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Abstract
The following conjecture is well-known.

Conjecture. Let p be an odd prime(p >5). Let f(x) be a polynomial
over F,2 of degree at most p? — 1. Assume that f(z) is a planar
polynomial over F2. Then f(x) is a quadratic polynomial.

~ In this short note we shall prove that in a special case the conjec-
ture is true.
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1 Introduction and Summary

In order to prove the conjecture for a special case we shall establish the
following main theorem, which is an extension of the proof in Lemma 6 in

[4].
Theorem 1. Let F, be the finite field with ¢ = p* elements where p is a

prime, and let f(x) be a planar polynomial over F. of degree $>3. Letu
be a positive integer such that

~1 :
uSq—S——<u+1. (1)

O SR B

Setn = 2u. Then

in Fy.
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By using the above theorem and its proof we shall also prove the following
two propositions.

Proposition 1. Let p =1 (mod 4) be a prime. Then there are no planar
polynomials over Fypz of degree 4p + 3. ) '

Proposition 1 is a special case of our conjecture.

Proposition 2. Let p be an odd prime(p > 5) . Let f(z) be a polynorm'a,l
over F, of degree at most p — 1. Assume that f(x) is a planar polynomial
over F,. Then f(x) is a quadratic polynomial.

Remark. Proposition 2 is proved by Hiramine [4], Gluck[3] and Rényai and
Szonyi[7] independently '

Here we shall give several definitions. A polynomial g € Fy[z] is called a
permutation polynomial of Fy, (see [5]) if the associated polynomial function
g:cr— f(c) from F, into F, is a permutation of F,. A polynomial f € Fy[z]
is called a planar polynomial over Fy(see[2]) if f(z+d)— f(z) is a permutation
polynomial of Fy for each d € F;(= F; — {0}).

For g, h(# 0) € F,[z], there exist q,r € F,[z] with g = gh + r and either

= 0 or deg r < deg h. Then 7 is called the reduction of g (mod h).

2 Preliminaries

Theorem 2. Let F, be a finite field of order ¢ = p*. IF g € Fylz] is a
permutation polynomial of Fy, then the following two conditions holds:

(i) g has ezactly one Toot in F,

(i3) for each integert with 1 <t < g—2, the reduction of g(z)* (mod z?—x)
has degree < q — 2.

Remark. The above theorem is part of Hermite’s Criterion[5, p. 349].

Let f(z) be a planar polynomial over F, of degree at most ¢ — 1, where
qg=p@p >5 k>1). Let h(z) = f(z) — f(0). Then this h(z) is also a
planar polynomial. So we may assume that

m=1

f@) =) cmz™ o #0,deg(f(2)) =5 < q. (2)

For integer n(0 < n < g — 1), we have ,

(f(z+d) = f(@))" = gg-1(d)27" + gg2(d)a?™ - (mod 27 —z), (3)
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where g,_1(d), gq—2(d), . . . are polynomials in d and their degree are at most
q — 1 because d? = d for all d € Fj,.
Then,

Lemma 1. g,_;(d) = 0. That is, the coefficient of d'z?™ (0 <i < q—1) in
(8) is 0.

Proof. By Theorem 2 the coefficient of 297" of the reduction of (f(z + d) —
f(z))" (mod z?—z) is 0. So for all d € Fy, g_1(d) = 0. Clearly g,—,(0) = 0.
Thus g,—1(d) = 0 because the degree of g,_1(d) is at most ¢ — 1. '

O

Lemma 2. Suppose ¢ — 1 < ns < 2(q—1). The coefficient of d**—(a-1) g1
in (f(z+d) = f(@))™ is § o () (=" (o) -
Proof. ,

(fa+d) = f@) = (alo+d®+ - +alo+d) -’ — )

= 2 ()

looop ol
p1++qs=n,0L5p1,...,gs <N p1: Ps:qr- gs:
(cs(z + d)°)Pe (—crz)® -+ (—coz)

Here we shall find the terms involving d™~(@~1z9-1 in the above polyno-
mial. For this purpose we consider the term

(151)$p1—i1di1 . (Siis)xsm—isdisqu coog% in (z4d)r - - (x—i—d)”éxl‘h N

Since

1'.pl xpl—’il dil e S.Z)s xSPS—isdistI e xqs
21 s

_ (1?1> <8p5>xP1+"'+sps+Q1+---+sqs—(i1+-~~+is)d’i1+'"+‘is

11 s

(p1 =4 >0,---,8ps > is > 0), so if we find py,---ps,q1-- - ,qs satisfying

ix-Hiz = n3—(q—1) and it - —+3p* -+ 45, (ns—(g—1) = g1,

then we know the terms involving d®~(¢~1z9-! in the above polynomial.
Clearly we have py +---+gs=n, D1+ ---+sps+q + -+ 5g < ns.

