
Hiroshima Math. J.

6 (1976), 227-255

The Enumeration of Liftings in Fibrations
and the Embedding Problem I

Tsutomu Yasui

(Received December 23, 1975)

Introduction

As for the enumeration problem of embeddings of manifolds, many results
have been obtained up to the present (e.g. [2], [5], [6], [7], [20] and [21]) but
they are small in number compared with those of the existence problem. In this
paper, we try one approach to the enumeration problem of embeddings of n-
dimensional differentiable manifolds into the real (2w-l)-space R2n~l. As
an application, we determine the cardinality of the set of isotopy classes of em
beddings of the n-dimensional real projective space RP" into R2"'1.

Our plan is as follows. An embedding /: M-*Rm of a space M into Rm

induces a Z2-equivariant map F:MxM-A-*Sm~l by F(x,y)= \\ffx)-f(y)\\
for distinct points x, y of M, where A is the diagonal of M and the Z2-actions on
MxM-A and Sm_1 are the interchange of the factors and the antipodal action,
respectively. Consider the correspondence which associates with an isotopy
class of an embedding /: M-*Rm the equivariant homotopy class of the map F
made above. Then this correspondence is surjective if 2m]>3(n+1) and bijective
if 2m>3(n + l) for any n-dimensional compact differentiable manifold M by
the theorem of A. Haefliger [5, § 1]. On the other hand, there is a one-to-one
correspondence between the setof the equivariant homotopy classes of equivariant
maps of MxM-A to Sm~l and the set of homotopy classes of cross sections of
the sphere bundle Stt,-l^(MxM-A)xZ2Sm-i^(MxM-A)jZ2, where the re
duced symmetric product M*=(M xM-A)\Z2 of M has the homotopy type of a
CW-complex X of dimension less than 2n (n=dimM). Therefore, the enumera
tion problem of embeddings of an n-dimensional manifold M into Rm arrives at
the enumeration problem of cross sections of an Sm~ ^bundle £ over a CW-com-
plex X of dimension less than 2n.

Now, consider the case that m = 2n-l, and let p: BO(m-l)->BO(m) be the
universal Sm-1 -bundle. Then the enumeration of cross sections of an Sm~l-

bundle £ over X is equivalent to the enumeration of liftings of the classifying map
£: X-*BO(m) of <? to BO(m-\). We construct the third stage Postnikov fac
torization
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of p. Here pt is the twisted principal fibration, p2 is the principal fibration and
q2 is an (m + Inequivalence. Since the dimension of X is less than m + 1, the
enumeration of liftings of £ to BO(m-1) is equivalent to the enumeration of lift
ings to Tby the theorem of I. M. James and E. Thomas [11, Theorem 3.2].

From the above considerations, this paper is divided into three chapters.
In Chapter I, we study the enumeration problem of liftings of a map into the

base space of a certain fibration to the total space. In § 1, the twisted principal
fibration is defined and the enumeration of liftings for this fibration is treated.
Further, we are concerned with the composition of two twisted principal fibra
tions T—*-•£—£-»£> under the assumption that it is stable (see §2). We describe
the set of homotopy classes of liftings of a map u: X^D to the composition pq: T
-•£> in Theorem A of § 2, which is a generalization of the theorem of I. M. James
and E. Thomas [12, Theorem 2.2] for principal fibrations. After preparing sever
al propositions for the composition pq in §§3-4 without assuming the stability,
Theorem A is proved in § 5.

The purpose of Chapter II is to study the enumeration problem of cross sec
tions of sphere bundles. In §6, we notice the cohomology H*(X; Z) with co
efficients in the local system defined by (j>: nl(X)^Aut(Z). In §7, the third
stage Postnikov factorization (*) of p: BO(n-l)^BO(n) is constructed, and we
show in §8 that the composition of fibrations pkp2: T-+BO(n) is stable in the sense
of §2. From Theorem A and the fact that q2: BO(n -l)-> Tis an (n+ ^-equiva
lence, we have the following theorem in § 9.

Theorem B. Let£bea realn-plane bundle over a CW-complex X of dimen
sion less than n+ l and let n^4. //£ has a non-zero cross section, then the set
cross (£) of homotopy classes of non-zero cross sections of ^ is given, as a set, by

cross (0 = H"~l(X; Z) x Coker 0,

where the homomorphism

0: Hn~2(X; Z) • H»(X; Z2)

is defined by

0(a) = (p2a)w2(O + Sq2p2a for aeH"~2(X;Z),
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p2 is the mod 2 reduction, Z is the local system on X associated with £ and
w2(£) is the second Stiefel-Whitney class of £.

Chapter III is devoted to an application of A. Haefliger's theorem and Theo
rem B on the enumeration problem of embeddings of n-dimensional manifolds
into R2n~l. In § 10, the set [McK2,,_1] of isotopy classes of embeddings of
n-dimensional closed differentiable manifolds M into R2"'1 is described with

the cohomology of M*. As an application for the n-dimensional real projective
space RP", we calculate the cohomology group H2n~2((RP")*', Z) and the homo
morphism 0: H2"-3((RP")*; Z)^H2n~l((RPn)*', Z2), and we have the following
theorem in §§11-12.

Theorem C. Let n#2r and n>6. Then the n-dimensional real projective
space RP" is embedded in the real (2n—\)-space R2"'1, and there are just four
and two isotopyclasses of embeddings ofRP" intoR2"~l for n= 3(4) and n^ 3(4),
respectively.

Chapter I. Enumeration of liftings in certain fibrations

§ 1. Twisted principal fibrations

Let Z be a given space. By a Z-spaceX=(X, /), we mean a space X together
with a (continuous) map/: X-*Z. For two Z-spaces X = (X,f) and Y=(Y, g),
the pull back

X xz Y= {(*, y) \f(x) = g(y)} (c= X x Y)

off and ^ is a Z-space with (/, g): X xz Y-*Z, (f, g)(x, y)=f(x)=g(y). A map
h: X-*Y is called a Z-map if gh=f, and a homotopy ht: X^Y is called a Z-
homotopy if ght=f for all /. In this case, we say that h0 is Z-homotopic to h{
and denote by h0c~z h,. Further,

IX, Y\

denotes the set of all Z-homotopy classes of Z-maps of X to Y.
Now, let B be a space (with base point *) and n be a discrete group, and as

sume that 7r acts on B preserving the base point by a homomorphism <f>: 7r->
Homeo(B, *). Then, considering the Eilenberg-MacLane space K = K(n, 1),
the universal covering K-*K and the usual action of n on K, we have the fiber
bundle

(1.1) B >L4>(B) = Kx„B-i,K = K(n, 1)

with structure group n. Since Kxn* = K, we have the canonical cross section
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s: K-*KxnB such that s(K)=K = KxK*.

