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Abstract
This paper presents recursive least-squares (RLS) estimation algorithms using the covariance
information in linear discrete-time distributed parameter systems. The signal is estimated
with the observations containing some uncertain observations. In the uncertain observations,
there are cases where the observed value does not contain the signal and consists of observa-
tion noise only. The probability that the signal exists in the observed value is used in the

estimation algorithms. The algorithms are derived based on the invariant imbedding method.
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Running head: Estimators with uncertain observations

1. Introduction

In Nakamori [1], optimal filtering algorithm using the covariance information is presented
in linear discrete-time distributed parameter systems. Here, the autocovariance function of
the signal is expressed in the semi-degenerate kernel form. Also, in [2], linear RLS algo-
rithms with uncertain observations for the filtering estimate is proposed by using the state-

space model. In [3],[4], linear discrete-time RLS algorithms with uncertain observations for
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the prediction, filtering and smoothing estimates are proposed in the case where state and
measurement noises are correlated. In [5], RLS filter and predictor based on the state-space
model are proposed with uncertain observations in linear discrete-time distributed parameter
systems. Here, in the uncertain observations, there are cases where the observed value does
not contain the signal and consists of observation noise only. The probability that the signal
exists in the observed value is used in the estimation algorithms. The uncertain observations
occur based on an intermittent failure in the observation mechanisms.

By combining the previous works [1],[2], with the uncertain observations, this paper newly
derives the RLS algorithms using the covariance information for the filtering and fixed-point
smoothing estimates in linear discrete-time distributed parameter systems. It is assumed that
observation noise is white. The proposed algorithms use the following information. (1) The
autocovariance function of the signal in the semi-degenerate kernel form. (2) The variance of
the observation noise. (3) The probability. It is advantageous that the proposed filtering algo-
rithm can be applied to the case where a difference equation, which generates the signal
process, is unknown in linear discrete-time distributed parameter systems.

A numerical simulation example is shown for the restoration of image from a degraded
observed image that contains signal plus white noise with the probability for the existence of

the signal.
2. Linear least-squares estimation problem

Let D be a connected bounded open domain of a p-dimensional Euclidean space R”. The
spacial coordinate vector is denoted by n=(1,7...,N p)eD. Let u(k,n) be an n-dimensional

zero-mean signal vector in linear discrete-time stochastic system:

u(k,m) = Col[u,(k,m), -, u,(k,m], k=0. (1)

Let us assume that the measurement data are taken at fixed m points 1/, ---, ™. Further-
more, let us define an mn-dimensional column vector
1
u(k,n’)

u, (k)= Colluk,n'), -, ukn™|=| + | 2)
u(k,n™)
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Assume that the uncertain observation equation is described by

z(k) = U(k)H(k)u,, (k) + v(k), 3

where z(k) is an r-dimensional measurement vector at the points 1/, =, ™. {U(k); k=0} is
a sequence of independent Bernoulli random variables with P[U(k)=1]=p(k) . U(k) has the

following stochastic properties.

E[U(k)]=p(k)
E[URUN]=pk)p(), k +j “4)
E[U*(l)]=p(k)

H(k) is aknown rxmn matrix function. v(k) , k20, is a vector-valued white process that is

uncorrelated with «_(*) . The mean and covariance of v(*) are given by
E[v(K)]=0, E[v(k(s)]I=R(k)S,(k —s), R(k)>0, (5)

where 9 (k —s) represents the Kronecker delta function. It is assumed that the processes
{U(k);k20}, {v(k);k=0} and {u(k,n);k=0,ne D} are uncorrelated with each other.

Let u(k,L,n) denote a fixed-point smoothing estimate of u(k,7),

L
u(k,L,m) = h(k,l’, L,mz(’), (6)
>

where h(k,[’,L, 1) is called an impulse response function. The fixed-point smoothing estimate,

which minimizes the mean-square value of the fixed-point smoothing error

u(k,m)—u(k,L,mn),

Bt m = ik, L | (7

is optimal in a sense of least-squares estimation, where | || denotes the Euclidean norm.

Minimizing (7) leads to the Wiener-Hopf equation

L
E[utk,mz" ()] = Zh(k,l’, LE[z("z" (1)) (®)
I'=1



56 BREBAKFHFEFMHELE HRHEE H53% (2002)

From (3) and (4), Elu(k,n)z ()] is calculated as

E[utk, mz" (1)) = E[utk, mu(DHT (HOU(D)] ©
= p(DE[u(k, mu, (D|HT D).

