))) w5 = 0}
for every o, 8 € Ips. with V, NV # 0. Hence

VX (Ouxu(a) | Wx,vxa(a) — 9 (Bg.(a)l.st,g*(a))}
define an element of H%(D%, Ops ) which we denote by
vx(spx lwx|px) — 9" (sztg [ngithg)- |

Obviously the element
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(Vx (spx Lwx|Dx) = 9" (835 L wpgzey), (SDx | wx|Dx)iztxs
(Sz:tg. [ngmtg)[Etg)
€ H(DY, Ops,) ® HY(Stx, Criy) ® HO(St5, Criz)
belongs tb

Ker {HO(D}‘(, OD})GBHO(Etx, CZtX)EBHO(ZtE,CZtE) — HO(Et;{,CZtB‘()}.

If we take another {©]} € C°(Ux,Ox) and {0}} € COUps,Opy(Sch))
such that

©;;=©, -0/ and 6;; =0, — 6},
then we have

@i—@jzeg—@;— andGi—9j=9§—9;-,
and so

@i—Q;;:@j—@; and0i—0§=€j—6;-,

which means that {©; — ©}} and {0; — 6;} are global sections of ©x and
Opz(—Xcs), respectively. Therefore

(% (O (@) | Quxi(e) = 9% (Og, (o) | Wu ()}

_{VX( VX (a)LQVX*(a)) G ;*(Q)ng*(ﬂ))}
belongs to the image of H°(X, Ox) ® H°(D},Opy)) in H(D%,Ops ). Hence,
for ([6x], [6ps,]), the element

(vx (spx lwx|px) = 9% (smt5 | wpgises), (SDx LWx|Dx )|Stx
(Sztg LWngtg)lztg)
is only determined as a class of the quotient space

Ker{H®(Opy ) ® H°(Cstx) ® H°(Czy) — H°(Czey )
Im{HO(Ox)@HO‘(ODE)@HO(CE,:S)} '

In what follows we shall indicate the elements of various quotient spaces by
drawing lines over their symbols. We define

B (555, 5565) (wx, w3 )
(4.35)
= ((vx (spx | (wx|Dx) = 9" (s5tg L wpg|ses)s (SDx LWx|Dx )|mex s

(sstz | (wpy |zt )isey)
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modulo  Im{H%(Ox) ® H°(Opy) ® H°(Cs:5)}
where 5p, (résp. S5eg) denote the image of sp, (resp. ssey) in
H°(Dx,Npyx)/Im {H*(X,0x) — H°(Dx,Npy /x)}

(resp. in HO(Sit5, Nasy/p3)/Tm {H*(D§, O3 (~3c))
— H°(3t§, Nty /D))
Claim. For any
(wx,wpy) € Ker{HY(Q) ® HO(@Qb;) — HO(Qbs)},

we have ) N ,
Y (3%, 35e3) (wx, wpy ) = TM((6x, 0p3y)) (lwx], [wpy))

For the notation 7(1)((fx, 0px))([wx], [wpy])', see Lemma 4.8 (ii),(d).)

Proof of Claim. We consider the element

(0,0, v%(spx |wx|px) — 9" (82tx L wDxmes),

(4.36) (sDx | wx|Dx) ISt (S2tz | WDz [2t5) |2tz )

By the definition of D(l)[l] K'Y (Ox,[1]) — K*(Ox,[1]) (cf. (4.14)', (4.15) and
(4 15)")), we have
D(l)[l](o 0,v% (spx lwx|Dx) — 9% (S5t L wpy sty )
(sDx | Wx|Dx )iztx)s 5Dx L (855 | (WDg|mez)
= (0,055E8’1(;))({V}(3Dx lwx|px) — 9*(s5e5 L wpg(mes))s
4ot (Vx (spx Lwx|Dx) = " (3¢5 L wpgmes)

dE‘foOl)) 2((3Dx I.leDx)IEtx) + d(‘ffi)))*3((sztg [nglztg)mtg)-

Since
0,0
(0 (()11)){VX(5Dx |wxipx) — 9" (85tz wpysez)) =0, and

)0 * *
dEgll)),l(VX(sDx lwx|px) — (Szts LwD Apa2d )

0,0) 0,0)+
dﬁmf) 2((spx Lwxipx)isix) + dElm)) s((sstg | wpg sts ) 2es)
= Vyines (5Dx Lwx|Dx)istx) — ey, (8345 Lwpgmey ) 1e3)

~Vxzes, (8Dx Lwx|Dx )itx) + Gy, (535 Lwpzimes izey) = 0,

the element in (4.36) is a 1-cocycle of the complex K*(Ox, [1]). Next we consider
the element

(Ox L wx, 03 | wps),0,0,0) € K (Ox]1]).
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By the definition of DM(1] : K'(Ox,[1]) — K2%(Ox,[1]) (cf. (4.15)" and
(4.15)"), we have

= (=8{g0)Ox Lwx), =6013) (63 Lwpy),
dionra(0x | wx) — diSos 0y | wpy), 0)

Since Ox = {@,,J =0; — @j}, QDE = {(9” =0; — 93'}, wyxy = {wX,i} and wpg =
{wpy,i} satisfy the relation in (4.32) and (4.36), we have

6((831)(0)( |wx) = 5(((()];())) (6ps|lwpz) =0, and

{donya(0x Lwx) = digio)"s (g L wpy) Yas

= Vit (Ouxe (@) = Ouea(®) L WXxaie)) = 9" (B (@) = B4 () LD1,0.(6))
= 0% (Oua(e) = Ouxn(®)) | Wh = 57" (B.(2) = b5, (9)) [ wP"

= {0vx" (Bux. (@) ~ Oux.(8)) = @9 (Bgu(a) = Pgu(e)} L wj =0

for every o, 8 € Ipy with V,, NV # 0, where

Wg 1= VXWX vxu(a) = § WDg0u(e) BN Wp = VxWX,ux.(8) = §°WD3,g.(8)
as before. By the definition of 7(Y)([0x], [0p«]) (cf. Theorem 3.17 in Part I)

M ([6x], [0ps))(wx,wps)

[(0x Lwx,0pg | wps, {Palwalt, 0,0)],
[({©apl s}, {Oapl wp}, {05 Wi}, 0,0)],
where {63} € C°(Ups,,Ops (—Xt%)) (resp. wh, = {wh} € C’O(Z/ID;(,Q}D;{)) is
such that ' . .
5{65} = 9vx " ({Oap}) — wg*({fap})

* * *
(resp.vxwx = g*wh, = Why )

and “[ |” denotes cohomology classes in H!(Ox,[1]). In the case with which we

are now being concerned, since we assume that wvx™({©;;}) — ©g" ({6:5}) = 0
from the begining, we have {0} = 0. Hence

7(0x,0p3) (wx,wps)
(4.37) = [(0x| wx,0ps| wpx,0,0,0)]

= [({84;|wx,5}, {6:| wpy 5}, 0,0,0)].
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We claim that
(4.48) [(gxl_wx,apgl_wpg,,o,o,()]
and
(439)  [(0,0,v%(spxwxipx) = 9" (55t | wps|zts))s

(sDx |l Wx|Dx)|5txs (5t5 L WDy ey )]

are cohomologous in H!(Ox, [1]). Indeed, by the definition of D()[1]
(cf. (4.15)"), we have

DO1]({©;| wx,i}, {0: wps,i},0)
= (——5883){@7,'_(;)){,1}, 5(010){9 I_WD ,z},
dioorra{Oil wxi} - digrrs {0 Lng,i}, dionrr1 {8il wx.i}, 4281%);1{% lwpy.i)})
= (=0{Oi| wx,i}, —0{0:i| wpy i}
V;({@il_wX,i} —g*{eil_wD ,z} {@ |_wX 'L}|2txa {0 LwDS,z}Et’g)

= (0,0,v%(spx L wx|Dx) — 9" (s5tx L wpy|mty)),
(sDx Lwx|Dx )iztx s (Sztx | WDy mes)

—(HXLwX,BD;( I_WD;(;O, 0’ 0)]

Thus the element in (4.38) and (4.39) are cohomologus to each others in
H(Ox,[1])- By (4.37), 'r(l)([Ox] [6p;])(wx,wpy) € H(Ox,[1]) is represented
by the element in (4.39) whose image in

Ker {H'(Ox) ® H'(Ops) — H'(Opy)}

is zero. Therefore, by the definition of M ([0x], [0p2]) (wx,wpy), it is equal to

(v (spx L (wx|Dx) — 9* (sst5 L wpzzey)), 5Dx L (Wx|Dx ) |5ex

szty | wpg |Xt5),

where the oveﬂz’ne denotes the'image of an element of the space
Ker {H°(Opy,) ® H*(Cstx) ® H°(Csez) — H°(Csey )}

to its quotient space by the subspace
Im {H°(Ox) ® H%(Opy) ® H*(Cs:4s) — H®(Opy ) ® H*(Ctx) ® H'(Cxey))}

Now by the definition of Z!)(3px, 557 ) (wx,wpy) in (4.35), we have
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£ (55, 5315 (wx, wpy) = 7 ((6x, 0p5))(wx, wpy)

as requied.
g.e.d.for Claim

Now, it follows T(l)(ex,epg)’ = 0 from the assumption r(l)(ex,eDg) =0
because of Lemma 4.7, (ii). Then, by the claim above, we have
") (555, 556) (wx, wpy) =0,

and so by the condition (iii) of the theorem, we coclude that x = sp, = 0.
This complete the proof of the theorem.

Q.E.D.

4.12 Theorem. For an algebraic surface S wzth ordinary singularities

such that X is irregular, i.e., ¢(X) = dim¢ H°(X, Q%) > 0, the map

SLyr)  H'(5,05) — &} Home(H'(0%, 1), B~ (0% 1))}

- defined by taking cup-product and contraction “|” is injective if all of the fol-
lowing conditions are satisfied:

(i) The map
H°(X,0x(~logDx)) ® H*(D§,Ops (—Ecs — Lt§)) — HO(D}‘(,QD& (—Zt%))
(cf. Theorem 3.26, (ii) in Part I) is surjective.

(ii) The infinitesimal Torelli concerning the cohomology H2(X,C) holds for
X, that is, the homomorphism

HY(X,0x) — Home(H(X,0%), H}(X, %))

deﬁned by coupling through contraction | is injective on the image of H'(S,0g)
in H(X,0x).

(iii) The homomorphism T :
HO(DX>NDX/X) @ HO(EtS’ Nyex /D% )
Tm {HO(X, 6x) ® HO(Dj, O3 (—5¢5)) — H (D, Oy (~Tt5))}
— Homc(Ker {H°(QL) @ HO(} 2) — HO(Q} ;()},

Ker{H°(Op: ) ® H°(Cs:x) ® H°(Czsy) — H?(Csyy,)
T Im{H0x) ® B 0py) 6 DO Cor)] )
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defined by taking contraction and pull-back is injective where Nxi . /10 denote
s/7s
the normal bundle of the divisor Xtpx in Dg.

Proof. By the condition (i) any element of H'(S,©x) can be represenred by a
pair of cohomology classes

(6x,0ps) € H'(X, QX(_ZOQDX)) ® H'(D§, Ops (—Xcs — Xtg))
which is subjective to the condition
ovx"([0x]) = @g"([0(p3]) in H' (DX, ©ps (—2t5))

(cf. Theorem 3.26, (ii) in Part I). What we have to show is that if 7@ ((0x,6 px))
in Home(H® (%, [1]), H! (2, [1]), and if the condition (ii), (iii) are fullfilled,
then fx = 0 in H*(X,0x(—logDx)) and fp; = 0 in H' (D%, Opx(~Xc§ —
Ztg)- |

‘We denote by 6% the image of 8x in H'(X,©x), and by Obg the image of
Opy, in H (D%, ©py (—Sck — It5)). I 73((6x,0p3)) in

Homc(H(Q%, [1]), HY (QX, [1]),

then by Lemma, 4.7 (i), the homomorphism
O |: H°(X,0%) — Ker {H'(X,Q%) — H'(D%, Qb )}

defined by taking cup-product with the cohomology class 0’ is zero. Then by

the condition (ii),we conclude that 6% = 0 in H'(X,0x). From the following
commutative diagram : "

H'(©x(—logDx)) ® H' (83 (—Xck — Xtg)) ©I=%9, gD, Ops (—2t%))

! !