In this paper, we consider the following situation.
(1.2) Let n act on an H-group^ B by <j> satisfying the following assumptions:
The multiplication p: BxB-*B and the homotopy inverse v: B-+B of B are n-
equivariant and there are n-equivariant homotopies

p(lB, c)^lB^p(c, 1B), p(px\B)^p(iBxp) and p(v, iB)^ccap(\B, v),

where c: B-*B is the constant map to *. Also, if B is homotopy abelian, we
assume in addition that there is a n-equivariant homotopy ptap, where t: BxB
-*BxB is the map defined by t(x, y)=(y, x).

Then, for the K-space (L^(B), q) of (1.1), wecan define .K-maps

(1.3) py. L0(B)xKL,(£) —• L^B), V L^B) —> L^B)

by

PAL*, bl IX, 6']) = [x, p(b, b')l v,([x, 6]) = [x, v(b)-],

and there exist the following relations:

p4>(ixsq)A ^K\^Kp<>(sqxY)A:L4,(B) >L^B),

fl*0«*x l)aWl x jg: L<l>(B)xKL4,(B)xKL(t>(B) • L^B),

p^vj,x \)A^Ksq^K/t0(l x v+)A: L#(B) >L^B),

and

p+t*K 11+: L+(B) x KL^B) —• L^(B),

if B is homotopy abelian, where A is the diagonal map and t is the map defined by
t(x, y)=(y, x).

Therefore we have the following

Lemma 1.4. Let Xbea K-space with a map u: X-*K. Then the homotopy
set [X, L^(5)]K of K-maps is a group with unit [s«] by the multiplication

[/]• [0] = W/xg)A2 for K-maps f,g:X >L^B).

If, furthermore, B is homotopy abelian, then this group [X, L^(B)~\K is abelian.

Let p: E-+A be a fibration with fiber F=p~l(*), and assume that p admits a
cross section s: (A, *)-»(£, *). Then, we can consider the path spaces

*) The //-group is the homotopy associative //-space with a homotopy inverse.
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PAE = {X: I >E\ X(0)es(A), pX(0) = pX(t) for all tel},

QAE = {XePAE\X(0) = X(l)},

and we have the following well-known lemma.

Lemma 1.5. The projection

r:PAE >E, r(X) = X(\),

is a fibration with fiber QF. Furthermore,

pr: PAE —> A and pr: QAE —> A

are fibrations withfibers PF and QF, respectively, and they admit the canonical
cross sections induced by s, where PF={X: I-+F \X(0) = *} and QF= {Xe PF \X(0)
=X(i)} are the ordinary path space and loop space of F.

By applying this lemma to the fibration q: Lj,(B)->K of (1.1), we obtain the
fibration

qr: QKL^(B) —* K, (qr)-\*) = QB,

admitting the canonical cross section s. On the other hand, the given homomor
phism cj>: 7r-»Homeo(B, *) induces the homomorphism

$>: n >Homeo (QB, *), <f>'(g) (X) (t) = <j>(g) (X(t)).

This determines by (1.1) the fibration

q'-.L^QB)—>K,

with fiber QB admitting the canonical cross section s', and we have the natural
homeomorphism

• |A: ^(QB) -^ QKLt(B), <K[x, ;.])(/) = [x, A(0],

which satisfies qnj/= q'. Also, the loop space QB is a homotopy abelian //-
group by the join V of loops:

(;.iv;.2)(o=
A,(2/) 0^2/^1

U2(2l-1) 1^2* £2,

and the action of n on QB by <f>' satisfies (1.2). Therefore, Lemma 1.4 shows that
the homotopy set [X, L4,.(QB)']K of/C-maps is an abelian group by the multiplica
tion induced by V^. Furthermore, the above natural homeomorphism if/ com
mutes with V^< and the /C-map
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V : QKLJftxKQKL4ft —• QK^(B)

given by the join of loops, and we have the following

Lemma 1.6. The natural K-homeomorphism \j/: L^(QB)-*QKL^(B) in
duces an isomorphism

*,: IX, LJQBJ}* ^+ IX, QkLW\k

for any K-space X, where the domain is the abelian group of Lemma 1.4 and
the multiplication in the range is induced by V mentioned above.

Also, applying Lemma 1.5 to q: L^,(B)^K of (1.1), we obtain the fibration

r: PKL4.B) —• ^(B) with fiber QB.

Now, let 0: D-*L^(B) be a given map. Then, from this fibration, 0 induces
a fibration

p:E = DxLP^B) —>D(L = L^B)) with fiber QB,

which is called the twisted principalfibration with classifying map 0.
Let u: X->D be a given map and consider the diagram

E PKL<,(B) QKLt(B)

\p I' h
X _»_» D -2-> L^B) -!U K.

We define a D-map

(1.7) m:QKL^(B)xKE—>E

by the relation m(Xx, (x, X2))=(x, Xt VX2), where V is the join of paths, and the
domain is the pull back of K-spaces (QKL^(B), qr)and (E, qOp) and is.understood
as a D-space (QKL^,(B) xK E, pn2) (n2 is the projection to the second factor in this
paper). Hereafter, we often write Ax V(x, X2) for m(Xx, (x, X2)) simply. By con
sidering a Z)-space X=(X, u) as a K-space (X, qOu), this map m induces a function

mm: fX, QKL4,(B)-]K x IX, £]0 >[X, E}D.

Proposition 1.8. The function m* mentioned above is an action of the
abelian group [X, QKL^(B)~]K of Lemma 1.6 on the homotopy set [X, E]D.
If u: X-*D has a lifting v: X-*E, that is, if there is a D-map v: (X, u)-*(E, p),
then thefunction m*( , [u]): [X, i2KL^(J5)]K^[X, E~\D is a bijection.

Proof. This is a straightforward modification of the case that p: E-*D
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is a usual principal fibration (cf. [12, Lemma 3.1]).