Let us define the function K,,(k,7,1)= E[u(k,mu} ()] and F,(k,}) = E[u,,(k)ul )}

Also, E[z(I))z" (1)] is calculated as

E[2(1)2" (0] = EJU)H u, (g (OHT (DUD]+ RUDS (1 = 1),

B {p(l*)H<l’)Fm(l',I)HT(l)pa),l';e I

p(OVHWFE, (LDHT (1) + R(),I'= L. (10)

By substituting (9) and (10) into (8), we obtain

h(k,1, L YR + pOHE, (LDHT ()= p(YHWOE, (,DHT (1) p(D))
, (i
= p(OK, (k. DH" (1) - 2 hk, ', Lmyp(")H()E, (1" DHT (D p(l).
I'=1

Let us assume that the autocovariance function of the signal u(k,n) is expressed by

(1]

atk,n,&)B"U,n,E), 0<I<k, (12)

Klkm:b &) = Elutkmu”0.9)] = {Y(k 7.6 (An.&), 0<k<I

in the form of the semi-degenerate kernel. Here, o(k,1n,&), B(,n, &), y(k,n,E) and (I, n, &) are
n x m’ bounded matrices. The covariance function as (12) is appropriate for expressing a
separable autocovariance function (see Section 5) which is often adopted based on the two-

dimensional image model [1]. Then K (k,n,l) is written as

K, (k1) = E[utk, myu, ()]

_ {&(k, mBT,m, 0<I<k,

Fh,mETAm), 0<k<l, (13)

where a(k,n), B(l,n), y(k,n) and 5 (,n) are bounded matrices of
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ak,m=[atk,n,n') - aknnm)
B(.n) = Diag[Ba,n.n") - Bm™)
voom =[rknn") - yeknnm)
a,m = Diagl§mn') - {anam)

Also F (k,l) is written as

F, (k,1) = E[u, (k)u, ()]
_Naop™W), 0<i<k.
ykeTa), o<k<l,

where a(k), B(l), y(k) and {(l) are bounded matrices of

a(k) = Diagla(k.n') - atk.n™)
Bw=[Ban" - Banm)
y(k) = Diag[y(k,n') -+ 7k, ™)}
cw=[Eany -~ funm)
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(15)

(16)

It is quite difficult to obtain an analytical solution of h(k,/,L,71) in (11). The algorithms for

calculating the linear least-squares filtering and fixed-point smoothing estimates of u(k, 1)

are shown in Theorem 1.

3. Linear least-squares algorithms for the filtering and fixed-

point smoothing estimates

Theorem 1 presents the linear least-squares filtering and fixed-point smoothing algorithms

using covariance information.

THEOREM 1. Let the autocovariance function of the signal u(k,n) be given by (12) in the

semi-degenerate kernel form, let the uncertain probability, that the observed value includes

the signal, be p(k) and let the variance of white observation noise be R(k) , then the linear

RLS algorithms for the filtering and fixed-point smoothing estimates consist of (17)-(26).
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Fixed-point smoothing estimate of the signal wu(k,m) : u(k,L,n)

u(k, L,m) = u(k, L—1,m)+ h(k, L, L,n)(z(L) - p(L)H(L)o(L)O(L - 1))

Smoother gain: h(k,L,L, 1)

h(k, L, L) = (p(LY7 kT (L HT (L) - p(L)S(k, L~ 1, )T (L)HT (L))
[R() + p(LYH(LY(E, (L. L)~ p(Lyo(Lyr(L - DT (L)YHT(L)]

S(k,L,m) = S(k, L=1,m) + h(k, L, L,m)p(L)H(L)(y(L) — a(L)r(L - 1)),
S(L,L,m) = a(L,mF(L,n)

Filtering estimate of the signal w(L,m): u(L,L,n)
a(L, L) = a(L,mO(L,)
F(L,m)=F(L-1,m)+ J(L,L,mp(L)H(L)(y(L) - o L)r(L - 1)),7(0,n) = 0

r(L) = r(L=1)+J(L, L) p(L)H(L)(y(L) — o(L)r(L - 1)), r(0) = 0

J(L,L)=[(B" (L)~ nL- 1) (L)H" (L)p(L)]