H(X,0x)® H'(D}, 0ps(—-5c5))  L=%%  H'.(D%,Opy)

and the fact that & ] (0x) = @§(6py), it follows that wf(0%) = @g(6p, ). THen,
since 6% = 0, we have wg (8] 5) = (. Therefore, since
&g : H*(D%,©py (—%c5)) — H'(Dx,Opy )

is injective (cf. Proposition 4.1), we conclude that Hbg) = 0. Then the homo-
morphism in Lemma 4.7 (ii)-(c)

(B 05| : Ker{HO() © HO(Rhg) — H ()}
— Ker{H"(Ox) ® H(Op3) — H(Opy)}
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"defined by taking cup-product with the pair Qf cohomology classes (9&,9’1)5)
through the contraction “ |” is zero map. Hence the homomorphism in Lemma
7 (ii)-(d)
T ((0x,0p;)" : Ker {H*(Q%) ® H*(Qpy) — H(Qpy )}

Ker{H°(Op: ) ® H°(Csix) ® HO(CZtg) — HO(CEt})}
Im{H%(Ox) ® H°(Opy) ® H*(Cs:s)}

—

is defined, and Lemma 4.7 (ii) this map is zero map under the assumption that
(D ((0x, QD*) = 0 in Hom¢ (H°(Q%, [1]), H} (9%, [1]). Since 6, the image of §x
in H(X, @X) (resp. 91)* the image of 6py in HI(DS,GD*( —X¢%))), is zero,
there exists an element

Spx € HO(Dx,NDX/N) (resp. SStpy € HO(Zth,NEtD*/Dg))

such that its image in H'(X, ©x(—log X)) (zesp. in H*(D%, ©pz(—Xck))) coin-
sides with x (resp. QD*) Here we should remember that we have proved in
Theorem 4.10 the equalty

ﬁ(l)(spx,sztg)(wx,ng) = r(M"((8x, Opz))(wx,wps)
holds in Claim for any
(wx,wpy) € Ker{H*(Q%) © H°(Qpy) — H°(Qpy )},
where 35 (resp. 3x:z) denotes the image of spy (resp. sxy) in
HO(Dx,NDX/X)/Im {HO(X, @X) — HO(Dx,NDX/X)}
(resp. H*(Ztpy, Nzth/Dg))
modulo Im {H®(D%, ©px(—Xcs)) — HO(ZtDE,NgtDE/Dg))}).

Therefore, since 7(V((6x, fp:))(wx,wpy) = 0, we have

Y (355, 5563 (wx, wpy) = 0.

Then by the condition (iii) in the theorem, we coclude 3p, = 55z = 0, and so
thetax, the image of Sxiy (resp. Os¢,. , the image of 5%ty IS Z€ro as requied.
S

Q.E.D.

- §5 Examples

5.1 Example. Let S be an irreducible hypersurface with ordinary singu-
larities in the 3-dimensional complex projective space P3(C) of degree n, and let
Dg be the singular locus of S, which we call the double curve of S. In what fol-
lows we denote P3(C) by P for simplicity. The classical formula due to Enriques
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([1]), the numerical characters of the normal model X, which turns out to be
non-singular, of S are given as follows:

pa(X) = (";1) — (n—4)m+n(Dg) — 1,

2(X) = n(n — 4)? — (5n — 24)m + 47(Ds) — 4 + t,
(5.1.1) |
cz(X) = n(n? —4n+6) — (Tn — 24)m+ 8n(Dgs) — 8 — t,
pg(X) = dim¢ Ln-4(—Ds),

where m denotes the degree of Dg in P3(C), n(Dg) = 1—x(Ds, Op,) the virtual
genus of Dg, t = #3Xtg, the cardinal number of the triple point set Xtg, and

L _4(—Dg) = homogeneous polynomials of degree n — 4
in four variables which vanish on Dg

In what follows we use the same notation as in the diagram (1.3) and (1.4) in
Part I for the surface S. We define the sheaf Npg; to be the quotient sheaf
O©p/Op(—log Dg) where ©p denotes the sheaf of germs of holomorphic tangent
vector fields on P, and © p(—log Dg) the subsheaf of © p consisting of the deriva-
tions of Op which send the sheaf Z(Dg) into itself. Note that the sheaf Npg
Cﬁincides with the sheaf No (A = Dg) defined by Kodaira in [6]. We assume
that:

(5.1.2)
The double curve Dg of S belongs to an analytic family f := {Dx, }+,enm, of
locally trivial displacements of Dg in P such that
(1) the parameter space M; is non-singular, and

(2) the characteristic map

of : T,(M1) - H°(Ds,Npg/p)

at the point o € My with D, = Dg is surjective.

For the definition of an anlytic family of locally trivial displacements of analyitc
subvarieties, see [11, Definition 8.1], and for the definition of the characteristic
map o/, see [ibid. Definition 8.3]. A _

Letting H be a hyperplane in P, we simply denote by Op(k) (k € Z) the
sheaf Op(|[kH]) where [kH] denote the line bundle determined by the divisor
kH on P. We denote by Op(k —2Dg) (k € Z) the subsheaf of Op(k) consisting
of those local holomorphic cross-sections of the line bundle [kH| whose fiber
coordinets vanish on Dg together with their partial derivatives.

5.1.1 Theorem. If the condition
(5.1.3) HY(P,0p(n—2Ds)) =0 |
is fulfilled as well as the condition (5.1.2), then the surface S belongs to a maxi-

mal analytic family S = {St}iem of locally trivial displacements of S in P such
that

(1) the parameter space M is non-singular, and
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(2) the characteristic map

of : Ty(My) — H°(S;, Ns,,p)
is surjective at every point t € M, where Ng,/p := ©p/Op(—log S¢). |

For the proof of the theorem above, see [6]. Note that the sheaf N, p
coincides with the restriction of the sheaf ® defined by Kodaira in [6].
"Now we consider the following exact suquences:

(5.1.4) 0— @S - @p!_s — Ng/p — O,
(5.1.5) 0 — Op(-n) — Op — Opg — 0,
(5.1.6) 0 — ©p(—n) — Op(-logS) — ©5 — 0,

where Op|s := Op Qos; Os and Op(—n) = Op ®o, Op(—n). The exact
sequence (5.1.4) is due to the fact Og ~ Op(—log S) ®og Os.

From now on we assume that
(517 n>5
Under the assumption (5.1.7); by Bott’s theorem, we have
HI(P, @p(—n)bz H3*9(P,Qp(n — 4)) = 0 for0<g<2.

Therefore by (5.1.5) we have

(5.1.8) HO(P,©p) ~ HO(S,0p|s).
~ and,
(5.1.9) H'Y(S,0p|s) = 0.
By (5.1.6),
(5.1.10) H°(P,®p(~log S)) = H°(S,05) = 0.

On the other hand, if n > 5, the logarithmic Kodaira dimension ®(P — S) is
equal to 3. Therefore by Theorem 6 and the cororally to Proposition 4 in [5],
we have H°(P,0p(—log S)) = 0, and so by (5.1.10)

(5.1.11) | HY(S,085) =0.
Then by (5.1.4), (5.1.9) and (5.1.11), we have

Typeset by ApS-TEX
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(5.1.12)
dim H'(S,05) = dim H(S,Ng,/p) = dim H°(P,©p)
' =dimHO(S,Ns/p) — 15.

Note that (5.1.12) holds for every member S; of the family S = {Si}tenm in
Theorem 5.1.1. We assume that
(5.1.13)

dim H®(S;, N, ,p) is independent on ¢t € M for every member S; of

the family S = {S;}ten in Theorem 5.1.1. ‘

Then the following thorem follows from Theorem 5.1.1 and (5.1.12).

5.1.2 Theorem. Assume that the conditions (5.1.2), (5.1.3), (5.1.7) and
(56.1.13) are fulfilled. Then the surface S belongs to the Kuranishi family S’ =
{St}tem, or an effectively perametrized complex analytic family, of locally trivial
deformations of S such that

(1) the parameter space M’ is non-singular, and the dimension of it is equal
to dim HO(O,Ns/p) - 15, and

(2) the characteristic map
o : T,(M') — H*(S;,03,)
is bijective at every pointt € M'.
In what follows, using Usui’s result in [15], we shall show that the infinites-

imal mized Torelli theorem holds for the family S’ = {St}tem in Theorem 5.1.2
if X is regular, and if the degree n of S is sufficiently large enough comparing

“to the double curve Dg of S. In order to state the sufficient conditions for the

infinitesimal mized Torelli theorem for the family S’ to hold, we construct an
embedding resolution of S. '

Let g, : P, — P be the blowing-up of P with center ¥tg, let E; be the
exceptional divisor of q;. X; and D; denote the proper transformations of S
and Dg respctively. We set f1 := qx, : X1 — X, @1 :== qup, : D1 — Dsg,
Ty = f; 1(22&5). Next, let g : P, — P; be the blowing-up of P; along Dy, let
E5 be the exceptional divisor of g2. X2, T5 and F denote the proper transforms
of X1, T1 and E; by qq, respectively. It is easy to see that D, Xy and Dg are

-smooth and that T3 consists of the exceptional curves of the first kind on X». The

surface obtained from X, by contracting 75 coincides with the normalization X
of S by virtue of Zariski’s Main Theorem. We consider the following conditions:

(5.1.14)  H(Qp ®wp, ® Opy(5—n)) = 0.
(5.1.15)  HO(S*(Np,/p) ® Op,(4B: - Di]) ® giOps (L — ) = 0.
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where S?(N p,/P) denotes the second symmetric power of the normal
bundle Np, /p of the divisor D; in P of degree 2.

(5.1.16) H°(Qp, ® Op,(2[E1 - D)) ® gfOp, (5 —n)) = 0.
(5.1.17) Op,(—2E2) ® 91 Op, (—4E1) ® (q1 © ¢2)*Op(n — 1) is ample.

(5.1.18) There exists an integer m satisfying the following conditions:

(1) m<n-—4
(2) |Ox(m — Dx)| is ﬁxed components free
(3) HO(O)((’I’L —2m -3+ Dx)) # 0.

Note that these conditions are fulfilled by Serre’s Theorem provided the degree
n of S is suuficiently large enough comparing to D.

5.1.3 Theorem. ([16, Theorem 5.8]) In the case that the degree n of S
in P = P3(C) is sufficiently large enough comparing to the singular locus Dg
of S in the sense that the conditions from (5.1.14) through (5.1.18) are fulfilled,
the infimitesimal Torell; concerning the cohomology H?(X,C) holds, that is, the
homomorphism

HY(X,0x) — Home(H(X,0%), H (X, 04))

defined by taking cup-product and contraction is surjective.

Thus, in this case, the condition (ii) in Theorem 4.10 is fulfilled. Next
we consider the condition (iii) in Theorem 4.10. We compute the cohomology
H%(Dx,Np, /x ). For this end we consider the exact sequence

(5.1.19) O_"NDX/X —>ODX([D)(]) “"(CZ]tx -——>0.

Here the homomorphisms in this sequence are defined as follows:

Let p be a point of Dx, U a coordinate neighborhood of p in X, (z, y) a local
coordinate with center p, and = = 0 a local defining equation of Dx in U. Since
Npx/x = Ox/0x(—log Dx) by definition, a local cross-section of Np, ,x over
UNDzx is represented by a local holomorphic vector field 8 = a(8/0z) +b(8/0y)
modulo ©x(—log Dx) where a, b are local holomorphic functions on U. The
homomorphism Np, ,x — Ox([Dx]) in (5.1.19) at p is defined as

0 modulo ©x(—logDx) — -z modulo Ip,,

where Zp, denotes the ideal sheaf of Dx in Ox. If p is a point of Xtx, the
homomorphism Op, ([Dx]) — Csty in (5.1.19) is defined as ¢ — @(p) where ¢
is a local holomorphic function which represents a local holomorphic section of
Opx([Dx]) around p. Next we consider the following sequence:

(5.1.20) 0— OX — Ox([Dx]) — ODX([DX]) — 0.
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5.1.4 Lemma.

(5.1.21) Kx :=Ox((n—4) — Dx) (Adjunction formula),
(5.1.22) FOx(a—bDx) ~0Ogs(a—bDs) (a,beZ),
where f : X — S denotes the normalization map.

Proof. Let F := 1o f, where + : S < P is the inclusion map. For each p € S, we
take a polycylindrical open neighborhood U of p in P and complex analytic local
coordinates (z,y, z) with center p such that S is given by one of the equations
(i) z = 0 (simple point), (ii) yz = 0 (ordinary double point), (iii) zyz = 0
(ordinary triple point), and (iv) zy? — 22 = 0 (cuspidal point). We put V :=
F~Y(U) for a simple, or cuspidal point p, VN [[V® := f~1(U) for a ordinary
double point p, and VIOV [[V®) := f~1(U) for a ordinary triple point
p. Taking sufficiently small U, we may assume that there are complex analytic
local coordinates (u,v) on V and (u(®,v(®), i = 1,2,3, such that the map F is
given by

(u,v) — (u,v,0) = (z,y,2) ifPis a simple point,

w®, oMy — (u®,4M 0) = (z,y, 2)
u®,v@) o (P 0,0 = (z,y, z)

if P is an ordinary double point,

(WM, v®) — @®,91,0) = (z,y,2)
(U(z),’l}@)) — (u(z)’ 0’ ’U(2)) = (a;, Y, z) ‘ifp is an ordinary triple point,
@®,v®) = (0,u®,v®) = (z,y,2)

(u,v) — (u%,v,uv) = (z,y,2) if p is a cuspidal point.

Then the lemma follows from direct computation by using the local coordinate
expression of f above. 0.B.D

‘By (5.1.21) and (5.1.22), we have

(5.1.23) Hi(X, Ox([Dx]) 2H2_i(X, Ox([—Dx])®Kx)

~ H?>~(X,0x((n —4) — 2 Dx)) ~ H>7(S,05((n — 4) — 2Ds))
(0<i<2)

To compute the last cohomology, we consider the following exact sequence:

(5.1.24) 0 — Op(—4) — Op((n —4) —2Ds) — Os((n —4) — 2Ds) — 0.