§2. The main result in Chapter I

Let B and C be //-groups with homomorphisms (j)(B): 7i(B)-*Homeo(B, *)
and <f>(C): 7r(C)->Homeo(C, *) such that they satisfy the assumption (1.2),
and let

qA: L(A) = L^A) — K(A) = K(n(A), 1) (A = B, C)

be the fiber bundle of (1.1) with the canonical cross section sA. Consider the
following situation:

(2.1)

Here p is the twisted principal fibration with fiber QB induced from PK(B)L(B)
->L(B) by 0, q is the one with fiber QC induced from PK(C)L(C)^L(C) by p, and
it is assumed that

<\cP = PP*]

For a given map u: X-+D, the homotopy set [X, T]D of D-maps of the D-space
(X, u) to the D-space (T, pq) is the set of homotopy classes of liftings of u to T.
The investigation of this set is our main purpose of Chapter I.

From now on, we assume that C is a topological group.*** For the sim

plicity,

n: L(C) xK(C) L(C) —> L(C) and ~»: L(C) >L(C)

denote the K(C)-maps p^C) and v^(C) of (1.3) induced from the multiplication and
the inverse of C.

Let

(2.2) mB: QK(B)L(B) xK(B) E —• £

*) In our applications of the later chapters, we are concerned with the case where K(C)=*.
For this case, L(C)=C and q is a usual principal fibration and the existence of such a
map p with qcp=PP is trivial.

**) This assumption givesneat formulas but essentiallythe same theory carries through in the
case that C is an //-group.
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be the D-map defined in (1.7), and consider the map

p,: QKiB)L(B) xK(B) E —> L(C)

defined by

p,(X, y) = n(pms(X, y), [pmB(cX(0), y)]~») for Xe QKWL(B), y e £,

where cx denotes the constant loop at x. Then, p, maps £=sB(X(B)) xK(B) E to
K(C)=Sc(K(C)), and p, is a X(C)-map, where QK(B)UB)xK(B)E is considered
as a X(C)-spaceby the composition pp7r2 = qcpn2 (n2 is the projection to the second
factor). Therefore, we have K(C)-maps p, and 1x p in the diagram

(QKiB)L(B)xK(B)E, E) ->U (L(C), K(C))
(2.3) |»*p

(i2K(B)L(B)xK(B)D, D) -<->(L(C), /C(Q),

where QKiB)L(B)xK{B)D is also considered as a K(C)-space by the composition
P7T2.

Now, we say that the composition of fibrations T—g-»£ p >D in (2.1) is
sfafc/e, if there exists a JC(C)-map cf in (2.3) such that the diagram (2.3) is K(C)-
homotopy commutative.

Suppose that the composition pq is stable by a K(C)-map d. From the fibra
tion QK(B)L(B)^K(B), we obtain the fibration

G2k(b)L(B) = Qkw&kwMB)) >K(B)

with the canonical cross section, by Lemma 1.5. Then, the map d induces a
/C(C)-map

(2.4) d': (Q2KmL(B) xK(B) D, D) —>(G*(C)L(C), K(Q)

by the equation

d'(X,x) (t)= d(X(t),x) for Xe Ql(B)L(B), x e D and tel.

For a given D-space X=(X, u), these /C(C)-maps rf and d' induce two functions

0U: [X i2x(B)W)]K(B, —• \X, L(C)]K(C),

0^: [*, ^(b)^)]K(B) —• [X, QK{C)UC)-]K(C),

given by 6>„([fl]) = [d(a, u)] and ©;,([>])=Wfr, «)], where A" is considered as
a iC(B)-space (X, gB0u) and /C(C)-space (X, pu). Here 0'u is a homomorphism
of groups by the definition of a" and so Coker 0'a is defined. Set Ker0u=0-*
([scp«]). Then we have the following main theorem in this chapter, which is a
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generalization of [12, Theorem 2.2].

Theorem A. Suppose that the composition of thefibrations

T-2->£-P->D

in the diagram (2.1) is stable by the map d in (2.3). Let X be a CW-complex
and u: X-*D admit a lifting X-*T. Then the set

IX, r\D

of homotopy classes of liftings ofu to Tis equivalent to the product

Ker 0ux Coker 0'u,

where 0U and 0'u are the functions of (2.5).

§3. Correlations

Consider the diagram (2.1) and let v: X^E be a lifting of u: X-*D. We
say that two maps /», h': X^T are v-related if (1) qh= qh'= v and (2) h is D-
homotopic to h'. The relation "v-related" is an equivalence relation, and if
v is D-homotopic to v't then the set of y-relation classes is equivalent to the set
of u'-relation classes.

For n= [y] e \X, £]0, let N(n) denote the set of u-relation classes of D-maps
of X to T Then

N(>l) = qV(r,) and [X, T]D = \J{q*\n)\n<siX, £]D},

where q+: [X, T~\D^[X, £]D. Thus we have the following

Lemma 3.1 [12, Theorem 3.2]. The set [X, T\D is equivalent to the dis
joint union of theset N(n), where n runs through the elements of\X, £]D.

Since the set [X, £]D is equivalent to the group [_X, (2k(B)L(B)]K(B) by
Proposition 1.8, we study the set N(rj) for each ne [X, E]D in the rest of this sec
tion.

As is constructed in (1.7), there is a D-map

mc: QK(C)L(C)xK(C)T—> T.

This D-map mc induces an action of the group [X, £K(C)£(C)]K(C) on [X, T~\D
by the same way as Proposition 1.8. It is easily seen that (1) if h: X-*Tis a D-
map and if k,k':X-*QK{C)L(C)are K(C)-homotopic, then mc(&, h) and mc(k', h)
are u-related, where v=qh, and (2) if k: X^QK(C)L(C) is a K(C)-map and if h,
h': X->Tare y-related, then mc(k, h) and mc(k, h') are y-related. Hence, using
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Proposition 1.8, we see that the above action of [X, QKio^i^Kio is transmitted
to a transitive action on N()j). We, therefore, have the following

Lemma 3.2. Let n be the element in the image of q#: [X, T~\D-*[_X, £]D.
The set N(n) is equivalent to the quotient q/*[X, (2K(C)L(C)]K(C) by the stabilizer
of an element of N(n).

Let p: E->A be a fibration with fiber F and let

Q*AE = {X: I —>E\pX(t) = pX(0) for all te/, X(0) = X(\)},

Q*F = {X:I —> F\X(0) = X(\)}.

Then the following results are known and will be used later on.

Lemma 3.3. Let r: G*,£->£ be a map defined by r(X)=X(\). Then r: Q*E
->£ is a fibration with fiber QF and pr: Q^E^A is also a fibration with fiber
Q*F.