[R()+ p(LYH(LX(F, (L. L)~ p(L)( Lyr(L =T (LYH (L]

O(L,m) = O(L—-1,m) + J(L, L,n)(z(L) — p(LYH(L)a(LYO(L - 1)),0(0,n) = 0

J(L L) =[B"(LmH"(L)p(L) - HL-1,m¢" (LH (L)p(L)]

[R(L) + p(L)H(L)(F, (L, L) - p(Lye LN L~ DT (LHHT(L)]”

O(L) = O(L-1)+ J(L, L)(z(L) = p(L)H(L)a(L)O(L - 1)), O(0)=0

(17)

(18)

(19

(20)

2n

(22)

(23)

(24)

(25)

(26)

Also, the recursive algorithm for the optimal impulse response function h(k,/,L, 7)) in the

fixed-point smoothing problem consists of (27), (28) with (18), (19), (21), (22), (23) and (25).
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h(k,1,L,n) = h(k,l,L—1,m)— h(k, L, L,n)p(L)H(L)a(L)J(I,L - 1) 27)

Initial condition of h(k,,LL,n) at I=L is h(k,L.L-m). h(k,L,L, 1) is calculated by (18) together
with (19), (21), (22), (23) and (25).

J(,L)y=J({,L-1)-J(L,L)p(L)YH(L)a(L)J(I,L-1) (28)
Initial condition of J([,L) at [=L is J(L,L).J(L,L) is calculated by (23) together with (22).
The recursive algorithm for the optimal impulse response function A(L,,L,1) in the filter-
ing problem consists of (29), (30), (28) with (21), (22), (23) and (25).
h(L,1,L,n) = a(L,m)J(L,1,1) (29)
J(L.L,m) = J(L-1Lm)~ J(L, Lm)p(LYH(L)e(L)J (I, L 1) (30)
Initial condition of J(L,1,n) at I=L is J(L,L,n). J(L,L,n) is calculated by (25) together with
(21), (22) and (23).

The proof of Theorem 1 is given in Appendix A.

4. Filtering and fixed-point smoothing error covariance functions

Let us derive equations for filtering and fixed-point smoothing error covariance functions.

The filtering error covariance function is defined by
Pk, 1,1,€) = E| (utk, m) - idk, k, ))(w(l, &) — (1, 1,E)' | 31)

From an orthogonal projection lemma that the filtering error u(k,n) —u(k,k,n) is orthogonal

to u(l,1,&), I<k,and (12), we have
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P(k,n,1,8) = K(k,n,1,8) - E[iaCk, k,mu" (1,8)] (32)
Using (3), (6) and K,,(k,n,1) = E[u(k,Mu, ()], we can rewrite (32) as

k
Pl 1,1,E) = K(k,1,1,E) - z Pk, 1k, HW)KE (LE, 1.
I'=1

(33)
Substituting (29) into (33) and introducing a function
k
W(k,m0,E) = z PTGV, MHIDKT(LE D), (34)
=1
we rewrite (33) as
P(k,n,1,&) = K(k,n,1,) — a(k, ¥ (k,0,1,E). (35)

Subtracting W(k,1,.,E) from the equation obtained by putting k—k+1 in (34), we have
(36).

Yk+1,nLE-YknlE=pk+ DJ(k+1,k+ LmMHGK+DKI(LEk+1)+

k

zpa')(i(m,zz M=k, ', ) HW)KT(LE, 1)
I'=1 (36)

Substituting (30) into (36) and introducing a function

k
T(k,1,E) = z pINI HIDHKE(LLETD), (37)
=1

we rewrite (36) as (38).

Pk +1,0,0LE) =W k,n,LE) + plk+ DIk + 1Lk + 1L, HKk + DK (1LE k+1)

—ak + DT(k,1,&)) (38)

Initial condition of W(k,n,.,&) at k=0 is W¥(0,n,,,§) =0 from (34).
Subtracting 7(k,,&) from the equation obtained by putting k—k+1 in (37), we have (39).
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T(k+1,1,E)—T(k,1,E) = p(k+ 1)J(k+1Lk+1D)H(k + DK (L E k+1)+

k

’ ’ ’ ’ T ’
Z”(’ YU,k +1)— I K HAYK (LE 1) 9

I'=1

Substituting (28) into (39) and using (37), we obtain (40).