- We assume that 7 is sufficiently large enough comparing to the double curve Dg

of S so that the following condition is satisfied:

(5.1.25) H{(P,0Op((n—4)—-2Dg)) =0 (1<i<3).
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Under this assumption, by (5.1.23) and (5.1.24), we have
(5.126)  H'(X,0x([Dx]) = H'(S,0s((n - 4) - 2Ds)) = 0,

(5.1.27) H(X,0x([Dx]) ~ H*(S,05((n —-4)-2Dsg))
~ H3(P,0p(—4)) ~ H(P,0p) =~ C

Then, by the long exact sequence of cohomology derived from the short exact
sequence in (5.1.20), we have

(5.1.28)  H°(Dx,0Op,([Dx]) ~ H'(X,Ox),
and the exact sequence

(5.1.29) 0— Hl(Dx,ODX([Dx])) — Hz(X, Ox) - HQ(X, Ox([Dx])) — 0.

5.1.5 Proposition. Under the assumption (5.1.25), we have
(i) dime H'(Dx, Npyx) < a(X),
(i) If ¢(X) =0,
dimc HI(DX,NDX/X)
= X(Dx, Opx ([Dx])) — #2tx
= dimc H°((Op((n — 4) — 2 Dg)) — py(X) — #Ztx
= —dimg HY(Op((n — 4) — Ds)) |

+dimc HO(C’)p((n —_ 4) — 2Ds)) — #3tx
Proof. (i) follows from (5.1.19) and (5.28). If ¢(X) = 0, by (5.1.28),

H°(Dx,Opx([Dx])) = 0.
Hence, by (5.1.19)
dimg Hl(Dx,NDX/X) = #Xtx + dimg Hl(Dx, Opx ([Dx]))
Then (ii) follows from (5.1.19), (5.1.28), (5.1.29), (5.1.23), (5.1.21) and (5.1.24).

Q.E.D.

Now we have the following theorem.

5.1.6 Theorem. We assume that:
(i) The map

H(X,0x(~logDx)) ® H°(D§,Opz (—Lcs — Bt5)) — H°(Dk, Ops, (—Xt))
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(cf. Theorem 3.26, (ii) in Part I) is surjective.
(ii) X is regular.

Then, if the degree of S in P = P3(C) is sufficiently large enough comparing to
the singular locus Dg of S in the sense that the conditions from (5.1.14) through
(5.1.18) and the condition (5.1.25) are fulfilled, the map

7 . HY(S,05) — Home (H® (2%, [1]), H! (2%, [1]))

in (4.1) (cf. Theorem 4.9) is injective, that is, the cohomological inﬁniteéimal
mized Torelli theorem holds for the family S’ = {Si}tem of locally trivial dis-
placements of S in P3(C) in Theorem 5.1.2.

5.2 Example. In case of the former example we have H*(Dx,Np,/x) = 0.
Hence the condition (iii) in Theorem 4.10 is meaningless. In what follows we shall
give an example of surfaces with ordinary singularities in P3(C) for which the
cohomlogical infinitesimal mixed Torelli holds even though H°(Dx,Np,/x) #
0. We denote by P the complex projective 3-space as in the former example. Let
S1, S2 be non-singular surface of respective positive degrees r1, 72 in the complex
projective space P such that they intersect transversally. Let f;, (i = 1,2) be
the homogeneous polynomial of degree ; which defines the surface S; in P. We
may assume r; > T gecause of symmetry. We choose and fix a positive integer
n with n > 2r;. Let S be a surface in P defined by the equation ‘

(5.2.1) f=Afi+2Bfifa+Cf3 =0,

where A, B, C are homogeneous polynoimials of four variables of respective de-
grees n.— 21y, n—7r1 —To, n— 2re. We exclude the case n = 2r; = 2r where S is
reducible. By Bertini’s Theorem S is non-singular outside Dg if we choose suffi-
ciently generic A, B, C. Let p be a point of Dg. We may assume that A(p) # 0,
or C(p) # 0 for generic A, C. We assume A(p) # 0 because of symmetry.

(i) In the case A(p) # 0, (B? — AC)(p) # 0: If we put

X=f1+B+Vi2_ACf2, Y=f1—B+vi2—AOf2,
then f = AXY.
| (ii) In the case Aég)jé 0, (B? — AC)(p) = 0: If we put B
X = — Y = fo, Z = f1+Zf2,

then f = —A(XY? — Z2). Therefore S is a surface with ordinary singularities
whose double curve in Dg for sufficiently generic A, B, C. The formula in (5.1.1)
tell that the numerical characters of the non-singular normal model X of S and
genus of the double cueve Dg of S are as follows: , ‘
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_ 7’1.—1—7"1 n—l—'r‘2 ’n—-7"1—"r"2'—1
w0 = (") () - (Y
Q(X):pg_pa‘z 0, '

C%(X) = n(n — 4)2 — (51’2, - 24)7‘17‘2 -+ 27’1’)"2(7'1 + 7o —4),
ca(X) = n(n? — 4n +6) — (Tn — 24)r17rg + drire(ry +rq — 4),

-1 1
Pa(X) :=x(X,0x) - 1= (n 3 ) —(n—4)rirg + =rira(ry +re — 4),

1
9(Dg) = 57"17‘2(7"1 +re—4)+1.

In this case, since Dg is triple point free, the shaef Npg /p coinsides with
the one of the germs of holomorphic cross-sections of the normal bundle of Dg
in P. We define f to be the set of all non-singular curves which are the complete
intersections S7 - S5 of non-singular surfaces S{ and S} of respective degrees n;
and ng in P. The family f is an analytic family of locally trivial displacements
of Dg in P which satisfies the condition (5.1.2). By a simple calculation we get

(52.2)  dimc H*(Ds,Npg/p) = C(r1) + C(r2) — C(r1 —T3) — 6ryry — 2
where 0, is Kronecker’s delta and

o1
(5.2.3) C(m) = g(m+3)(m+2)(m—|— 1),

for a non-negative integer m. Now we consider the following diagram with rows
and columbs consisting of exact short sequences of sheaves

~

0 —— Op — Op —— 0

!

(5.24) 0 —— Op(n—-2Dg) —— & ——— Np./p — 0

| |

0 —— Os(n—2Dg) —— Ng/p —— Npg/p — 0

4 l
v ~

0 0 0

Typeset by ApS-TEX
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where the horizontal exact sequence in the middle can be found in [6, Theorem
4] and @ is the sheaf whose restriction to S is Ng/p. Furthermore, we consider
the following exact sequence: ‘

(5.2.5)

0 — Op(n—r1—r2) — Op(n—2Dg) — Og, (n—2Ds)®0s,(n—2Dg) — 0.
We have
(5.2.6) Op(n—r; —2r;) ~ Og,(n — 2r;) (i,4) = (1,2), or (2,1)
(5.2.7) 0— Op(n—r; —2r;) — Op(n —2r;) — Og,(n —2r;) — 0,

(i) = (1,2), or (2,1)

By (5.2.5), (5.2.7) and the isomorphism in (5.2.6), we have
(5.2.8) HY(P,Op(n —2Dg)) =0.

Thus the condition (5.1.3) is fulfilled. Hence, by Theorem 5.1.1, the surface S

“belongs to a maximal analytic family S := {S;}+em of locally trivial displace-
-ments of § in P which satisfies (1) and (2) in Theorem 5.1.1. From now on we

assume

(5.2.9) 4 n > 5.

Then we have

(5.2.10) H°(S,05) =0, and

(5.211)  dime HX(S,0s) = dime HO(S, Ns/p) — 15.

On the other hand, by the vertical exact sequence on the left hand side in the
diagram (5.2.4) and (5.2.8), we have '

H'Y(S,05(n—2Ds)) = 0.

Hence by the horizontal exact sequence at the bottom in the diagram (5.2.4),
we have

(5.1.12)
dime H(S, Ns/p) = dime H(S, Os(n—2Dg)+dimc H®(Ds, Npg/p).

By the vertical exact sequence on the left hand side in the diagram (5.2.4), the
short exact sequences (5.2.5), (5.2.7), and the isomorphisms in (5.2.6), we have

(5.2.13)
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dimg HO(S, Os(n —2Dg)) = dimc¢ HO(P, Op(n—2Dg)—1
= dimc HO(P,Op(n—1ry —13)) + Y2 dimc H°(S;, Os,(n - 2Dg)) — 1

= dimg HO(P, Op(n —-ry — 7‘2)) + dimc HO(Sl, (9,5'1 (n — 2’)’1,2))
+ dimg H°(Sz, Og,(n — 2n1)) — 1

= d’i’m,c HO(P, Op(n — Ny — nz)) + d’imc,HO(P, Op(’n — 21?,2))
- dim(c HO(P, Op(’n — 1Ny — 277,2)) + d’imc HO(P, OP(’I’L — 2n1))
—dime HO(P,Op(n—2n; —ny)) —1

=C(n—r1—r2) +C(n—2r) + C(n — 2ry)
—Cn—r1—2r) —C(n—2r; —ry) — 1
By (5.2.12), (5.2.2) and (5.2.13), dim¢c H°(S, Os(n—2Dg)) depends on only the

integers n,r; and ry. Hence the condition (5.1.13) is also fulfilled. Cosequently,
we have the following:

5.2.1 Theorem. If n > 5, then the surface S defined by the equation
(5.2.1) in P3(C) belongs to the Kuranishi family S’ = {S;}ten of locally trivial
displacements of S such that:

(1) For every point t € M’, S; is a surface with ordinary singularities in
P3(C) whose double curve is a non-singular complete intersection,
(2) the parameter space M’ is non-singular and

dimcM’' =C(n—ry —r2) + C(n—2ry) + C(n — 2rs)
‘ —C(n —-7r1— 27"2) — C(TL - 27’1 — 7’2)
+C(7’1) + 0(7‘2) - C(’rl - ’1"2) — 57-1}2 — 18
(3) the characteristic map
o8 : Ty(M') — HY(S,,Os,)

is bijective at every point t € M'.

From now on, we assume that
(5.2.14) |
(n,r1,m2) 23.1,1), (4,1,1), (4,2,1), (5,1,1),(5,2,1),

(5,2,2), (6,2,2), (6,3,2), (7,3,3).
Then, as shown in [16], the non-singular normal model X of S is regular, i.e.,

q(X) = 0, minimal algebraic surface of general type and condition (ii) of The-
orem 4.10 is satisfied. Furthermore, the condition (i) of Theorem 4.10 is also
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satisfied. Indeed, by Hurwitz’s formula, we have

. 1
9(Dx) = 9(Dx) — 1+ 5(#Xcs)
= 7‘1?"2(7"17’2 — 4) +2—-1+ Tsz(n -7y — 7"2)
=rra(n—4)+ 1.

Under the condition (5 2.14), we haven > 6 and so g(D%) > 3sincer; >y > 1.
From this it follows that

(5.2.15) H°(D%,Op: (—3t)) =

Hence the condition (i) of Theorem 4.10 is filfilled as asserted. In order to see that

Theorem 4.10 effectively works when we consider the infinitesimal mixed Torelli
problem for the surface S defined by the equation (5.2. 1) satisfying the condition
(5.2.14), we are now going to find out a surface S with H°(X,Np,,x) # 0 among
these surfaces. We denote by

(5.2.16) h: HY(S,05) — H'(X,0x)

the composite of the homomorphism H!(S,05) — H(X,0x(—log Dx)) in
Corollary 4.5 and the one H(X,©0x(—log Dx)) — H'(X,©x). For the sur-
face S under consideration, we have H°(D%,Opx (—Xt%)) = 0 (cf. (5.2.15)),
and so the condition in Corollary 4.5 is fulfilled. Hence the homomorphism
HY(S,05) — HY(X,0©x(~log Dx)) is injective. Therefore H*(Dx, Np,/x) #
0 if the homomorphism in (5.2.16) is not 1nJect1ve because the kernel of the
homomorphism

HY(X,0x(-logDx)) — H'(X,0x)

' is the image of H(Dx, Np, /x) in H*(X,©x(—log Dx), where Np, /x denotes

the sheaf of germs of holomorphic cross-sections of the normal bundle of Dx in

- X. Regarding the injectivity of the homomorphism in (5.2. 16) we have the

following;:

5.2.2 Theorem. For the surface S defined in (5.2.1) s‘atisfyz'ng‘ the con-
dition (5.2.14), the homomorphism h : H'(S,0g) — HY(X,0x) in (5.2.16) is
not injective if and only if

H?*(P,2p([S + Kp] — Ds)) #0,
where P = P3(C) and Kp denotes the canonical line bundle of P.

Proof. We denote by F the composite of f : X — S and the inclusion map
S «— P, and define the sheaf 77 to be the quotint of F*©p by ©x. We consider
the following short exact sequences:

(6.2.17) 0—-0x — F*0p —Tr — 0,



INFINITESIMAL MIXED TORELLI PROBLEM, II

47

(5.2.18) 0—>@g—->@p®(’)g — Ng/p — 0.
| By [10, Proposition 9.1], we have

(5.2.19) Ng/p ~ F*TF

Since X is of general type,

(5.2.20) H°(X,0x) = H°(S,05) =0.

By the exact sequence
O-—>@p(—S) —0Op - 0pR0Vg — 0,

we have
(5.2.21) HY(S,0p® 05) =0,

since n 7&‘4. Therefore, by (5.2.17), (5.2.18), (5.2.19), (5.2.20) and (5.2.21), we:
have the following commutative diagram with exact rows and columbs:

(5.2.22)

0 ——  HX,Tp)/ImH(X,F*©p) —— HY(X,0x) — 0
~ ; th
0 —— HO(S,Ns/p)/ImHO(S,@5®Os) — HI(S,es) — 0

HO(X,F*@p)/ImHO(S, Op® Os)

0.