The map p: E-+L(C) in (2.1) induces a map

P':Q%E—>Q%(C)L(C),

which is given by p'(X)(t)=p(X(t)), and there follows a commutative diagram
below,

Q*E—r—^E—*—•/>

I"' I" i'~
Qkc)L(C) -J^ L(C) —♦ K(C).

Therefore we have a commutative diagram

IX, Q*DE-]D * >IX, £]D

l"; h
IX, QK(C)L(Cy]KiC) -^ IX, Qt(C)L(Cy]K(C) -*u IX, L(C)]K(C),

where i: QKlC)L(C)-+Q%(C)L(C) is the natural inclusion. We say that an ele
ment ye[X, QK(C)L(Cy\K(c) is p-correlated to ne\X, £]D if there is an element
Xe IX, Q%E]D such that /*(*)=n and p'M = /*(y).

Lemma 3.4. Let h: X-+T be a D-map and let v=qh. Suppose that k Vh
= mc(k, h) is v-related to h for a K(C)-map k: X-+QK(C)L(C). Then the class
of k in IX, Qk(ol(Q1k(o 's p-correlated to the D-homotopy class of v: X-+E.

Lemma 3.5. For a K(C)-map k: X^QK(C)L(C), suppose that the class of
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k in \X, Qic(C)L(Cy]K(C) is p-correlated to the D-homotopy class of v: X-*E.

Then feVn is v-related to h for any lifting h: X-*Tofv.

Combining Lemma 3.2 and Lemmas 3.4-5, we have the following

Proposition 3.6. If r\e[X, E]D lies in the image of q+: IX, T]D-+\X,
E]D, then the set N(rj)=q^l(tj) is equivalent to the factor group of [X,
^k(0^(Q]k(C) by the subgroup of elements which are p-correlated to n.

Proof of Lemma 3.4. Let gt: X-*T be a D-homotopy such that g0 = h
and gl = kv h and let g: X-+Q%E be a D-map given by g(x)(t) = qgt(x) for any
xeX and tel. Then rg(x)=g(x)(\) = qgt(x)=v(x). Hence it is sufficient to
show that i*([/c])=p'*([fif]) in [X, ^(C)L(C)]K(C). Let p: T->PK(C)L(Q be the
map induced by p, which makes the following diagram commutative:

T-L+PK(C)L(C)

I' 1'
£—e—+L(C).

Then there is a homotopy ls: X-*Q%(C)L(C) (sel) given by

P9i +2S,-2S(x)(tl2) 0<£2s5£l

pg,(x)(2s+t-st-l) 1 <, 2s £ 2

which is a X(C)-homotopy between ik and p'g. q. e. d.

/*(*)(') =

Proof of Lemma 3.5. Let g: X-*Q%E be a D-map such that rgcaDv and
P'9—K(C)ik. Since Q%E->E is a fibration by Lemma 3.3, we may assume that
rg= v. Let t: QK(C)L(C)^QK(C)L(C) be a X(C)-map given by x(X)(t)=X(\-t)
for all tel. Let k': X-+QK(C)L(C) be a JC(C)-map defined by k'=phVp'gV
i(ph). Then ik' is K(C)-homotopic to /0: X->Q%(C)L(C) defined by

p/»(x)(30 0^3r^l

/o(*)(0= p'9(x)(3t-\) \<3t£2

ph(x)(3-3t) 2£3t^3.

Let /,: X-*Q%(C)L(C) be a X(C)-homotopy which is defined by

/0(x)(f+s/3) 0^3*^ 1-s

h(x)(t) = lQ(x)((t+s)l(l+2s)) \-s£3t£2+s

. lo(x)(t-sl3) 2 + s <,3t<,3.
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Then l1(x)(t)=l0(x)((\+t)l3)=p'g(x)(t) and so /*([*'])=Pic([0]). Therefore,
there follows ik^Ki!C)ik' because !*([&])=p'*([0]) by the assumption. Let
/,: X-*Q%(C)L(C) be a K(C)-homotopy between ik' and ik, and let f:X-*
^K(C)UC) be a JC(C)-map given byf(x)(t)=ft(x)(0). Then it is easily seen that
fc'V/*K(C)/V/c, i.e., Ik' V/] = [/V/c] in IX, QK(C)L(Cy]K(C). Because
[X,flK(C)L(C)]K(C) is an abelian group by Lemma 1.6, it follows that [fc] =
[fc']. Therefore, we have

kVph c~K(C) k! Vph*K(C) (ph Vp'gVx(ph)) Vpn ^K(C) pn Vp'g.

Let w: X-+Tbe the map defined by w(x)=(v(x), (ph Vp'0)(x)). Then w is a lift
ing of v and w is D-homotopic to (v, kvph) = kvh, i.e., w is u-related to kvh.
On the other hand, let ws: X->Tbe a homotopy which is given by

ws(x) = (0(x)(l-5),/;(x)),

f pn(x)(2//(l+s)) 0<£2r£l+s
K(x)(t) = \

{ p'g(x)(2t-\-s) \ + s<,2t<2.

Then vvs is a D-homotopy between w and n. Therefore, w is t?-related to h and so
k Vn is t>-related to n. q. e. d.

§4. Compositions of twisted principal fibrations

Let p: E-+D be the twisted principal fibration with fiber F (=QB) in the dia
gram (2.1) and let

™B: (QK(B)L(B)xK(B)E, QK(b)L(B)xK(B)F) —> (£, F)

be the map of (2.2). Obviously, QK(B)L(B)xK(B)F=FxF and mB:FxF->F
is the ordinary multiplication of F=QB. Consider the map

m'B: (Q^B)L(B)xK(B)E, QlmL(B)xK(B)F) >(Q%E, Q*F),

which is given by

m'B(X, x)(t) = m^t), x) for XeQ%(B)L(B), xeE and tel.

It is easily seen that Ql(B)L(B)xK(B)F=QFxF and m'B: QFxF-*Q*F coincides
with the map defined in [10, Theorem 2.7]. Now, pr: £*>£->D is a fibration with
fiber Q*F by Lemma 3.3 on theone hand and on the other hand pn2: Ql{B)L(B)
xK(B)E-*& fa2 is tne projection to the second factor) is a fibration with fiber
QF x F, and m'B makes the following diagram of fibrations commutative:
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QFx F_£-> Q2K(B)L(B) xK(B)E>ZL> D

Q*F = >Q*E Pr > D.