T(k+1,1,E) = T(k,1,E)+ p(k+ DJ(k + 1L,k + DH(k + 1)KL (L Ek+1)—

a(k + )T (k,1,&)) (40)

Initial condition of T(k,[,§) at k=0is 7(0,,§) =0 from (37).

Hence, the filtering error covariance function f’(k, n,1,€) is calculated by (35), (38) and
(40) with (21), (22), (23),(25).

Now, the fixed-point smoothing error covariance function is defined by

B.(k,m,1,&, L) = El(u(k, ) — ik, L m)u(l, &) — (1, L&) 1. @1

From an orthogonal projection lemma that the filtering error u(k,n)—u(k,L,1n) is orthogonal

to u(l,L,£) and (12), we have
P.(k,n,1,& L) = K(k,n,1,E) - Elatk, L,mu" (1, E)]. (42)

Using (3), (6) and K,,(k,1,1) = E[u(k,mu,(1)], we can rewrite (42) as

k
i’,,(k, .1, 5, L)=K(k,n,l, 5) - 2 p(l')h(k, 'L, T])H(l')K;(l, f,l'). (43)
I'=1
Introducing
L
V(i LE L) = Z PRk, L HAYK(LE, 1), (44)
I'=1

we rewrite (43) as
i)}'«‘(k’ nal»éa L) = K(k’ na l’é)— V(k’ n,l,éy L)' (45)

Subtracting V(k,n,.,& L) from the equation obtained by putting L—L+1 in (44), we have (46).
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Vi, LE L+1)=V(k,n,LE L) = p(L+Dh(k, L+1,L+1,mH(L+ DK (L, L+1)

L

+Z p()(h(k,I',L+1,1m) = h(k, ', L MYH(I)K](1,E1")

(46)
I'=1
Substituting (27) into (46) and introducing a function
L
Q¢ L)= 2 p)JU', LYHINK L (LE, D), (48)
r=1
we obtain (49).
Vk,n,,E,L+1)=V(k,n,1,E L)+
NN yNRS 49

p(L+Dh(k, L+ 1, L+1,mMH(L+1)KI(1,E L+1)—a(L+1)Q(E, L))

Initial condition of V(k,n,L&,L) at L=0 is V(k,n,,£,0) =0 from (44).
Subtracting Q(/,§,L) from the equation obtained by putting L — L+1 in (48), we have
(50).

QWLEL+1)—QWULE LY= p(L+DJ(L+1, L+ D)H(L+1)KT(,E L+1)

L
+z pINYJW,L+1) = JW, LYHIHKL(ET) (50)
I'=1

Substituting (28) into (50) and using (48), we obtain (51).

OWLEL+D)=00¢E L)+ p(L+DJ(L+1, L+ DH(L+1)K! (1, L+1)
—a(L+DQ(LE, L))

SbH

Initial condition of Q([,L) at L=0, Q(1,£0) =0, is from (48).
The fixed-point smoothing error covariance function f’F (k,n,1,E, L) is calculated by (45),
(49) and (51) with (18), (19), (21), (22), (23), (25).

From Theorem 1, the condition that the filtering and fixed-point smoothing estimates exist

is given by
R(L) + p(L)H(L)(F,,(L, L) — p(L)a(L)r(L=1){ " (L))H" (L) > 0. (52)

It might be seen that (52) expresses the autovariance function of the innovations process

Z2(L)-p(L)H(L)o«(L)O(L-1). From this, it is deduced that p(L)H(L)(F,(L,L)-p(L)yo(L)r(L-
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DET(L))H(L) is always a positive semi-definite matrix. Hence, the condition (52) is assured

if R(L) is a positive definite matrix.