Let 0 : P, — P be the blowing-up of P along the non-singular center Dg.
Then we may regard X as the proper inverse image of S by the map o and
F :=0|x : X — P, the restriction of o to X. Now we have the following exact
sequence:

(5.2.23) 0—0"0p(—X) - 0*0p — F*Op — 0.

Since H(Py,0*0p) ~ H*(P,0.,0*0p) =0,
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(5.2.24)

H(X,F*©p)/ImH’(S,0p ® Os) ~ H*(X,F*0@p)/Im H°(P;,00p)
~ HY(Py, (0*©p(=X)).

On the other hand, by [16, Proposition 1.2}, we have

(5.2.25) HY(Py,0*0p(—X)) ~ H*(P,QL([S + Kp] — Ds)).

Therefore, by (5.2.25), (5.2.24) and (5.2.22), we infer that the homomorphism
h: HY(S,05) — H'(X,0Ox) is not injective if and only if H2(P, QL ([S+ Kp] —

Dg)) # 0.
Q.E.D.

We are now going to find out a surface S with HO(P, Q% ([S+Kp]—Ds)) # 0
among such surfaces in (5.2.1) that satisfy the condition (5.2.12). We refer to
the following exact sequence from [4, Theorem 8.13]:

0— QL — 0p(-1)® — 0p —0.
Tensoring Op((n — 4) — Dg) to this exact sequence, we have the following:

(5.2.26)
0 — QL((n—4) — Dg) — Op((n—5) — Ds)® — Op((n—4) — Dg) — 0.

A resolution of the ideal shaef Zp of Dg in Op by locally free sheaves is obtained
as follows:

0 — Op(—ry —r2) — Op(—11) ® Op(—12) — Ips — 0.

From this we have the short exact sequence
(5.2.27)
0— Op(’n—’l"l —T9 — k}) — @?=1Op(’n—'l“—,; - k‘) — Op((n—k) - Ds) — 0.

By this exact sequence for k = 4, we have
HY(P,0p((n—4)— Dg) =0.
Hence, by the long exact sequence of cohomology derived from (5.2.26), we have

0 — H%(P,QL((n—4) — Dg)) — H%(P,0p((n — 5) — Dg))®*
(5.2.28) |
— H?(P,0p((n—4) — Dg)) — --- .

By the long sequence of cohomology derived from (5.2.27), we have
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0 — H2(P,Op((n - k) — D)) — H*(P,Op(n -1 — 15— k))
(5.2.29)
— GB,?:le(P, Op(n —>7"i - k)) e (k = 4, 5)

In order to find out (n,r,72) for which H2(P,QL,((n — 4 — Dg)) # 0, we first
look for (n,rq,7g) for which H3(P,Op(n —ry —r2 — 5)) # 0. By duality,

(5.2.30) H3(P,0Op(n—r1 — 19— 5)) =~ H°(P,Op(ry + 2 + 1 —n)).
Hence, H°(P,Op(n — 11 — 1o — 5) # 0 if and only if

ri+ry+12>n.
Since n > 27y and 71 > 79, Ithis inequality implies

1 =79, 2ri+12>n2>2ry, or

1 —_—_7’2+1, n = 2ry.

We exclude the case n = 2ry and 11 = 7o, since in thi’s case, S becomes reducible.
Assume (n,r1,72) = (2r +1,7,7) (r > 1). Then by (5.2.29) for k = 5, we have

(5.2.31) H?*(P,0p((n—5) — Dg)) ~C.
On the other hand, for those cases, we have |
H3(P,Op(n—1r1 —1re —4)) =~ H(P,Op(r, + ry — n)) = HO(P, Op(-1)) =0.
Hence, by (5.2.29) for k = 4, we have
(5.2.32) H°(P,0p((n—4) — Dg) = 0.

Consequently, for (n,r1,72) = (2r+1,7,7) (r > 1), or (2r,r,r = 1) (r > 2), by
(5.2.26), we have

HO(P,Qb((n—4) — Dg) ~ H3(P,Op(n — r1 —ry — 5))®* ~ C®4,

Now we are going to compute the dimension of H 9(Dx,N, Dx/ X) Note
that, in this case,
Nby/x = Opx([Dx]) = Npy/x,

since Dg is triple point free, where Np, /x denotes the sheaf of germs of local

holomorphic cross-sections of the normal bundle of Dx in X. Since X is regular,
by (5.1.19), (5.1.20) and (5.1.23), we have
(5.2.33) |
dime H(Dx,Npy /x) = dimg¢ H°(X,Ox([Dx])) — 1
= dimc¢ H2(S, Os((n—4) — 2Dg)) — 1
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By the short exact sequences
0 — Op(—4) — Op((n —4) —2Dg) — Og((n — 4) —2Ds) — 0,

and (5.2.5), (5.2.6) and (5.2.7) replaced n by n — 4, we have
(5.2.34)
dim H%(S, Og((n — 4) — 2Dg))
= dimc H3(P,Op((n — 4) — r1 — 213)) — dimc H3*(P, Op((n — 4) — 2r1))

+dime H3(P, Op((n—4)—rs—2r1)) —dimg H*(P, Op((n—4)—2r3))
~ —dimc H¥(P,Op((n—4) —r1—72)) +1
= dimc H°(P, Op(ry + 2ry — n)) — dimc H°(P,Op(2ry — n))
+dim HO(P, Op(2r, +ro — n)) — dim H°(P, Op(2ry — n))
—dim H°(P,Op(r1 + 12 — 1)) + 1

_{20(?"—1)—{-1 if (n,ry,79)=2r+1,m,r) (r>1)

Sl Cr-1)+C(r-2) if (n,r1,72) = 2r,r,r—1) (r>2)
Then, by (5.2.33), we can know dimgc H°(Dx,Npy/x). We summarize the

results as follows: -

5.2.3 Proposition. Among surfaces S defined in (5.2.1) satisfying the
condition (5.2.14), the surfaces for which H°(Dx,Np, x) # 0 are only those
of types (m,r1,72) = (2r +1,7,7) (r > 1) and (n,r1,72) = (2r,7,7 — 1) (r > 2).
For those surfaces we have

d’imHO(Dx,../\/-Dx/X) =

%(r +2)(r+1)r if (n, 7"1,,1*2) = (2r + 1,r,7)(r>1)
%(r +2)(r+1)+ %(7’4— Dr(r—1)—1 if (n,r1,7re) = 2r,r,r—1) (r>2)

Now we are going to show that the condition (iii) in Theorem 4.10 is satisfied
by the surface S of type (2r+1,r,7) and (2r,r,7 — 1) with r > 4. The condition
r > 4 is in order that S satisfies the condition (5.2.14). We remember that
the normal model of the surface S is an irregular, minimal algebraic surface of
general type. Since H°(X,0x) = H°(X,Q%) = 0, and since S is triple point
free, the condiotion (iii) in Theorem 4.10 for the surface S is restated as follows:

(5.2.35)  The homomorphism
5® : HY(Dx,Npy/x)
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— Hom-C(HO(X, Qg(),HO(Dx,Q%)X)/ImHO(Ds,QlDS)

defined by taking contraction and the pull-back is injective.

The strategy to see that this condition is satisfied is to reduce the condition
on X to the one on S.

5.2.4 Proposition.

(i) H°(Dx,Np,/x)
~ Hom Os (wS(—zDs), wg)/Im Hom Og (wS(—Ds), ws)

(i) H(X, Q%) ~H(S, ws(=Ds)),

(i)  H°(Dx,Qp,) ~ Hom 04 (Os(—Ds),ws)/Im Hom o4 (f.Ox, ws)
(iv) H°(Ds,Qp,) =~ Hom 05 (Os(~Ds),ws)/Im Homo, (Os, ws)
(v) H°(Dx,Qp,)/ImH®(Ds,Qp,)

~ Hom o4 (05, ws)/ImHom o4 (fOx,ws)

where wg 1= Og(n—4) is the dualizing sheaf of S (n = the degree of S in ]P’3(C) ),
and f: X — S the normalization map.

vProof. In what follows we denote by the symbol V the dual objects of various
things such as cohomology groups, locally free sheaves, e.t.c..

* (i) By the duality and the adjunction formula, we have
(5.2.36) HO(Dx,NDX/X) o HI(DX, NL\SX[X ®ﬁDX)V o~ Hl(Dx,K)qDX)V,
(5.2.37) Hl(Dx,K)qDX)V EEXt(lDX(KX|DX,Kx),

- where Rp, denetes the canonical bundle of Dx, and Kx that of X. Hence we
have

(5.2.38) H®(Dx,Np,/x) ~ Exty, (Kx|py, Kx)-

On the other hand, since Hom o, (KX|DX,KX) = Exty, (Kx,Kx) = 0, the
short exact sequence

O%Kx(*Dx) —>KX _’KXIDX — 0

implies the short exact sequence

0 — Exty, (Kx|px, Kx) — Homo, (Kx(—Dx), Kx)
(5.2.39) : '
— HOm@X(Kx,Kx) —0
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By (5.2.38) and (5.2.39), we have
(5.2.40) HO(Dx,NDX/X) ~ Homox (Kx(—Dx),Kx)/ImHOIn Ox (Kx,Kx).

In order to relate the right-hand-side of (5’.2.40) to the cohomology concerning
S, we consider the dual of (5.2.39). Then, since H*(X,Kx) ~ H(X,0x) =0,
we have the following exact sequence: :

(5.241) 0 — H*(Dx,Kx|py) — H*(X,Kx(-Dx)) — H*(X,Kx) — 0.
Comparing (5.2.39) with (5.2.41), we have

(5.2.42)
{HOI’II Ox (Kx(-—Dx), KX)/ImHom Ox (Kx, Kx)}v

~ Im {H"(Dx, Kx|pyx) — H*(X, Kx(~Dx))}
~ Im {H'(Dx, (f*'ws)(—Dx)ipx) = H*(X, (f*ws)(~2Dx))}
~ Im {H'(Ds,ws(—Ds)ps) — H*(S,ws(—2Ds))}

Here the second isomorphism follows from the adjunction formula

Kx = (f*ws)(=Dx) = f*(ws(~Ds))

and the third one follows from (5.1.22) and the commutative diagram with exact
rows

— . H'(X,Kx) ——  HX,Kxpy)

(5.2.43) I |
—— HY(S,ws(~Ds)) —— H'(Ds,ws(~Ds)ips)

——— H*(X,Kx(-Dx)) —— H*X,Kx) —— 0

I I

—— H*(S,ws(-2Ds)) —— H*(S,ws(—Ds)) —— 0,
where the horizontal exact sequence at the bottom follows from
0— wS(—QDs) — wg(—Ds) — ws(-—Ds)IDS — 0. 7

Taking the dual of the horizontal exact sequence at the bottom in (5.2.43), we
have

ce— Ext%os(wS(—Ds)IDS,wS) — Homos (ws(—QDs),ws)
(5.2.44) :
— Homos (wg(—Ds),ws) — 0.
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Comparing the horizontal exact sequence at the bottom in (5.2.43) with (5.2.44),
- we have

4 Im{H"(Ds,ws(~Ds)\ps) — H*(S,ws(—2Ds))}"
(5.2.45)
~ Hom o4 (ws(—2Dg),ws)/ImHom o4 (ws(—Ds), ws).

Cosequently, by (5.2.40), (5.2.42) and (5.2.45), we have the assertion (i).
(i) The assertion (ii) follows froﬁi the adunction formmula.
(iii) By duality, we have

(5.2.46)  H°(Dx,Qp, )Y ~ HY(Dx,Op,), and

(5.247)  H(Dx,Opy) ~ Exth, (Opy, Kx).

By the éhort exact sequence of Ox-modules |

(5.2.48) 0= Ox(=Dx) — Ox — Op, — 0,

we have the exact sequence |

0« EXt%,)X (ODX,K)()%—- Hom o, (Ox(-—Dx),'Kx)
(5.2.49)
— HOmOX(OX,KX) «— 0.

Hence we have
(5.2,50) |
Extg, (Opy, Kx) ~ Hom o, (Ox(—Dx), KX)/Iqum ox (Ox,Kx).
By (5.2.46), (5.2.47) and (5.2.50), we have
(5.2.51) H(Dx,Qb, )~ Hom oy (Ox(~Dx), Kx)/ImHom o, (Ox, Kx).

Since X is regular, i.e., H}(X,Ox) = 0, the exact sequence
0 — HY(Dx,Op,) — H*(X,0x(-=Dx)) — H*(X,0x) — 0

follows from (5.2.48), which is dual to the exact sequence in (5.2.49). Comparing
(5.2.49) with the exact sequence above, we have

(5.2.52) ,
{Hom Ox (Ox(—Dx), KX)/ImHom Ox (Ox,Kx)}v

~ Im{H"(Dx,Opy) — H*(X,0x(~Dx))}
~ Im{Hl(Ds,g*ODX) - ‘H2(S, f*OX(_DX))}~



54

Ston TsuBol

Here the second isomorphism follows from fact that the maps g : Dx — Dg
and f: X — S are finite maps. Taking the image of the short exact sequence
of Og-modules

0— f*OX(_DX) - f*OX — g*ODx — 0.
From this, the long exact sequences

M EXt}Q (Q*ODxawS) — HOmOS(f*OX(_DX),wS)
S

— Homos (f+Ox,wg) < 0,
and :
.-« — HY(Ds,9.0py) — H%(S, f+Ox(—-Dx) — H?*(S, f.Ox) — 0,

follows, which are dual to each other. Therefore we have

[Im {Hl(DS=g*0Dx) - Hz(Sv f*OX(_DX)}]V
(5.2.53)
~ Hom o4 (f+Ox(—Dx),ws)/ImHom o4 (f:Ox,ws).