The map m'B: QFxF-*Q*F is a weak homotopy equivalence by [10, Theorem
2.7] and so is the map m'B: Ql(B)L(B)xK{B)E-*Q%E, which is seen immediately
by using the homotopy exact sequences of fibrations and the five lemma. There
fore the function

m'B.: IX, Q2K(B)L(By]KiB)xlX, £]D — [X, G££]0

is a bijection for all CW-complex X, by [11, Theorem 3.2].
The K(C)-map p, in (2.3) induces a K(C)-map

P\ : (^k(B)L(B)xK(B)E, E) • (QK(C)L(C), K(Q),

which is defined by

p\(X,x)(t) = Pl(X(t),x).

If v: X->£ is a D-mapand a, b: X-*Ql{B)L(B) are ZC(B)-maps, then the relation

p\(aVb, v) = p\(a, v)Vp\(b,v)

holds. Therefore the function

(4.1) A(p, M): IX, G2(B)L(fl)]K(B) —> [X, flK(C)L(C)]K(C),

defined by

^(p.MKM) = !>',(*, »)],

is a homomorphism of groups. We consider also a /C(C)-map

n': GK(C)L(C)xK(C)L(C) —> Q%(C)UC),

defined by the relation

n'(X, x)(t) = n(X(t), x) for XeQK(C)L(C), xeL(C) and re/,

where n=p<KC): L(C)xK(C)L(C)-+L(C) is the induced multiplication of (1.3).
Because C is a topological group, the map n' is a X(C)-homeomorphism. There
fore the induced function

"'*: IX, QKicMC)-]K(C)xlX, L(C)]K(C)—>IX, ^(C)L(C)]K(C)

is a bijection for any space X. By the direct calculations, we obtain
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n'(p'i, prmB)A = p'm'B: Q£(B)L(B)xKiB)E —> Qf{C)L(C),

where A is the diagonal map. This implies the following lemma.

Lemma 4.2. There are the following relations:

(1) r*m'B.(P, n) = tj,

(2) p'*m'AP,r,) = n'*(A(p,n)(P),p*ti),

(3) n'*(y, [scpw]) = i*(y).

Using the above lemma, we can prove the following

Proposition 4.3. Under the situation of (2.1), the conditions (i) and (ii)
are equivalent.
(i) The element rj e [X, E]D is contained in the image of q*: [X, T]D->[AT, £]D
and y e [X, Qkio^Q>]k(C) is p-correlated to w.
(ii) The element r\e \X, E\D is contained in p^KDscP"]) and y lies in the image
ofA(p, n): \X, Ql(B)L(By]K(B)^lX, GK(C)L(C)]K(C).

From Lemma 3.1, Proposition 3.6 and Proposition 4.3, we have the follow
ing

Theorem 4.4. Under the situation of (2.1), the set [X, T]D is equivalent
to the disjoint union of Coker A(p, n) of the homomorphism A(p, n) o/(4.1), as w
runs through pV([scpu])> where p*: [X, E]D-*[X, UCf\K{Cy

§ 5. Proof of Theorem A in § 2

Assume that the composition of fibrations T—£->£—£-»D in the diagram (2.1)
is stableby a K(Q-map d: (QK(B)L(B)xK(B)D, D)^(L(C), K(C)), i.e., the follow
ing diagram is K(C)-homotopy commutative:

(QK(B)L(B) xK(B) E, E) ->l+ (L{C), K(C))
llxp

(QK(B)L(B) xK(B) D, D) -JU mQ, K(Q),

where px is the map defined in (2.3). Let

d': (Ql(B)L(B)xK(B)D, D) —> (QK(C)L{C), K(Q)

be the map induced from the map d by d'(X, x)(t) = d(X(t), x). Then the diagram
below is X(C)-homotopy commutative:
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(Q2KiB)L(B)xK(B)E, E) -£> (QK{CMQ, K(Q)
llxp

(Q2K(B)L(B) xK(B) D, D)-il* (QK(C)L(C)> W»•

For any map u: X-*D, there are two functions

0U: IX, i2#c(B)L(B)]K(B) —• [X, L(C)]K(C),

0J,: [AT, i2K(B)M^)]K(B) *lX, £k(C)^(QJk(C)>

which are defined by

ejlal) = W(«.«)]. «i(M) = W'(*.«)] •

If u: X->D has a lifting to £, then the homomorphism 0'u is equal to the homo
morphism A(p, n) of (4.1) for any n 6 \X, £]D by the definition of A(p, n) and the
above commutative diagram. Therefore

Coker 0'u = Coker A(p, n) for any n e [A\ £]fl.

Let n= [y] e [X, £]D. Then

0U(W) = L*> ")] = [Pi(«» »)] = Mpm^a, v), pmB(ca(0), u)"1)]

by definition. If v: X-»£ has a lifting to T, then [pmB(ca{0), v)~\ is equal to the
unit [scpu]. Thus the function

pmmB4 , n): [X, QK{BiUB)]KW —^ [*, £]D —> [AT, L(C)]K(C)

is equal to 0U, if mhas a lifting to T. Since mB»( , n) is a bijection by Proposition
1.8, we see that p^({scpu]) is equivalent to Ker0u=0~l(\scpu]).

The above argument and Theorem 4.4 complete the proof of Theorem A.

Remark. We see easily that the function 0U is also a homomorphism.

Chapter II. Enumeration of cross sections of sphere bundles

§6. Some remarks on the cohomology with local coefficients

The non-trivial homomorphism <j>: Z2-+Aut(Z), where Aut(Z) is the group
of automorphisms of the infinite cyclic group Z, induces a homomorphism <j>: Z2
->Homeo(K(Z, n)) (n>l). As indicated in (1.1), there is a fibration

K(Z, n)-U L^Z, n)^UK = K(Z2, 1), L^Z, n) = L^Z, n)),

with a canonical cross section s. A map u: X-+K determines a local system on
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X which is given by <j>u+: nl(X)-+nl(K)=Z2^>Aut(Z). We denote the coho
mology with coefficients in the above local system by H*(X; Zu.0) or H*(X; Z)
simply. Notice that the following results.

Proposition 6.1 [13, §1and §3]. There is a unique element XeHn(L^(Z,
n), K; Zq.+)such that i*X=c„eH"(K(Z, n); Z), thefundamental class of K(Z, n),
where i: K(Z, n)-*(L^(Z, n), K) is the natural inclusion, and there is a natural
isomorphism

<t>: IX, A; L4Z, n), K\K -=- H"(X, A; Zu.+)

for any pair of regular cell complex (X, A) and for any map u: X-*K which is
defined by

*([«]) = a*(X).