5. A numerical simulation example

Let the autocovariance function for the signal u(k,7n7) be given by

K(k,n,1,8) = g o4l (53)

According to Habibi [6], the image field with the separable autocovariance function can be

modeled by

u(k +1,m+1) = Au(k,n+1)+ A,u(k +1,1) — A A,u(k,n) + \/(1 - ADH(1 - AD)w(k,m),
A =e A, =e Elwlk,nw(,E)] = 628, (k-1)8,(n-&). (54)

From (12), we have

a(k, 1, = 62 B, n, &) = RS

55
y(k,n,E) = O'Zee‘k, Ean &) = e—oll—ezln—gl. (55)
The signal is observed at an observation point 7' .
2(k) = U(k)u(k,n') + v(k) (56)

We find that @(L,n), a(L), Y(k,n)and y(L) are not affected by 1 B(L, m, BL), 5 (L,n)and
are {(L) are not affected by 1 for the case of n=n', where the observation point n=n' varies
according to 1. Hence, &(L,n") = 62¢ % (= a(L)), 7(k,n") = 6%e* y(L)= %€ B(L, n')= eo'f_
B(L) =% 5 (L,n")=e*fand {(L)=e " Taking into account these relationships, we calculate‘
the linear least-squares filtering and fixed-point smoothing estimates of u(k, 7)) by substitut-
ing the covariance information of signal and noise with the uncertain probability into Theo-
rem 1. Figure 1 displays the original image 'Lena.tif'. The picture has 512x 512 pixels and it
has 256 gray levels. Parameters in the semi-causal model of (54) are calculated as A = 0.9984,
A,=0.9979, 0°= 19798, 6,= 0.0016 and 6,= 0.0021. Also, the uncertain probability is set to

p(k) = 0.96. Figure 2 displays the degraded observed image for white Gaussian observation
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noise N(0,30%) (S/N ratio is 26.8474 [dB]), where noise variance is 30? with the mean 0. In
Fig.2 the probability that the observed value includes the signal is set to p(k)(=0.96). Fig. 3
illustrates the restored image by the filter in Theorem 1. Table 1 shows the mean-square
values (MSVs) of the filtering and fixed-point smoothing errors by the estimators in
Theorem 1. The MSVs of the filtering and fixed-point smoothing errors are calculated
by 3= 3" (i, j)-i,i, j))* /250390 and 333wl j) - ii.i + k, j))* /5007800. The
MSYV becomes large with an increase in the variance of white Gaussian observation noise
both for the filter and the smoother. The estimation accuracy of the filter is better than the
fixed-point smoother.

In the simulation example, MATLAB [7],[8] with its image processing toolbox was used.

6. Conclusions

In this paper, new algorithms for the filtering and fixed-point smoothing estimates are
proposed with the uncertain observations contaminated with white observation noise in lin-
ear discrete-time distributed parameter systems. The proposed filter and fixed-point smoother
use the covariance information of the signal and observation noise and the uncertain prob-
ability without requiring the information of the state-space model for the signal.

Finally, Seiichi Nakamori would like to express his hearty gratitude to the Research Group
FQM-157 (Stochastic Calculus), the University of Granada, for their invitation of him to the
Departamento de Estad'istica e Investigaci'on Operativa, Facultades de Ciencias, Universidad
de Granada, Espana. For the research themes set by the Research Group, based on invaluable
critical comments from the research members to the previous work by S. Nakamori and in-
spiring suggestions by the members to him in the University of Granada, the original version
of this paper was presented in the seminar of the Research Group with him during the period

from April 16 to April 19, 2001.
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APPENDIX A. Proof of Theorem 1.

A Cauchy system for the RLS filtering and fixed-point smoothing estimates are obtained
by using an invariant imbedding method [9].

In (11) let us put W(l) as

W(l) = R()+ p(OH()F, (LHH" (1) - pHWOF, (LHHT (Dp(D) - (A.1)

Then (11) is written as

h(k,1, L mW() = p(HK,, (k,n,HH" (1)

L
-Zh(k,z', Lmp")H)E, (. DH Op(D).
I'=1

(A2)
Subtracting the equation obtained by putting L—L — 1 from (A.2), we have (A.3).
(h(k,1,L,m) - h(k,1, L — 1, m)W(l) = —h(k, L, L,n)p(LYH(L)F,,(L,)H" (1) p(])
N ’ ’ ’ ’ ’ T (A3)
- Y (WK, VU, L)~ h(k,U',L=1,m)pl" YH(I")F,(",))H" ()p(])
I'=1
Let us introduce a function A(l,L — 1) which satisfies
L-1
A(LL-DW() = F,(L,DH" ()p(D) - Z AU, L-D)p("HH)E,(",HH (Dp(). (A.4)
I'=1
From (A.2) and (A.3), we have
By introducing an auxiliary function J(I,L - 1), which satisfies
L-1
J(,L-DW() = B"(HH" (Dp(l) - Z J(, L-)p("YHI)E, (", DH" ()p(), (A.6)
=1

and by noting the semi-degenerate property of (15) for F (L,]) in (A.4), we obtain
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AL L-1)=a(L)J(,L-1). (A7)

(27) is clear from (A.5) and (A.7).
Subtracting the equation obtained by putting L—L~—1 in (A.6) from (A.6), we have (A.8).