Consequently, by (5.2.51), (5.2.52), (5.2.53) and (5.1.22), we have the assertion
(ii). |
(iv) By duality, we have
(5.2.54) H%(Ds,Qp )Y = HY(Ds, Ops),
(5.2.55) HY(Ds,Opg)Y ~ Exty (Ops,ws)-
By the short exact sequence of Og-modules
(5.2.56) 0 — Os(—=Ds) — Og — Opgy — 0,
we have the exact sequence
. 0 — Extg (Ops,ws) « Hom 04 (Os(—Ds),ws)
(5.2.57) -
— Hom o4 (Og,ws) < 0.
Hence we have |
(5.2:58)  Extp,(Opg,ws) ~ Hom g (Os(—Ds),ws)/ImHom 05(Os, ws).
By (5.2.54), (5.2.55) and (5.2.58), we have the assertion (iv)

(v) Consider the following exact sequence:

0 — Homog (Os(—Dé), wg)/ImHom o4 (Os,ws)
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(5.2.59) — Hom Og (OS(—Ds), ws)/Im Hom Og (f* OX', w,gv)
— Hom 04 (Os,ws)/ImHom ¢4 (f«Ox,ws) — O.
Here, by the assertions (ii) and (iii) of the proposition, we identify

Hom o4 (Os(—Ds),ws)/ImHom o4 (Og,ws)
(resp. Homopg (Os(—Dg),ws)/ImHomog (f+Ox,ws))
with H%(Dg, Q) (resp. H*(Dx,Q}, )). Now let us recall that the space

{Hom os((’)g,wg)/ImHom (oF (f*OX,wS)}

can be identified with a subspace of HO(DX,_Q})X). Since g : Dx — Dg is
a double conering map, there is an isomorphism o on Dx with ¢ = idp,.
Therefore, if we denote by H°(Dx,Qp, )t (resp. H(Dx,0}, )~) the subspace
of H°(Dx, Q) consisting of differential 1-forms w on Dx with o*w = w (resp.
0*w = —w), then we have

HO(DXaﬂ})X) = HO(DX)Q})X)—i_ @HO(DX7Q%)X)—1 and
H%(Dx,Qp,)* =~ H%(Ds,9},)-

Now, by the assertion (iii) and (iv) and (5.2.59), we infer that

{ Hom 04(0s,ws)/ImHom o4 (feOx,ws) } N H°(Dx,Qp )+ = {0},

and the homomorphism

(5.2.60)

Hom o4 (0s,ws)/ImHom os (f.Ox,ws) — H°(Dx,Qp, )/H*(Dx,2p,)*
~ H°(Dx,Qp, )/Im H°(Ds, Q)
is surjective. Consequently, we conclude .thekhomomorphism in (5.2.60) is an

isomorphism.
’ Q.E.D.

For any ¢ € Hompg(ws(—2Dg),w) and w € HO(S,ws(—Dg)) we define
¢ ow € Hompg (Os(—Ds),ws) by

(pow)(s) :==o(w®R s) for se O§(~D5),
and put

V¢, = {¢ ow €& HomoS(OS(—Ds),ws) Iw € HO(S,wS(—DS)) }
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With this notation, by Proposition 5.2.4, we can restate the condition in (5.2.35)
as follows: ‘

(5.2.61) If
Vs N Im{ Hom o4 (Os,ws) — Hom o4 (Os(-—Ds), ws) }
— Im {Hom o4 (f«Ox,ws) — Hom o4 (Os(—Ds),ws) } ,
then

(]5 e Im { Hom Os (ws(—Ds),wS) — Hom Og (OS(—-QDs),wS) }

In what follows we shall restate the condition (5.2.61) in terms of the homo-
geneous polynomial rings for the algebraic surface with ordinary singularities
defined by the equation (5.2.1). We denote the homogeneous coordinates of
P3(C) by (Xo : X1 : X2 : X3), the polynomial ring of variables Xo, X1, X2, X3
by C[Xp : X1 : X2 : X3], or simply by C[X], the homogeneous part of degree
k of the graded polynomial ring C[X] by C[X]x, and that of the homogeneous
ideal I(S) generated by the polynomial which defines S in C[X] by I(S)k-

5.2.5 Proposition.
In what follows fi, fo are the same ones as in the equation (5.2.1).
(i) Hom o4 (ws(—2Ds),ws)
~ { (¢1,}2, #3) € C[X]2r, ® C[X]r+r, @ Cory [X]
modulo 1(S)2r, ® 1(S)r+r, ® I(S)2r,
| ¢p1fo—d2f1 €1(S),¢3f1 —d2f2 €1(S)}.
(ii) Hom o4 (Os(=Ds),ws)
~ {(F,G) € C[X]n—atr, ® C[X]n—a+r,
modulo 1(S)n—a+r, D L(S)n—atrs
| | 2F — LG EI(S)},

iii) By the isomorphism in (i) above, we represent an element
Y

¢ c Homos (wg(—2Ds),wS)
by . :
(¢1, 92, #3) € C[X]2r; & C[X]r4r, ® Cor,

with b1fo — d2f1 €1(S) and ¢3fi — p2f2 € I(S).

Then the subspace Vy of Hom o4 (Os(—Ds),ws) defined in (5.2.61) can be rep-
resented as : '
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Vo = { (w11 + wad2, w102 + w2é3) € ClX|n—t4r; ® C[X]n—sr,
modulo 1(S)n—a+r, ® I(S)n—a+r, |
I (wl’wz)‘ S C[X]n—4—7‘1 ® C[X]n—4—7'2 }:

where we tdentify Hom o4 (Og(—Dgs),ws) with the space on the right-hand-side
in (i) by the isomorphism there. '

(iv) By the isomorphism in (i5) above, we identify Hom o 4 (Og(—Dg),ws)
with the space on the right-hand-side in (i1). Then we have

(a) Im{Hom o4 (Os,ws) — Hom o4 (Os(—Dgs),ws) }
={ (i, fow) € C[X]n—44r, ® ClX]n—44r,
modulo 1(S)n—a4r, ®I(S)n—a4r, | w € C[X]n—4}
(b) Im{Hom o4 (f«Ox,ws) — Hom o, (Os(—Ds),ws) }
= { (w1 fit+w2f2) f1, (Wi fi+waf2) f2) € C[X]|n—tgr OC[X]pn—t4r,
modulo 1(S)p—a+r, D I(S)n—a+r, |
| (w1, w2) € C[X]n—t—r, ® C[X]n—ary }

(v) By the isomorphism (1) above, we identify Hom og(ws(—2Dg),ws) with
the space on the right-hand-side in (i) by the isomorphism there. Then we have

Im{Hom o4 (ws(—Ds),ws) — Hom o4 (ws(—2Dgs),ws) }

= {(Ff1, 3(Ff2 + Gf1),Gf2) € C[X]2r, ® C[X]r,4r, ® C[X]2r,
modulo I(S)ar, ® I(S)r,+r, ® I(S)2r,
| (F,G) € C[X])r, @ C[X]r, with f2F - f1G €1(8)}

Proof. (i) A locally free resolution of the sheaf Op(—2Dg) (P = ]P’3((C))‘is ob-
tained as follows:

0— Op(—2r; — 7’2) ® Op(—11 — 219)
(5.2.62) 2, Op(—2r1) & Op(=r1 — 72) ® Op(—2r3)
L, 0p(—-2Dg) — 0, (exact)
where the map a1 and B; are defined by
a1(a,b) = (af2, —afi — bf2,bf1)

for (a,b) € Op(—2r2) ® Op(—r1 — 212)

and
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Bi(A,B,C)=Aft + Bfif2 +Cf3 |
for (A, B,C) € Op(—2r1) ® Op(—r1 — 12) ® Op(—2r2)

Note that we consider here f; as a cross-section of Op(r;) for ¢ = 1,2. Tensoring
ws =~ Og(n — 4) to the exact sequence in (5.2.62), we have

0 — wg(—2r —-vrz) D wg(—ry — 2rg)
(5.2.63) 4, ws(—2r1) ®wg(—r1 —1r2) Dwg(—2r2)
2, ws(=2Dg) — 0, (exact)
Hence we have the exact sequence

0 «— Hom o4 (ws(—2r1 — 12) ® ws(—r1 — 2r2), ws)

 « Hom o4 (ws(—2r1) ® ws(—r1 — 72) ® ws(—272), ws)

— Hom ¢4 (ws(—2Ds),ws) < 0,
which is isomorphic to

0« I'(S,05(2r1 + 12)) ® (S, Og(ry + 2r2))
(5.2.64) — I'(S,05(2r1)) ®T(S, Os(r1 +2)) ®T(S, Os(2r2))

— Hom o4 (ws(—2Dg),ws) « 0.
Now we will clarify what the map

P(S, Os(2r)) ® T(S, Os(r1 + r2)) ® I(S, Os(2r2))
— F(S, 05(27"1 + 7‘2)) @ F(S, Os(’rl + 27‘2))

above is. Assume that N |
(¢1, 2, ¢3) € T(S,05(2r1)) ®T(S, Os(r1 + r9)) ® T(S, Os(2ra))
corlfesponds to
(1, 92) € T(S, 05(2r1 +12)) @ (S, Os(r1 + 2r2))

through this map. Then, since (a,b) € wg(—2r1 —r2) ®wg(—r1—2r2) is assigned
to ,
(afz, —afi — bf2,bf1) € wg(—2r1) ®ws(—r1 —T2) ® ws(—2r2)

by the map o} in (5.2.63), we have

Yra + b = ¢1(afe) + ¢2(—afi — bf2) + #3(bf1)
= (¢p1f2 — d2f1)a + (¢3f1 — d2f2)b
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for any (a,b) € wg(—2r; —re) ® ws(—r; — 2r3). Hence we have

Y1 =0¢1fo—d2f1 and ¢o = @3f1 — g2 fo.
Therefore, by (5.2.64), we conclude that
Hom o (ws(—2Dg), ws)
~ Ker{I(S,0s(2r1)) ® T(S, Os(r1 +13)) ® (S, O5(2r3))
— T(S, Os(2r1 +13) ®T(S, Os(r1 +2r3)) }
= { (91, 62,63) € ClX]or, ® C[X]ryr, ®C[XJrs
| ¢1f2 — d2f1 € I(S), d3f1 — $2f2 € I(S) }.
Here we identify I'(S, Og(r)) (r € N) with C[X], modulo I(S), the ideal of S in
C[X]-.
(ii) A locally free resolution of the sheaf Op(—Dg) is obtained as follows:
(5.2.65)
0 — Op(—r1 —r2) = Op(—r1) ® Op(—72) X Op(—Ds) — 0 (exact),
where the maps as and (3 are deﬁned by

asz(c) = (cfa, ——cfi) for c€ Op(—r1 —12),.
and
ﬁz(A, B) =Afy + Bfs for (A, B) € Op(—?”l) ) Op(—Tz).

Restricting the eaxct sequence in (5.2.65) to S, we have |
(5.2.66)
0 — Og(—r1 frz) 2, Os(—r1)®O0s(—7r3)’ b, Os(—=Dg) — 0 (exact),
From this it follows that
Hom 04 (Og(—Dg),ws)

(5.2.67) ~ Ker{Hom o, (Os(—r1) ® Os(—r2),ws)
- HOTnOs (OS(_rl - TZ)’WS) }
~ Ker{I'(S, C’)s(fz ~4+7))®T(S,0s(n—4—17))
| — (S, 05(n —4+71 +19)) }.
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Now we consider what the map
T(S, O(n — 4 +11)) OT(S, Os(n — 4 — r3)) — (S, Os(n — 4+ 11 +72))
is. Assume that
(F,G) € (8, 0s(n — 4 +11) ®T(S, Og(n — 4 —13))

is assigned to H € I'(S,0g(n — 4 4+ r1 + r2)) by this map. Then, since a €
Os(—ry — o) is assigned to (af2, —afi) € Os(~r1) ® Os(— r2) by the map oz2
in (5.2.66), we have

(afg)F —(af1)G = Ha

for any a € Og(—ry — r2). Hence we have

H = foF — f1G.
Therefore, by (5.2.67)
Hom OS(OS(“DS),WS)

= { (Fa G) € C[X.]n—4+1‘1 S (C[X]'n—4+rz
modulo 1(S)n—a—r, ® I(S)n—atr,
| f2F - 1G € I(S) }.