If A is empty, this is the isomorphism

<*>: [X, L£Z, n)]K >H"(X; Z^), <*>([a]) = a*j*X,

where j: L^(Z, ^^(L^Z, n), K) is the natural inclusion.

We say that the elements Xandj*X are the fundamental classes of the fibration
q: L$(Z, n)^>K and we denote X, j*X and theirmod 2 reductions by the same sym
bol X, whenever no confusion can arise.

For a map u: X-*K, consider the pull back of q: L^(Z, n)-*K by u,

K(Z, n) -U L^Z, n) xKXJ±+ L^Z, n)

X 2 >K,

(nt is the projection to the i-thfactor). Then i*ri\X=tn follows immediately from
the relation i*X=en. Therefore, we see easily the following

Lemma 6.2. Let v: H*(K(Z, n); Z2)-»//*(L^(Z, n)xKX', Z2) be the homo
morphism of Z2-algebras given by v(Sq'i„) = Sq'Xx, where e„ is the image of the
mod 2 reduction of the fundamental class cn of K(Z, n) and Xx = n\XeHn(Lli)(Z,
n)xKX;Z2). Then

v®7i*: H*(K(Z, n); Z2)(g>//*(*; Z2) —• //*(L,(Z, n)xKX; Z2)

is an isomorphism ofZ2-algebras and so any element x in H*(L£Z, n)xKX; Z2)
is described uniquely in the form

x = 2ZSq''Xxn*2a(, a(e H*(X; Z2).
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§7. The third stage Postnikov factorization of BO(n -1) -+BO(n)

Let p: BO(n-l)^BO(n) be the universal S"~^bundle (n^4). Our purpose
in this section is the construction of the third stage Postnikov factorization of
this bundle using the methods of J. F. McClendon [13] and E. Thomas [19].

Let <£: 7r1(BO(n))=Z2-»Aut(7r„_1(Sn-1))=Aut(Z) be the local system on
BO(n) associated with p: BO(n-\)-+BO(n), and let s„_i be the generator of
H"-l(Sn-1;Z)=Z. Then, by [13, Theorem 4.1 and §§2-3], there is a map
W: BOW-^L^Z, n) such that [W]e[BO(n), L^Z, n)]K = Hn(BO(n); Z) is the
transgression image of sn_!, and we have a commutative diagram

S«-i —>BO(n-l)

.-.J J..
QK(Z, n) >E—• PKL+(Z, n)

I" I
BO(n) -5U L^Z, n) -U K,

where Pi<h= P and pt is the twisted principal fibration induced by W. By using
the homotopy exact sequences of fibrations, we see easily that both maps sn-v
and g, are homotopically equivalent to the fibrations F—^->S"~l 5n~' >QK(Z, n)
and F -=-> BO(n-1)-^-»£ (cf. [19, § 1]) and

for i < n -1

for i > n.

Therefore qx: BO(n—1)-»£ is an n-equivalence.** Since the generator of H"(F;
Z2)= Z2 is transgressive for the fibration qt: BO(n—1)->£, its transgression image
is a non-zero element p in Hn+l(E; Z2) and there is a commutative diagram

F *BO(n-\)

1 I"
K(Z2, n) —• T

i"
E-^K(Z2,n+\).

Here p2q2= qi, p2 is the principal fibration with the classifying map p and it is
easily seen that q2 is an (n +Inequivalence and q2\F represents the generator of

*) A map g: X-*Y (X, Y are connected) is called an n-equivalence if g+: ;r((A')-»;r((y) is
isomorphic for /<« and epimorphic for i=n.
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H»(F; Z2).

In the rest of this section, we concentrate ourselves on the characterization
of the map p: E-*K(Z2, n+1). Let

m: QKL£Z, n) xKE —> E

be the action defined in (1.7) and set

(7.1) p = w(l xqi): QKL£Z, n)xKBO(n-\) —> E.

The map p makes the following diagram commutative:

QKL+(Z, n) xKBO(n-1) -JU E
1*2 |P|

BO(n-l)—p—>BO(n).

The projection n2 to the second factor admits a cross section s defined by s(x)
=(cqWpix), x), where cy is the constant loop at y, and the relation

(7.2) ps*mn)qv

holds obviously. The local system nl(BO(ri))=Z2^Aut(Hi(K(Z, n-1); Z2))
on BO(n), which is associated with px: £->BO(n), is trivial for i=n —l and hence
so for all /. Also Hl(K(Z, n-1); Z2)=0 for 0<i<n-l and Hl(BO(n), BO(n
—1); Z2)=0 for i<n. Therefore, by the similar proof to [19, Property 4], we
see that the sequence

• HKQzL^Z, n)xKBO(n-l); Z2) -X Hi+l(BO(n), BO(n-i); Z2)

-£^H«i(E; Z2) -£-> W+^Q^Z, n)xKBO(n-l); Z2) —>

>H2»-2(E; Z2)

is exact, wherej: BO(ri)->(BO(n), BO(n-\)) is the natural inclusion, and t0 is the
relative transgression. On the other hand, p*: W(BO(n); Z2)->//'(BO(n-l);
Z2) is epimorphic for all /. Also Kerp* is the ideal generated by the universal
n-th Stiefel-Whitney class wn. Since wn is the transgression image of s„_j of
p: BO(n—\)-*BO(n), we have wB=T(f„_1)eKerp*, where t is the transgression
of K(Z, n- l)-^E-Z*->BO(n). Thus we see that Kerp* = Kerp?. Therefore,
the same argument as in [19, Property 5] provides the exact sequence

(7.3) 0 • //'(£; Z2) -2U H'(QKL^Z, n)xKBO(n-i); Z2)

-i^//'+>(flO(n);Z2)
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for t<2n—2, where xx =j*r0. (7.2) and (7.3) imply that

(7.4) p*:Kerg*—>Kers*flKerT1

is isomorphic in dimension less than 2n —2.
By considering QKL^(Z, n)=L4>(Z, n—\) by the natural K-homeomorphism

if/ of Lemma 1.6, there is an element XB0(n-X) in H"~l(QKL^,(Z, n)xKBO(n—\)',
Z2) by Lemma 6.2 for the fibration QKL£Z, n)xK BO(n - i)-*BO(n -1) such that
i*^flo(n-n = 'n-i> tne mod 2 reduction of the fundamental class of K(Z, n—1).
Here the diagram