(J(,L=1)=J(I, L= 2))W(]) =
~J(L-1,L-1)p(L-1H(L-1F,(L-1,DH" ()p(l)

s (A.8)
—2 (', L—1) - J(I', L 2)p(")YHI)E, (", DHT (1) p(l)
I'=1
From (A.4) and (A.8), we obtain (A.9).
JOL,L-DH-JU,L-2)=-J(L-1,L-1)p(L-1)H(L-1)A(,L-2) (A.9)

(28) is clear from (A.7) and (A.9).
If we put />L —- 1 in (A.6), we have (A.10).

J(L-1,L-DW(L-1)=B"(L-1)H" (L-1)p(L-1)—
L1 (A.10)
JW,L-Dp(I"H)F, (', L-1)H" (L-1)p(L-1)

Using the semi-degenerate kernel property of (15) and introducing a function

L-1

Y(L-1)= ZJU',L—1)p(l')H(l')y(l'), (A11)

=1
we obtain (A.12).

JIL-1,L-DW(L-1)=B"(L-DH"(L-D)p(L-1)—

12
r(L-1D¢T(L-1DH"(L-1)p(L-1) (A.12)

Subtracting the equation obtained by putting L—L—1 in (A.11) from (A.11), we have (A.13).

r(L-1)~r(L-2)=J(L—1,L-p(L-DH(L-Dy(L-1)+

— (A.13)
z G, L=1)= I, L-2)p)HA Yy (")
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Substituting (A.7) and (A.9) into (A.13), and using (A11), we obtain (22). The initial condi-
tion n(0) =0 for updating (L) by (22) is clear from (A.11). From (A.12) and (22), we obtain
(23) after some manipulations.

Putting /=L in (A.2), we have (A.14).
h(k, L, L, mW(L) = p(L)K,,(k,n, L)H" (L)

L
=) Mk L HW)E, @' DH(Dp(L) (A.14)
I'=1
Using the semi-degenerate kernel properties of (13) and (15) and introducing a function
L
S L= Y Akl LpOH YY), (A.15)
I'=1

we obtain (A.16).

h(k, L, L ))W(L) = p(L)7 (k, )E" (L mH" (L) - Sk, L ¢ (LH™ (L)p(L) (A.16)

Subtracting the equation obtained by putting L—L — 1 in (A.15) from (A.15), we have
(A.17).

S(k, L) — Sk, L~ 1,) = h(k, L, L, 1)p(L)H(LYy(L)
L-1 (A.17)
+2(h(k,z', L) — h(k. ', L= 1) p()H(A )y (")

r=1
Substituting (A.5) with (A.7) into (A.17) and using (A.11), we obtain (19). From (A.16) and

(19), we obtain (18) after some manipulations.

If we put k=L in (A.2), we have (A.18).

h(L,1,L,mW() = p(DK,,(L,n,)H" (1)
= (A.18)
—Z k(L U, L) p("YH(')F, (', 1)H" (1) p(l)
=1

Substituting K, (L,n,1) = a(L, n)BT(l, n), 0<I<L, from (13) into (A.18) and introducing an

auxiliary function J(L,.,1), which satisfies
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L

J(L,LmW() = P(l)BT(l, mH" (1) - 2 J(L,U,m)p("YH(')E, (I, DHT (1) p(D), (A.19)
I'=1

we obtain (A.20).

h(L,1,L,m) = &(L,mJI(L,1,m) (A.20)

Subtracting the equation obtained by putting L—L — 1 in (A.19) from (A.19), we have

(J(L,L,m) = J(L-LLm)W(l) = ~J (L, L,n)p(L)H(L)F, (L,hDH (1) p(l)
-1 ) ) (A.21)
—2 (J(L,V,m) = J(L=1,U,m)p"YH)E, ", DHT D)p(l)

=1

Substituting F_(L,D=0(L)F (1) ,0< 1< L, from (15) into (A.21) and using (A.6), we obtain
(30).
Putting /=L in (A.19), we have (A.22).