(iii) By the sheaf exact sequence
0— Op(-—4) - Op((’n - 4) - Ds) — ws(—Ds) — 0,

we have

(5.2.68)
H°(S,ws(—Dg)) ~ H*(P,Op((n — 4) — Ds))
~ {wifi +wafe | (wi,ws) € C[X]n—g—r, ® C[X]n—a-r, }

Let (41, ¢2, #3) € C[X]2r, ® C[X]r,4r, ® C[X]2r, be the element corresponding
to w € HO(S,ws(—~Dg)) by the isomorphism in (i) of the proposition. Then
b1fa — d2fi € I(S) and ¢3f1 — ¢af2 € I(S). Considering w as an element of
HO(S,ws(—Ds)), let w1 f1 +wafa € C[X]n_4 be the element corresponding to
w by the isomorphism in (5.2.68), where (w1,w2) € C[X]|n—4—r; ® C[X]|n_g—r,-

. Let (F,G) € C[X])n—a+r, ®C[X]n—a4r, be the element corresponding to ¢pow €

Hom o (Os(—Ds),ws) modulo I(S)n—s+4r, ® I(S)n-a+r, by the isomorphism in
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(ii) of the proposition. Then foF — f1G € I(S). Now, for any af; + bfs €
Os(—Dg) with (a,b) € Og(—r1) ® Os(—7r3), we have

(pow)(afr +bf2)

= ¢(w® (af1 +bf2)) = p((w1f1 +wafo) ® (afr +bf2))
= ¢((aw1) f7 + (aws + bw1) f1f2 + (bws) £3)

= aw1¢1 + (awg + bwi)d2 + bwads

= (w11 + wad2)a + (w12 + wags)d
Therefore we have
(w191 + waga)a + (w1¢2 + w2d3)b = Fa + Gb.
Since this e(iuality holds for any (a,b) € Og(—r1) ® Og(—r3), we conclude that

F=wid) +wads modulo 1(S)p—4+r,, and
G = w1 +wads modulo I(S)p—gir,,

which implies the assertion (iii).

(iv) (a) Since
HomOS(OS’wS) = HO(SawS) = HO(Sa OS(TL - 4))7

we identify Hom og(Og,ws) with H°(S, Os(n—4)). Let (F,G) € C[X]p—44r, ®
C[X]n—44r, with foF — fiG € I(S) be the element corresponding to the image
of w € Hom o4(Os,ws) in Hom o4 (Os(—Ds),ws) by the isomorphism in (ii).
Then, for any element af; +bfs € Os(—Dg) with (a,b) € Og(—r1) & Og(~r2),
we have

w(afr + bfa) = (af1 +bf2) Qw
= a(fiw) + b(fow)
=af|s + bGs,

where Fig and G|s are considered as cross-sections of Og(n —4+1r1) ® Og(n —
4 + 72). Since this equality holds for any (a,b) € Os(—r1) ® Og(—r2), we have

F = fiw modulo 1(S)n—44r,, and
G = fow modulo I () —

which implies the assertion (iv) (a).

(iv) (b) : We consider the following commutative diagram consisting of
exact rows and columbs:
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0
ODS 0
0 —— Og — fiOx —— wpQuwf —— 0
(5.2.69) T ' H T+ |
0 —— Og(-Ds) —— fiOx —— ¢.0p, —— 0

0 : Kery

N

0,

where the first row is due to J. Robert ([9]), the second row follows from the
short exact sequence

0— Ox(—Dx) id OX — ODX —0

and the fact Os(—Dg) =~ f.Ox(—Dx), and the map 7 is the one induced from
the identity map on f.Ox. By the second row in the diagram (5.2.69), we have

0 — Hom o, (f+Ox,ws) — Hom o4 (Os(—Ds),ws)
(5.2.70) |
— Extd (9+Opy,w)) — -+

The exact sequence which is dual to (5.2.70) is
(5.2.71)
0 — Hz(Sv f*OX) - Hz(sa OS(_DS)) A Hl(Sag*.ODX) =

~1 ~1
0« H2(X, Ox) — Hz(X, OX(_DX)) e,

On the other hand, the dual map of H?(X,Ox(—Dx)) — H?*(X,0Ox) in the
diagram (5.2.71) is
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(5.2.72)

H?(X,0x)Y ——— H*X,0x(-Dx))V
HY(X,Kx) —— HYX,0x([Dx])® Kx) —— H°(X, f*ws)

H°(S,ws(—Ds)) ——  H°(S,ws ® f.Ox).
Therefore, by (5.2.70), (5.2.71) and (5.2.72), we have the commutative diagram

Hom o4 (f.Ox,ws) —— Hom o, (Os(~Ds), ws)

(5.2.73) 4 : 4
H%(S,ws(~Ds)) —— H(S,ws ® fOx).

By the isomorphism on the left-hand-side of (5.2.72), we identify Hom o4 (f+Ox,
wg) with H°(S,ws(—Ds)), which is identified with the space

{ w1f1 +w2f2 modulo I(S)n_4 | (wl,wg) S (C[X]n—4—'r1 @D C[X]n—zl—-'rg }

Let (F,G) € C[X]n—a4r, ® C[X]n—a4r, modulo I(S)p—a+r, & I(S)n_g4r, with
foF — f1G € I(S) be the element corresponding to the image of wy.fi + wafo
(modulo 1(S),—4) € Hom o4 (fOx,ws) in Hom o (Os(—Ds),ws) by the iso-
morphism in (ii) of the proposition. Then, for any element af; +bfs € Os(—Dg)
with (a,b) € Og(—r1) ® Og(—r3), we have

(wif1 +wafz)(afi + bf2)

= (af1 +bf2) ® (w1f1 + w2 f2)
=a(wifi +waf)fi +b(wifi +waf2)fe
= OIF|S +bG|S. ,

Therefore, by the same reasoning as before, we have

F = (wifi +wafe)fi modulo I(S)p—44r, and
G = (wifi +wafa)fi modulo I(S)n—44r,,

which imply the assertion (iv) (b).

(v) By the similar reasoning to prove the assertion (ii), we can identify
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Home, (ws(—Ds),ws) with the space

{ (F,G) €C[X],, ®C[X]r, | foF = 1G € I(8) }-

‘We identify Homep, (ws(—2Ds),ws) with the left-hand-side in (i). Under these

identifications, let
(¢1, P2, ¢3) € C[X]Z'f.‘l ® C[X]T1+7‘2 S” C[X]2"f‘2
modulo 1(S)ar, ® I(S)ry+ry ® I(S)2r,
with ¢1f2 — ¢2f1 € I(S) and ¢3f1 — d2f2 € 1(S)

be the element of Hom o4 (ws(—2Dg),ws) which is assigned to (F, G) € C[X]., &
C[X],, with foF — f1G € I(S) by the isomorphism Hom o4 (ws(—Ds),ws) —
Hom o4 (ws(—2Dsg),ws). Then, since the sheaf homomorphism ws(—2Dg) —
wg(—Dg) is given by ’

af? +bfufa +ff o (afi + sbI)fy + (Gbf + e
- for (a,b,c) € Og(ﬁ—4—2r1)®05(n—4—r1——7“2)65(’)5(77,——4‘— 2rg) -

we have

A ap1 + bpa + cop3 = (af1 + —;—bfz)F + (%bfl + sz)G

= a(Ff1) + ‘;‘b(Ffz + G f1) + c(Gf2)-

Since this equality holds for any
(a,b,c) € Og(n—4—2r1)®Og(n—4—r;—12)®Os(n—4-2r3),
we have

(61, P2, ¢3) = (Ff1, 3(F f2 + Gf1),Gfa)
modulo 1(S)ar, & I(S)rsrs ® L(S)2ra)

which implies the assertion (v).
Q.E.D.

5.2.6 Lemma. If (n,r1,72) = (2r + 1,7,7) (r > 1), or (n,r1,72) =
(2r,r,7 — 1) (r > 2), then we have

Im{ Hom Os (u)s(—-Ds),ws) — Hom Os (u)g(—QDs),wg) }

= { /\(f12’ f1f2’f22) € C[X]2T1 S (C[X]"‘1+1‘2 EB(C[).C]Q'f?
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modulo I(S)ar, ® I(S)ry+r, ®I(S)2r, | A€ C* }
where we identify Hom o4 (ws(—2Ds),ws) with the space

{ (b1, 62, 85) € ClX]or, ® C[X]14r, ® C[Xs,
modulo 1(S)2r, ® I(S)r,+r, ® I(S)2r,
| $1f2 — d2f1 €1(S), @3f1 — da2f2 €1(S) }

(cf. Proposition 5.2.5 (i)).
Proof. By Proposition 5.2.5 (v), an element of

Im{ Hom Os (wg(;Ds),ws) - Hom Og (wg(—2D3),wg) }
is represented as
1
(Ff1, i(FfQ + Gfl): Gf2) € (C[X]QH ©® C[X]H—H”z ® C[X]Z’!‘z
modulo  1(S)zr, ® I(S)r,4ry ® 1(S)2r,,
where (F,G) € C[X],, & C[X],,, with foF — fiG € I(S). We have

2r—1 ifn=2r,ri=rro=r—1

d F - fiG) < =
e (f2 hG)smitm {27’ ~ ifn=2r4+1,ry =79 =2r

Hence, in both cases, we have

deg (Aff + Bfifo + Cf3) > deg(foF — f1G).

Therefore, since foF' — f1G € I(S), we have
ng - flG =0.

Since (f1, f2) = 1in C[X], and since deg F' = deg f1 and deg G = deg f2, the
above identity implies that there exists A € C* such that

(F,G) = A(f1, f2)

Consequently , we conclude that any element of
Im { Hom Os (wS(—Ds), ws) — Hom Os (ws(f2D5), ws) }

is represented as

)‘(fizi.flf% f22) € (C[X]27"1 ® C[X]‘I‘l-!-?‘z ©® C[X]Q?"z



66 Suon TsuBol

modulo 1(S)ar, ®I(S)r,4r, ® I(S)2r,  for A€ C*.

Q.E.D.

By Proposition 5.2.5 and Lemma 5.2.6, in the case of (n,r1,72) = (2r +
1,7,7), or (n,r1,72) = (2r,7,7 — 1), the condition (5.2.61) is restated as follows:

(5.2.74)  Assume that we are giyen an element
(61, b2, $3) € HO(Os(2r1)) ® HO(Os(ry +72)) @ HO(Os(2r2))
satisfying the condition
b2 — 21 €1(S), and dafy — gafa € 1S)

For this element (¢1, ¢2, p2), if

{ (w11 +waa, w12 + wads) |
| (Ld]_,(dz) € HO(Os(n—‘4—r1) EBHO(Os(n-—4—’I"2)) } ’

is included in

{ ((wifr +wafo)fr, (wifi +waf2)fe
' | (wi,ws) € HY(Og(n—4—71)® H*(Os(n—4—r2)) },

is the element (¢1, P2, ¢3) represented as

(¢1, B2, ¢3) = A(ff, f1f2, £3)

for some A\ € C* ?

From now on we consider this problem.

5.2.7 Lemma. An element
(61, 62, ¢3) € H*(Os(2r1)) © H*(Os(r1 +72)) @ H*(Os(2r2))
satisfies the conditions

¢1fo — paf1 €I(S) and ¢3fi — da2f2 €1(S)

if and only if there exists as element

(6,9, A) € H(Os(2r1 + 12 — n)) ® H(Os(ry + 2r — n)) & H*(Os)
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such that:
¢1 = (\f1 —¥C)fr + (6B) fr + (¢C) fo,
(5.2.75) ¢2 = AMf1fa — (WC) f2 — (¢A) f1, and
¢3 = (WA)f1 + (WB)fa + (Afo — ¢A) fo

where f = Af?2 +2Bfifo + Cf2 (A € C[X]n—2r, B € ClX|pner —ry, C €
C[X]n—2r,) is the defining equation of S in P3(C).

Proof. The proof of “If part” is just a direct calculation. We will prove “only
if part”. Assume that ¢;fo — @2 f1 € I(S) and ¢3fi — g2 f2 € I(S). Then there
exists an element (¢,7%) € H%(Og(2r; +re — n)) & H*(Os(ry + 2r2 — n)) such
that: '

(5.2.76) $1fa — g2 fi = (PA) 1 + (¢B) frfa + (60) f3,
(5.2.77) ¢3fi — d2fa = (WA)ff + (WB) fifa + ($O) f3.
By (5.2.76) we have

(5278)  {d1-($B)1~ (6O)fa }fo = { (BA)fs + 2 }1.

Simce (f1,f2) = 1 in C[X], the above equality implies that there exists an
element ¢’ € H°(Og(r1)) such that :

(5.2.79) (@A) f1 + b2 = ¢' fa.
From (5.2.78) and (5.2.79) it follows that

$1 =& fr+ (¢B)f1+ (¢C)f2
b2 = ¢ f2a — (dA) f1.

On the other hand, by (5.2.77), we have ‘
(5281)  { ¢s— WA~ @B)fo}fr = { (WC)fa + b2 } fo-

Since (f1, f2) = 1in C[X], the above equality implies that there exists an element
' € H°(Og(rs)) such that |

(5.2.82) (WC) fo + 2 = f1.

From (5.2.81) and (5.2.82) it follows that

{ ¢ =V f2+ WA f1 + (VO) fa
b2 =Y fr — WC)fa.

From the second equations in (5.2.80) and (5.2.83), we have

 (5.2.80) {

(5.2.83)
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¢ f2 — (@A) fr =¥ fL — (¥C) fa,
that is,
(¢' +9C) f2a = (W' + PA) fr.