QK(Z, n) —U QKL+(Z, n) xKBO(n- 1) -^-* BO(n- 1)

1 I" I'
QK(Z, n) >E ^ >BO(n)

implies that Tx(XBO(n-X))=j*t0(XBO(n_x)) = Ti*(XBO(n.x))=x(i„_x) = wn. Any ele
ment x in //',+1(GKL0(Z, n)xK BO(n-l); Z2) is described in the form

x = n^b+exXB0(n-X)n^w2x + £2XBO{n-i)n2tw2 + e3Sq2XBO{n-l),

where a,=0 or 1 for /= 1, 2, 3 by Lemma 6.2. If xeKers* n Ker^, then 0=s*x
= b. Because t, is an H*(BO(n); Z2)-homomorphism and xxSql = Sqlxx by
[19, §3], it follows that

TiOW- i)7ifw\) = wnw2x, rx(XBO{n.X)nlw2) = w„w2,

*i(Sq2XBOin-X)) = Sq2w„ = wnw2.

Hence Kers* nKert1=Z2 generated by XBO(n-l)n2*w2 + Sq2XBO{„-l) and so the
map p: E-*K(Z2, n+ \) is characterized by the relation

(7.5) p*p = XBO{n_X)n%w2 + Sq2XBO(n-X).

Summing up the above arguments, we have

Theorem 7.6. The third stage Postnikov factorization of p: BO(n-i)
-+BO(n) is given as follows:

(7.7) p\ ^E-!UK(Z2,n+l)

. 1"
BO(n)-HUL4Z,n),
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where <f>: nx(K(Z2, l))=Z2->Aut(Z) is the non-trivial local system on K(Z2, 1),
px: E-+BO(n) is the twisted principalfibration induced by the map W, p2: T-»£
is the principal fibration with classifying mapp, qx: BO(n—1)-*£ is an n-
equivalence, q2: BO(n —\)^Tis an (n+ i)-equivalence and the map p is charac
terized by the relation (7.5).

§8. The stability of the third stage Postnikov factorization of p:
BO(n-l)^BO(n)

There is a map

(8.1) d: (QKL<,(Z, n)xKBO(n), BO(n)) —> (K(Z2, n+1), *),

which represents the element XBO(tt)n2*w2 + Sq2XBO(tt) in //n+1(«KL^(Z, n)xK BO(n),
BO(n); Z2), i.e., d*(c)=?.BO(n)n\*w2 + Sq2XBO{n), where c is the fundamental class
of K(Z2, n+1). The relation

(8.2) (1 xpx)*d*(c) = XEn*2p*xw2 + Sq2XEeH"^(QKL4Z, ri)xKE, £; Z2)

follows easily. Let

px: (QkL^Z, n)xKE,E) —> (K(Z2, n+1), *)

be the map given by the relation px(k, y)=pm(k, y)•[pm(ck(0), yj]~l (cf. (2.3)).
Then the following relation holds:

(8.3) p\(t) = m*p*(c)-n*2p*(c)eH»+\QKL4>(Z, n)xKE, E; Z2).

To see that the composition of fibrations T-?±->E-?-UBO(n) in the diagram
(7.7) is stable by the map d in the sense of §2, it is sufficient to show that

(8-4) (m*- Ttf)p*(0 = XEn\p\w2+ Sq2XE,

by (8.2) and (8.3). Now,consider the map p of (7.1). Then the diagram

H""(E; Z2) ^1+ H"^(QKL<t>(Z,n)xKE; Z2)
U |o*<ii)*

Ker?* £ >H"+l(QKL<t>(Z,n)xKBO(n-l); Z2)

is commutative because (1 x qx)*(m*-n%)(x) = (\ x qx)*m*(x)-(i x qx)*n\(x)
=p*(x) for any x in Ker?*. Therefore we have

(lxtf,)*(m*-7rf)p*(0 = p*p*(0 by p*(0eKer?*

= ^B0in-i^*P*w2 + Sq2XB0(n_X) by (7.5)
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= (ixqx)*(XEn*2p\w2 + Sq2XE).

Consider the following commutative diagram:

IP+l(QKL4Z, n)xKE; Z2) <^®^- 2ZUHn-l(K(Z, n-1); Z2)®Hl(E; Z2)

H"i(QKL4Z, n)xKBO(n-\); Z2) <-T®^- 2Zf=oH"-l(K(Z, n-1); Z2)<g)

W(BO(n-l)>,Z2).

The horizontal maps are monomorphisms by Lemma 6.2. Further qf: //'(£;
Z2)->//'(BO(n—1); Z2) is monomorphic for i<2 because qx is an n-equivalence,
and so the vertical map in the right hand side is a monomorphism. This result
and the above equality imply (8.4), and we have the following

Proposition 8.5. The composition of the fibrations T-^-*E-^BO(n)
in the diagram (7.7) is stable by the map d in (8.1).

§9. Enumeration of cross sections of sphere bundles

Let ^ be a real n-plane bundle over a CW-complex X. If ^ has a non-zero
cross section, cross (£) denotes the set of (free) homotopy classes of non-zero cross
sections of £. The space X is a 50(n)-space with the classifying map £: X^BO(n)
of £. Then the relation

cross(Z) = [X, BO(n-\)-]BO(lt)

follows from [11, Lemma 2.2], If the dimension of X is less than n +1 and n > 4,
then

lX,BO(n-\y]BO(n) = {X, r\B0(n)

follows from [11, Theorem 3.2], because q2: BO(n—i)-*T is an (n + Inequiva
lence. On the other hand, it follows from Theorem A of § 2 that

IX, T\B0{n) = Ker 0i x Coker0'5.

Here

04: IX, QKL4Z, n)]K >IX, K(Z2, n+1)] = H"^(X; Z2) = 0,

0\: \X, QILJZ, n)-]K >[X, QK(Z2, n+ i)] = H"(X; Z2),

and 0'4([a])= [</'(«, £)], where d': (Q^L^Z, n)xKBO(n), BO(n))->(QK(Z2, n
+ 1), *) is the map given by a"(a, x)(t) = d(a(t), x) (cf. (2.4)). Also,
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IX, QKL^(Z, n)]K = H"~\X', Z\ \X, Q\L^(Z, n)]K = H"~2(X; Z)

by Proposition 6.1, where Z is the local system on X associated with %given by
the composition

nx(X) J^ nx(BO(n)) -^-> nx(K) = Z2-+-> Aut(Z), (K = K(Z2, 1)).