J(L, L mW() = p(L)B" (L,mH (L) -

=y (A.22)
2 J(L. 1, mpU) HQ')E, (1", L)HT (L)p(L)
I'=1

Substituting F (I’,L)=y(l )¢N(L) ,0<1’<L, from (15) into (A.22) and introducing a function

L
F(L) = Zm, v pH)Y D), (A.23)
I'=1
we obtain (A.24).
J(L,LmW(L) = BT(LmHT (L)p(L) - HL T (LYH(L)p(L) (A24)

Subtracting the equation obtained by putting L—L—1 in (A.23) from (A.23), we have (A.25).
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F(L,m)—~F(L—-1,1m) = J(L, L,n)p(LYH(L)y(L) +
(A.25)

L-1
Z(J(L, )= J(L— 10, m)p)HA Yy ()
I'=1

Substituting (30) previously derived into (A.25) and using (A.11), we obtain (21). From (A.24)
and (21), we obtain (25) after some manipulations. The initial condition 7(0,n7)=0 for
updating r(L,n) by (21) is clear from (A.23).

Substituting (19) into (A.16), we obtain (18) after some manipulations.

If we put k=L in (A.15), we have (A.26).

S(L.L.) = Z (LI, L) p()HW )y (1) (A.26)
I'=1

Substituting (A.20) into (A.26), we have (A.27).

L

S(L.L.) = Z (L I(L.Lmp(YHU Yy () (A.27)

I'=1

From (A.27) with (A.23), we obtain the initial condition in (19) for S(k,L,n) .

From (6) the filtering estimate u#(L,L,n) of the signal u(L,n) is written as (A.28).
L
u(L,L,n)= Zh(L, U, L,nz(l") (A.28)
I'=1

Substituting (A.20) into (A.28), we have (A.29).

L

G(L L) = 2 &L ILL, ) (A.29)

I'=1

Introducing a function
L
oLm =Y JLLmal) (A.30)
I'=1

we obtain (20) for the filtering estimate #(L,L,7) .

Subtracting the equation obtained by putting L—L — 1 in (A.29) from (A.29), we have
(A31). .
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L1
oL = 0L -1 =F(LLmaLy+ Y TLLm=TL 1L (A31)
I'=1
Substituting (30) previously obtained into (A.31) and using (A.30), we have (A.32).

O(L,m) - O(L-1,m) = J(L,L,mz(L) -

L-1

D HLLmAEDEWIC L= 1) (A32)
r=1
Introducing a function
L
oLy= )y JW, L), (A.33)
2

we obtain (24). The initial condition O(0, n)=0 for updating O(L, n) by (24) is clear
from (A.30).
Subtracting the equation obtained by putting L—L~-1 in (A.33) from (A.33), we have (A.34).

L-1
O(L)-0(-1)=J(L,L)z2(L)+ z(J(l', Ly-J(W,L-D)z(l’) (A.34)
I'=1

Substituting (28) into (A.34) and using (A.33), we obtain (26). The initial condition O(0) =0
for updating O(L) by (26) is clear from (A.33).
The fixed-point smoothing estimate u(k, L, ) of u(k,L) is formulated by (6). Subtracting

the equation obtained by putting L—L — 1 in (6) from (6), we have (A.35).

u(k, L,n)—u(k, L=1,m) = h(k, L, L,mz(L) +
L-1
2(h(k,l', L) = hik,I', L— L, m)z(l’) (A.35)

I'=1

Substituting (27) into (A.35) and using (A.33), we obtain (17) (Q.E.D.).
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Fig.2 Observed degraded image for the probability p(k)(=0.96) and S/N=26.8474 [dB].

Fig.3 Restored image by the proposed filter for S/N=26.8474 [dB].

Table 1 MSVs of the filtering and fixed-point smoothing errors.

S/N[dB] MSV of filtering error MSV of fixed-point
smoothing error
45.9322 311.0684 440.1181
26.8474 447.3113 836.6552
21.8498 537.9950 1127.80

17.9734 631.0103 1452.0