These imply that ‘

P+t spe it +sg—(ns—(g—1)=q—1
holds if and only if

ps+Qs=n,ps__1=0,ps_2:0’...,qlzo (4)
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hold.
By (4) we proved that when we write

(f(z+d) - fx))"

S ale+d) (e

Pst+qs=n

+ > (@t

: 1ol ...
P14 qs=1,0KD1 .. 195 SMyDs +qsEN D1: Dsqr1: qs
(cs(x + d)°)Pe (—crzh)® -+ - (—coz®)®

, then the terms involving d®~(¢~Dz-1 appear in the first part of the RHS
of the above equation.
Here we note

> %(cs(:c +d)* )P (—esz)® = (co(x + d)° — csz”)™

pstgs=n sTast

Thus the coefficient of d**~@~Yxa~! in (f(z +d) — f(z))" is
n n n n— ls
Cs Zl:O (l)(_l) l(ns—(q—l))’ .

Lemma 3 (Lucas’ Theorem). Let p be a prime number, and let m =
ag + ap+ -+ ap®, n=bo + bip+ -+ byp®, where 0 < a;, b < p for

1=0,...,v. Then
m d Qa;
(n) = g (bz) (mod p).

A proof of Lucas’ Theorem can be found in [1, pp. 28].

3 Proofs of Theorem 1 and Propositions 1, 2

We start to prove Theorem 1.
From assumption s > 3. Then

2§n§2(q— )<q——1. (5)
From (1) and (5) we see that
g—1<ns<2(qg-1). (6)

So by Lemma 2, the coefﬁcignt of =@ Vga-ligc? S0 (1) (—=1)™* (ns—?f;—n)'
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Lemma 4.

lZ () - ) = () ()

Proof. (i) The case | < u. That is, | +1 < u. This and (1) show that
ns—(g—1)—sl = 2us—(q—1)~Is > us+s—(q—1) = (u+1)s—(¢g—1) >

0. Thus l
(wo—tg-1) =" ™

(i) The case | > u. That is, > w+ 1. This and (1) show that ¢ — 1 >
Ils—(ns—(g—=1))=(g—1) — (2us — ls) ,
>(g—1)—us>0.S0 (" _, ) exists. Since ns < 2(q — 1) we see

ns—(g-1)
ns—(g—1)<g-1. (8)
By (1) ¢ — 1 < (u+ 1)s < ls. This and (8) show that
g<ls<mns<2(g-—1). 9)

Let ls=ap+ap+--+ap*andns— (q—1) = by +byp+ - - - + bp”
be the base-p expansions of s and ns — (¢ — 1), where p* = q. Then
(8) and (9) show that ay = 1 and b = 0. Since s — g < ns — (¢ — 1),
we have a; < b; for some j (0 < j < k—1). By Lucas’ Theorem this
shows that :

s
(no-op) =0 @ean o
(i) The case l = u. By (1) us—(ns—(¢—1)) =us—2us+ (¢g—1) =
(g—1) —us>0. So
us '
1
(e -ta-0) -
does not vanish.
From (7) and (10) the lemma follows. O
By Lemmas 1,2 and 8 ¢ (7) (=1)"7*(,,,_7_y,) = 0. Since (7) (=1)""*(,,,¢"_,,

0. Thus ¢, = 0, contrary to (2) We complete the proof of Theorem 1. O
Proof of Proposition 3

Proof. Assume s >-3. Put ¢ = p in Theorem 1. Here we note n 0 (mod p)
because n < p — 1. So we see that

nYy —t su
() ir( ) #0 (modp) (12
This forces s = 2 by using Theorem 1. we are done. O

) #
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Proof of Proposition 2

Proof. Let f(z) be a planar polynomial over Fy2 of degree 4p+3. Put ¢ = p?
in Theorem 1. Asp*—1 = (p—1)/4(4p+3)+(p—1)/4, us = {(p—1)/4}(4p+
3)=(p—1)p+(3/4)(p—1) ,and ns — (p* — 1) = (p — )p+(p — 1)/2. So by
Lucas’ Theorem (ns—a:Ll)) # 0. (Z) # 0 because n = (p — 1)/2. So

(Z) (=1 <ns . ?;2 _ 1)) #0  (modp) (13)

‘This contradicts Theorem 1.
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