Since (f1, f2) = 1 in C[X], this equality implies that there exists an element
) € H°(Og) such that . | |
{ ¢+ (¥C) = Afi
Y+ dA = Af

Substituting ¢’ = A\f; — %C and ¢’ = Afa — ¢A into (5.2.80) and (5.2.83), we
have the expressions in (5.2.75). ' ;
Q.E.D.

5.2.8 Proposition. In the case (n,r1,72) = (2r +1,r,r) (resp. (n,r1,72)
= (2r,r,7—1), (5.2.73)), which is equivalent to (5.2.35), holds if r > 3 (resp.T =
4).

Proof. By Lemma 5.2.7, the element (¢1, ¢2,¢3) in (5.2.74) is expressed as in
(5.2.75). From the “if part” in (5.2.74) it follows that for any

(w1, w2) € H(Og(n —4—11)) ® H'(Os(n — 4 —ry))
there exists an element

(W}, wh) € H(Og(n—4—11)) ® H'(Os(n—4—r3))
such that; as an element of Op(n + r; — 4),

(5.2.84)

w11 + wad2 .
= { wi(Afi = ¥C + ¢B) + w2 (M f2 — A} f1 + {w1(¢C) — w2 (¥C)} f2
= (wif1 +wafa)fi +@f

for some ® € H°(Op(r; —4)), where f is the polynomial defining the surface S
(cf. (5.2.1)). Since (f1, f2) = 1 in C[X], (5.2.84) implies that

fi | wi(¢C) — w2 (pC) — 2Cfa.
We may assume that fo 1 C, and so
A | wid—wed — Bfe.

Therefore, there exists an element ¥ € H°(Op(ry — 4)) such that:
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w1 —wath = U f) + D fy,
that is,

w1¢_w2¢ € (f17f2)

for any (wi,w2) € H(Op(n—4—11)) ® HY(Op(n — 4 — r3))

(5.2.85)

By (5.2.85) we have wi¢ € (f1, f2) (resp.watp € (f1, f2)) for any w; € HO(Op(n—
4 — 1)) (resp. for any wy € HO(Op(n — 4 — 13))).

i) In the case n = 2r +1, r; =72 = r : we have degd = degep = r — 1,
degw; = degws =r—3 and deg f = deg fo =7, sow; & (f1, f2) and ¢ & (f1, f2)

(resp.w2 & (f1, f2) and ¥ & (f1, f2)). If ¢ # 0, or b # 0, we have a contradiction
to that (fi, f2) is a prime ideal. Hence we have ¢ = ¢ = 0. Consequently, we

have
(¢1, 02, ¢3) = A(f1, fufo, f2)  for AeC
as required.

ii) Inthe casen = 2r, ry =7, rg = r—1: Wehavedeg¢—r 1,degy = r—2,

degwy; = r — 4, and degws = 7 — 3, so w1 & (f1,f2) and ¢ & (f1, f2) (resp.
wa & (f1, f2) and P € (f1, f2))- Hence by the same reason as in the case (1), we
have also the same comclusion.

Q.E.D.

5.2.9 Theorem. Under the condition (5.2.14), the infinitesimal mized
Torelli holds for an algebraic surface S with ordinary singularities deﬁned by the
equation (5.2.1).

Proof:. Note that the condition in (5 2.14) implies n > 6. Flrst we claim that
the map

H°(X,0x(-logDx)) ® H(D%,© D3 (=S¢ — 5t§)) — H°(D%, © Dy (—=3t%))

(cf. Theorem 3.26, (ii) in Part I) is surjective. Indeed, by Hurwitz’s formula, we
have

9(Dx) = 9(Dx) = 29(Ds) -1+ #ZCS
=riro(r1 +r0 —4) + 1+ rlrz(n -7y —T3)
—7"17"2(’)1—4) + 1

‘Therefore, since n > 6 and r; > r3 > 1, we have g(D%) > 3, which implies

HO(D%,Ops, (—Zt)) = 0.

As shown in [16], X is a non-singular algebraic surface of general type for which
the infinitesimal Torelli with respect to the cohomology H?(X,C) holds, that is,
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tihe condition (ii) in Theorem 4.10 is satisfied. Since X is of general type, we
have H%(X,©Ox) = 0. Therefore, by the exact sequence of sheaves in (4.24), we
have

(5.2.86) 0 — H°(Dx,Npy/x) — H'(X,0x(—log Dx)) — H'(X,0x).
We denote by
(5.2.87) h:HY(S,05) — HY(X,0x)

the composite of the homomorphism H*(S,05s) — H'(X,0x(—log Dx)) which
is derived from the short exact sequence in Theorem 3.19 in Part I and

H(X,0x(~log Dx)) — H'(X,Ox)
in (5.2.86). By Corollary 4.5 the homomorphism
H'(S,05) — H'(X,0x(—log Dx))

is injective, and if (n,r1,m2) # (2r +1,7,7) (r > 1), (2r,7,r — 1), (r > 2), by
Proposition 5.2.3 and (5.2.86), the homomorphism

HY(X,0x(~logDx)) — H'(X,0x)

is also injective. Hence the homomorphism A in (5.2.87) is injective for these
cases. This means that the infinitesimal Toelli for X with respect to the co-
homology H?(X,C) implies the infinitesimal mixed Torelli for S. Concerning
the case (n,r1,72) = (2r + 1,7,7) (r > 1), or (2r,7,7 — 1) (r > 2), the condi-
tion (5.2.14) implies r > 3 for the former case and r > 4 for the latter case.
Therefore, by Proposition 5.2.8, the condition (iii) in Theorem 4.10 is satisfied.
Consequently, by Theorem 4.10, we conclude that the infinitesimal Torelli holds
for such S that is defined by the equation in (5.2.1). '

Q.E.D.

5.3 Example
We shall give a toy example for which the sufficient condition for the map .

W H(S,05) — Home(H°(Qx, ), H'(Ox,))

to be injective in Theorem 4.12 holds. Let C;, (i = 1,2), be non-singular curves
defined over C, or compact Riemman surfaces, with the genuses g(C;) > 2, and
let g : C1 — Cy be a double ramified covering map where Cjp is a curve with
the genus g(Co) > 1. We put X := C; x Cy. Taking a point go € C3, we put
Dx = C1 X qo and Dg := Cy. We denote by p; : X — Dx the projection to
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the first factor, and by vx : Dx — X the inclusion map. We denote the same
letter g the map from Dx to Dg induced by g : C; — Cp. Then the push-out,
or fibered sum ‘ .

(5.3.1) S:=X]]Ds
Dx ’

of X and Dgs over Dx in the category of complex spaces exists (cf. [17]), and it
is a compact complex surface with ordinary singularities. By this construction,
we have the following commutative diagram

Dy X, X

(5.3.2) ] |7

Dg — §.
vs

5.3.1 Proposition. The surface S in (5.3.1) is projective.

Proof:. By a criterion for a line bundle over a comact complex space to be positive
due to H. Grauert ([3]), it suffices to show that there exists a line bundle £ over
S satisfying the following conditions:

(5.3.3)

(1) For any irreducible curve C on S, there exist a natural number k and a
cross-section s of L®* over C which has at least one zero point on C and
is not identically zero on C. :

(2) There exist a natural number k&’ and a cross-section s’ of L®* over S
which has at least one zero point on S and is not identicall zero on S.

For this purpose, we take a point pg € Dg with py € Ycg where X¢g denotes
the branch locus of the double covering map g : Dx — Dg. We put

1 =07 (g7 (po)),

which is a divisor on X consisting of two reduced, irreducible curves. Then the
push-out Dy := Di]l,, (;-1(p) Po of D7 and po over vx (97" (po)) is realized
as a curve on S. Further we take a point ¢ € Cy with ¢} # qo, and define
Dy == f(p3'(g})), which is a reduced, irreducible curve on S where p, denotes
the projection X = C; x Co — C,. Note that, since p;'(g)) — X — Dx
and f gives rise to a biholomorphic map between X — Dx and S — Dg, D, is
biholomorphic to p; ' (gj). Now we define

L= [D1 + DQ]
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We claim that the line bundle £ satisfies that the condition (1) and (2) in (5.3.3).
Indeed, it is obvious that £ satisfies the condition (2). Now we are going to check
the condition (1). Let C be an irreducible curve on X. In what follows, for each
i = 1,2, we denote by s; the cross-section of the line bundle [D;] whose zero
locus is [D;)]. :

i) In the case where C is neither an irreducible component of D; nor Ds:
s1 ® sg is a cross-section of £ which does not vanish identically on C and has at
least one zero point on C.

ii) In the case where C is one of irreducible components of Di: We take
a sufficiently large natural number k so that there is an effective divisor dy =
% _.p; on Dy, consisting of finite points py,- -+ ,px included in Ds — X¢ — po,
and being linearly equivalent to kpg. This is always possible,because [po] is a
positive line bundle on Dg. We put E} := %5_,p7* (97 (p;)), which is a divisor
on X. Then the push-out

E;:=E] H >r_ s
Bivx (g™ 1(pz))

of E; and XF_;p; over T8 vx (g7 (p;)) is realized as a curve on S which is
linearly equivalent to le, since ©¥_ p; is linearly equivalent to kpo. Let s}
be the cross—sectmn of the line bundle [kD1] whose zero locus is ;. Then the
cross-section s} ® s§ of the line bundle L* = [kD; + kD5)] satisfies the condition
(1) in (5.3.3) for the curve C.

iii) In the case where C' = D,: We take a sufficiently large number £ so that
there is an effective divisor dy = X%_,¢; on Ca, consisting of finite distinct points
qi,--- ,qe included in Cy — {qo,qh}, and being linerly equivalent to £gy. This

'is always possible because [gf] is a positive line bundle on C2. We put E» :=

>¢t_, f(p3"(g:)), which is a curve on S and is linearly equivalent to £Dy since
dy = X%_,q; is linearly equivalent to £gy on Ca. Let s be the cross—sectlon of

the line bundle [¢D5] whose zero locus is Ez. Then the cross-section s ® s of

the line bundle £®¢ = [¢D; + £D2] satisfies the condition (1) in (5.3.3) for the
curve C.
Q.E.D.

First we shall compute the dimension of the cohomology groups
HY(X,0x(—log Dx)) and H(S,O5) which are the infinitesimal locally trivial
deformation space of the pair (X, Dx) and S, respectively. We denote by p; :
X :=C1 x Cy — C; (i = 1,2) the projection to C;. Since Dx :=C1 X ¢, q € Co,
we have

(5.3.4) ©x(—log Dx) = piOc, ® p30c,(—9),
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where O¢,(—q) denotes the sheaf of germs of holomorphic vector fields on Cs
which vanish at ¢. Since :
(5.3.5)
s x s O¢, ® H*(C2, Oc. s=0,1
R°p1.p1©c, = O¢, ® R°p1.O0x = { ' (C2 Oc) .
0 ‘ otherwise,
there arises an exact sequence
(5.36)  0— E3° — H'Y(X,pOc,) — EX* 22 E2° _, H2(X, pt0c,)
from the Leray spectral sequence |
E;*° = H'(Cy, R*p1.p}©c,) = ELF* = H™+*(C1,p%00,)
(cf. [R. Godement: Topologie algébrique et théorie des faisceaux, Chapitre I,
Théoréme 4.5.1]). Since H°(C4, O¢,) = 0, it follows from (5.3.6) that
(5.3.7) HY(Cy,6¢,) ~ HY(X,pi0¢,).
Since '

© 2\ ® H*(C. 70 1 s=0,1
= 602 (—QO) &® Rsp2*0X = { % ( q0) ( 1 C )

0 otherwise,

by the same reasoning as above, we have 7
(5.3.8) H'(C3,0¢,(~q)) =~ H(X, 0506, (~9)).

Now the exact sequence of cohomology
(53.9) 0 — H%qo,Ngyc,) = H'(C2,00,(—q0)) — H(C5,0¢,) — 0.
follows from the folloing eaxact sequence of O¢,-modules

0— @Cz(“QO) - @C2 > WNgg/Cy 0.
By (5.3.4), (5.3.7) and (5.3.8) and (5.3.9), we have the following proposition

5.3.2 Proposition.
dim H'(X,©x(~log Dx)) = dim H'(C1,0¢,) + dim H(C2, ©c,(—q0))
= dim H'(C1,©¢,) + dim H'(C5,©¢,) + dim H (g0, Ny /)
= dim H'(X,0x) + dim H*(Dx,Np, /x),

where Np, /x denotes the sheaf of germs of holomorphic sections of the normal
bundle of Dx in X. -

Note that the third equality in Proposition 5.3.2 follows from the fact that
O©x =piOc, ®p20c,, andNp, x =p;Nyc,
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5.3.3 Corollary.

dimHl(S, @S)
= dim HI(OO, @co(—ZCo)) + dim H! (02, 902) + dim Ho(qo, Nqo/C’z)

where Ycg denotes the branch locus of the double covering map g : C; — Cp. |

Proof. Note that we may consider that Dx = C; and Dg = Cj in the diagram
(5.3.2). Since H°(Dx,Op,) = 0 by the assumption g(Dx) > 2, since S is
triple point free, and since the map H(X,©x(—logDx)) — H*(Dx,Opy) is
surjective by Proposition 5.3.2, the short exact sequence in Theorem 3.19 in Part
I implies the exact sequence

0— Hl(S, @s) — Hl(X, @X(——_log Dx)) D Hl(Ds,@DS(—ZCS))
(5.3.10) '
— HY(Dx,®p,) — 0.

Therefore, by (5.3.10) and Proposition 5.3.2, we obtain the equality in the corol-
lary.
Q.E.D.

Here we shoud notice that H 1(Co,O¢c,(—¢p)) is nothing but the infinitesimal
deformation space of the map g : C; — Cp. In fact, the following proposition
holds:

5.3.4 Proposition. There exists an analytic family (C1, G, Co, ™1, 2,
M;,01,¢1,%1) of deformations of the holomorphic map g : Cy — Cq (for the
notation see [12]), parametrized by a pointed complex manifold (My,01) which
enjoys the following properties:

(1) For any point t € M, the characteristic map at ¢
o¢ : TiM — H(Cot, O ¢y, (—Zcot))

1s defined, where Ty M denotes the tangent space of M at t, and Cop; :=
w71 (t), and oy is injective.

(2) The family s complete (versal) at any point t € M with respect to de-
formations of a holomorphic map.

Proof. By (4.6) the double branched covering map g : C1 — Cp is a stable
holomorphic map in the sense of J. N. Mather (cf. [7]). Therefore the results
in [11] is valid for deformations of g. The obstruction class of this deformation
sits in H2(Cy, ©c,(—Zcp)), which is zero. Hence, by Theorem 2.2 in [11], there
exists an analytic family (Co, G,C1, m1, 72, M1,01, ¢1,%1) of deformations of the
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holomorphic map g : C; — Cy, parametrized by a complex manifold My, which
enjoys the property that the characteristic map :

0-01 : TO]_Ml - HI(CO’ @Ca (—Zco))

at 01 € M is bijective, and also enjoys the property (2) in the proposition. Since
g is locally stable, after schrinking M sufficiently small around o if necessary, we
may assume that g; : C; — Co: is a double branched covering for any t € Mj.
Since ' '

dim H'(Cos, ©c,,(—Zcot)) = 39(Cot) — 3 + #Xcor

under the assumption g(Co;) > 1, where g(Cyt) denotes the genus of C,; and
#Yc,: denotes the cardinal number of the set Yy, it is independent on 't € Mj.
Cosequently, we conclude that oy : TyM — H'(Cypt, Oc,:(—Zcot)) is bijective at
any point t € M.

Q.E.D.

We denote by (Ca,ws, Ma, 02, ¢2) the universal family of deformations of
C3. Note that M, is a complex manifold of dimension 3g(C2) — 3, and the
characteristic map o : ‘
O¢ Tth d Hl(Cgt, @Cm)

is bijective at any point t € M>, where Cy; := w; '(t) for t € M. We take an
open neighborhood U of qp in Cs and define a map

D‘:ClXM2XU—>Cl><CQXU

by (ml':,t2) q,) - (ml,a (t2)¢2(q’))?q/) for (xlatl’ql) € C'1 X M2 X U7 where ¢2 is
the isomorphism from Cj to @; *(02). Then we obtain the following diagram:
CoxMyxU —Z— CyxCox U
G Xxidpy Xidy l |
Co X My x U.
Since v gives rises to a closed embedding after schrinking M, sufficiently small

around oy if necessary, and since G X idps, X idy is a finite map, there exists a
push-out, or fibered sum :

S:=CixCxU) [[ (CoxMyxU)
. C1)<M2>(U
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of C; x Cy x U and C, x My x U over C; x My x U, \and there exists naturally a
surjective holomorphic map ¢ from S to My X Ma X U such that:

(1) for (t1,t2,q') € M1 x M2 x U,

~1i=(C1, X Cat, X (') H (Cot, X ta x ¢')

Clt1 XtaXq' .

i

is a complex projective surface with ordinary singularities whose double
curve is Cot, X t3 X ¢/,

(2) w l(ol,oz,qo) is isomorphic to S := X [[p, Ds, where X := C1 x Cy,
Dx = C1 X go, Ds := € X go. ‘

We denote by ¢ the isomorphism from S to go ~1(01,02,q9). We put M =
M1 XM2 XU and o —(01,02,4]0) v

5.3.5 Proposition. The analytic family (S, w, M, o0, $) constructed above
is the one of locally trivial deformations of S, parametrized by a complez manifold
M such that:

(1) For any pointt € M, Sy := w™*(t) is projective.

(2) For any point t € M, the characteristic map at te M
o : T{M — H'(S;,©s,)
1s bijective.

(3) It is complete at any point t € M with respect to locally trivial deforma-
tion of S;.

Proof. The assertion (1) follows from Proposition 5.3.1. Now we are going to
prove the assertion (2). By the assumption g(C;) > 2(i = 1,2), we have

H°(X,0x) = H’(C,0¢,) ® H*(C3,8¢,) = 0.
Hence the exact sequence of cohomology groups
(5.3.11) 0 — H°(Dx,Npy/x) — H'(X,0x(~log Dx)) — H'(X,Ox)

follows from the short exact sequence of O-modules in (4.24). By the arguments
used to derive Proposition 5.3.2, we have ’

H%(Dx,Npy,x) ~ H%(Cs, Ny /cs,)s
HY(X,0x(— long))“Hl(Cl,ecl)GBHl(Cz,@cz( %)),
HI(X>@X) HI(CI;@CH)@HI(C??@CZ)
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Furthermore, the homomorphism H(C3,0¢,(—q)) — H(Cs,0¢,) is surjec-
tive (cf. (5.3.9)). Therefore, the long exact sequence of cohomology groups in
(5.3.11) reduces to ‘

0— HO(QQ,NqO/Cz) — HI(X,‘@X(—long))
(5.3.12) ' ,
— HY(C1,0¢,) ® HY(C;,0¢,) — 0 (exact).

On the other hand, since H®(Dx,©p,) =0 (Dx = C1 X qo) by the assumption
9(C1) > 2. Then, by Proposition 3.6 and (5.3.12), we have

0 —>'H1(S, Os) — HI(X, ©x(—logDx) & Hl(Ds, Ops(—2cs))
(5.3.13)
— HY(Dx,0p,) — 0. (exact)

Here note that D% = Dx, Lty = 0. By Proposition 4.1 and Corollary 4.5,
the homomorphism H'(Dg,®p,(—Z¢s)) — H'(Dx,Op,).and H'(S,05) —
H1(X,0x(—log Dx)) are injective. Hence we can regard H(Dg, © p,(—Xcs))
(resp. H(S,©Os) as a subspace of H(Dx,©Op, ) (resp. H*(X,Ox(~log Dx))).
Then, since the homomorphism

HY(X,0x(~log Dx)) — H*(Dx,©py)
in (5.3.13) factorizes through the homomorphism

Hl(Xa @X(_lOgDX)) - Hl(DX7@Dx) 2] Hl(O%@Cz) (DX = Cl)a

in (5.3.12), and since the image of H°(qo, Ny,/c,) in H'(X,0x(—log Dx)) is
included in H!(S,©g), which is because of (5.3.12) and (5.3.13), we have the
following exact sequence '

0— HO(qO,Nqo/Cz) - HI(S, @s)
(5.3.14) | |
- Hl(Co, @CO(—-ECO)) ® Hl (02, @Cz) — 0

~

(Co = Cs). We should now recall how we have constructed the family S. Then
we conclude that the characteristic map o, : T,M — H'(S,05) maps the
subspaces Ty, M1, To, M2 and T,U of T,,M isomorphically to

HI(CO>®C'o(_ZCO))7 H1(027‘®C’2) and HO(QOaNQO/Cz)’

respectively. Therefore, it follows from (5.3.14) that the characteristic map
o, : T,M — H(S,Og) is bijective. Note that the arguments above is also
valid for oy : LM — H'(S;,©s,) for any point ¢ € M. Therefore we also
conclude that the characteristiv map o is bijective at any point ¢ € M. The
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assertion (3) follows from the assertion (2) and from the way by which the family
S has been constructed.
Q.E.D.

We are now going to consider the cohomological infinitesimal mixed Torelli
problem for the surface S. We will check the conditions in Theorem 4.12. First,
note that in the case we are now consideing, we have

C,~ Dg= D%, C;~Dx=D¥%, and Stg =Xtx =Xtk =0.

In what follows we identify Dg and Dx with Cp and Ci, respectively. Since

H°(Dx,©p,) = 0 by the assumption g(C1) > 2, the condition (i) is fullfiled.

Hence any cohomology class of H(S, ©g) is represented by a pair of cohomology

classes '
(0x,0p,) € HY(X,0x) ® H'(Ds,0ps(—Z¢s))

which is subject to the condition Gvx (6x) = wg(fps) in H'(Dx,Op,). Since
O©x = piO¢, ® p5Oc,, it follows that

Hl(Xa ®X) =~ Hl(XapI@CH) D HI(XJP;QC'z)
~ Hl(Cl, 901) &) Hl(CQ, @Cz)- ‘

Using this isomorphism, we represent Ox € H'(X,0x) as 0x = (pifc,,p30c,)
where 8¢, € H(C;,O¢,) for i = 1,2. Then the condition wvx(6x) = @g(fps) -
is equivalent to ¢, = @g(fc,). Since 0% = piQL, @ p3QL, and Q% = piQg, &
p3Q¢, , by (5.3.6), we have
| QL ® H(C;,0c)  s=0,1
0 otherwise
(i#7j, 1<ij<2)

Rspj*pfﬂlci = Qéi ® R°piOx ~ {

and .
Qg, ® H°(Cj,Q¢,) s=0,1

R°pi Q% =0k ® R® 'Ql'z{
Pixdly = Sig, Pix3ic; 0 | | otherwise

(t#7, 1<14,7<2).
From these it follows that
(5.3.15) HO(X,0%) zHO(Cl,Qlcl)@)HO(Cg,Q}JZ),
(5.3.16)  HO(X,Q%) =~ H°(C1,Q%,) ® HY(Ca, Q,),
and that there injections

(5.3.17) 0 — HY(C;, Q%) — HY(X,prQL,) i=12
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By (5.3.15), 1fw(1) p (t)C ) (resp. w( ) ... (%)C )) form a baSIS for H(C1, Q%))

(resp. H(C3,QL,)), then plwg )®p2wj(-2), 1<1<g(Gy), 1 <5 < g(Cs) form
a basis of H°(X,0%). Therefore, for x = (p}fc,,p30c,) (0c, € H*(C;,0¢,),
i =1,2), we have

0| (piwi” ®p3w;”) | | |

= (B3 (60, (M), p3 (60, i) € H'(X,p10,) @ H'(X,p30%,) = H'(X, %)

By (5.3.17), if (0x| (ptw!” ®p2w(2)) 0 for any i,j with 1 < i < g(Cy),
1 < g < g(Cy), then we have ' -

Oc, ngl) =0 for 1 <4< g(Ch),
(5.3.18) '

lw® =0 for 1<j< 9(Cy).

Oc, | w;

2

Here we remember the fact that the homomorphism
H'(Ci,0¢;) = Homc(H(C;,Q8,), H' (C;,0¢,))  (i=1,2)

is injective if C; is non-hyperelliptic. From now on we assume that both Cj,
¢ = 1,2, are non-hyperelliptic. Then it follows that 8¢, = 0¢c, = 0, and so
Ox = O from (5.3.18). Namely, the condition (ii) in Theorem 4.12 is fullfilled.

Finally, we check the condition (iii) in Theorem 4.12. In the case we are
considering, the condition (iii) in Theorem 4.12 is reduced to that the homomor-
phism

BV : Ker{ H*(Dx,Npy/x) — HI(DXa@Dx).}l
— Homc({Ker{H°(Q%)® H°(Q},) — HO(Q}DX)}
— H°(Opy)/Tm{H*(Ox) ® H*(Ops)})

defined by contraction and the pull-back is injective. By (5.3.16) we have

Ker{ H'(Q%) ® H°(Qp,) — H°(Qp,) }
~ HO(Qp.) @ H*(Q,)-

Since Np, /x = p5Ny/c,, we have

HO(DX)ND){/X) H (027 Q/CZ)

Hence any sx € H°(Dx, Np, /x) is represented as

SX = D58Cy» sc, € H%(C2, Ny/c,).
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Therefore, if Z)(sx) = 0 for sx € Ker{HO(DX,NDX/X) — Hl(DX,GDX) 1,
then we have

(5.3.19) 1D (sx) (psws), 0)
= s¢, L w3, = s W5)(2)) =0

for any w(c.), 1<i< g(Cg) where wc) (¢) denotes the value of w(g at ¢g. Since

g(C3) > 2, there is at least one ip, 1 < 439 < g(C3) with wgg)(q) # 0, i.e., the -
canonical linear system |f¢,| on Cz has no base point. Conseqgently, by (5.3.19)
we conclude that s¢, = 0 which implies sx = 0, that is, the homomorphism M
is injective as requied. '
Summarizing the arguments above, we obtain the following theorem.

5.3.6 Theorem. Assume g(C;) > 2 and C; is non-hyperelliptic for i =

1,2. Then, for the surface S in (5.3.1), the homomorphism
82,70 H1(S,05) — @2, Hom (HO(Q%, [1], H' (2%,[1])

is injective. That is, infinitesimal mized Torelli problem is affirmatively solved
for the surface S.
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