Now, we show that the homomorphism 0\: Hn~2(X; Z)-+H"(X', Z2) is
given by

(9.1) 0'i(a) = (p2a)w2(S) + Sq2p2a, for any, aeH"~2(X; Z),

where p2 is the mod 2 reduction and w2(£) is the second Stiefel-Whitney class of

Let t'eH"(K(Z2, n); Z2) be the fundamental class of K(Z2, n). Then

(9.2) e\(la-\) = (a,^d'*(c')

for any fC-map a: X-^Q^L^Z, n). Consider the two commutative diagrams of
the mod 2 cohomology groups

H'(K',*) —£—> Hl(PK',QK') <-^— Hl-l(QK',*)
I* id" |d"

Hl(Q' xKB, B) -£-* Hl(PKQ' xK B, QKQ' xKB)<-^- Hl-^(QKQ' xK B, B) ,

H"-*(Q', K) -*U H»-l(PKQ', QKQ') <-?- H"~2(QKQ', K)

Y I" " I"
H"-l(K") r* >H"-l(PK", QK")< * H"-2(QK"),

where K'=K(Z2, n+ 1), Q'= QKL^(Z, n), B=BO(n), K" = QK(Z, n) and d':
PKQ'xKB-+PK' is the map defined by the same equation d'(b, x)(t)=d(b(t), x)
as (2.4). Since <5~l r*(cn.,) = f„_2, we have

5"1r*A = A', 5~lr*XB = X'B,

where Ae//""1^', K) and X'eHn~2(QKQ', K) are the fundamental classes of
the fibrations Q'^K and QKQ'->K of Proposition 6.1 and XB=n^XeH"-1(Q'
xKB,B),X'B= n*xX'eH"-2(QKQ'xKB,B). Therefore, by the equation d*(c)
= XBn^w2 + Sq2XB by (8.1) and <5-1r*(0=:', we have d'*(c')=5-1r*d*(c)=
X'Bn2*w2 + Sq2X'B=(n*xX')(n2*w2) + Sq2n*xX'. This equality and (9.2) yield

©JCM) = (a, 0\(nV')'{nlw2) + Sq2n*xX')

= (a*X')(Z*w2)+Sq2a*X'.
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Therefore, the homomorphism 0\: H"~2(X; Z)^H"(X; Z2) is given by

0's(a) = (p2a)w2(0 + Sq2p2a

by Proposition 6.1, where w2(£) is the second Stiefel-Whitney class of £ and p2
is the mod 2 reduction.

From the consideration made above, we obtain the following

Theorem B. Let £bea real n-plane bundle over a CW-complex X ofdimen
sion less than n + l and let n>4. If ^ admits a non-zero cross section, then the
set cross(£) of homotopy classes of non-zero cross sections of £ is, as a set, given
by

cross (£) = //"" »(X; Z) x Coker 0,

where 0: H"~2(X; Z)-+Hn(X\ Z2) is defined by

0(a) = (p2a)w2(t)+Sq2p2a, for aeH"~2(X;Z),

p2 is the mod 2 reduction and Z is the local system on X associated with £.

Chapter III. Enumeration of embeddings

§10. Enumeration of embeddings of manifolds

Let M be an n-dimensional differentiable closed manifold. Let M* be the

reduced symmetric product of M obtained from MxM—A (A is the diagonal of
M) by identifying (x, y) and (y, x) and let n be the real line bundle over M*
associated with the double covering Mx M—A-+M*. Then the set [Mc]?2""1]
of isotopy classes of embeddings of M into the real (2n—l)-space R2"~l for n>6
is equivalent to the set of homotopy classes of cross sections of the S2n-2-bundle
(MxM-A)xZ2S2n~2->M* by the theorem of A. Haefliger [5, §1]. Because
this bundle is the associated S2n~2-bundle of (2n-l)n, we have

[McR2""1] = cross((2n-\)n).

Since M* is an open 2n-dimensional manifold, there is a proper Morse function
on M* with no critical point of index 2n by [15, Lemma 1.1], and so M* has the
homotopy type of a CW-complex of dimension less than 2n by [14, Theorem
3.5]. Therefore we have the following proposition from Theorem B of §9 and
the fact

w2((2n-l)n) =(2w-I)Wl(n)2
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Proposition 10.1. Let n^6 and let M be an n-dimensional differentiable
closed manifold which is embedded in R2n~K Then the set [Mc/?2"-1] of
isotopy classes of embeddings of M into R2n~l is, as a set, given by

[Mc/?2»-»] = //2»-2(M*; Z)xCoker0,

where the homomorphism

0: //2fl"3(M*; Z) >H2n~\M*; Z2)

is given by

0(a) =(2n2 X)wx(n)2p2a +Sq2p2a,
wx(n) is the first Stiefel-Whitney class of the double covering MxM-A-*M*
and Z is the local system on M* defined from this double covering.

Corollary 10.2. In addition to the conditions of the above proposition,
we assume that HX(M; Z2)=0. Then we have

[Mc/?2""1] = H2"~2(M*; Z).

Proof. Because HX(M;Z2)=Q, we have Hx(MxM, A; Z2)=0 by the
exact sequence of the pair (Mx M, A). The Thom-Gysin exact sequence

• /Z2»-'(MxM-A; Z2) • H2»"1(M*; Z2) • H2"(M*; Z2) (= 0)

and the Poincare" duality H2l,-x(MxM-A\ Z2)=Hx(MxM, A; Z2) (=0) yield
H2»-i(M*; Z2)=0, which implies that Coker0=0.

Remark. There is a description in [6, 1.3, e, Theoreme] that

f H"-2(M;Z) if n-1 is odd
[Mc/?2"-'] = H2"~2(M*; Z) =

under the assumption HX(M; Z)=0.

H»-2(M',Z2) if n-1 is even,

§11. Enumeration of embeddings of real projective spaces RP"

Our purpose in this section is to prove the following

Theorem C. Let n^2r and let n^6. Then the n-dimensional real pro
jective spaceRP" is embedded into the real (2n- \)-space R2n~ >. Furthermore,
the cardinality #[/?P»c=/?2»-i] of the set \RP"^R2n-*] of isotopy classes of
embeddings of RP" into R2tt~l is given by
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[4 n = 3(4)
#[KP" cR2"~ >] =

[ 2 otherwise.

The first half of this theorem is shown in [1, Theorem 1] for even n and in
[9, Theorem 1.1] for odd n. Thus we concentrate ourselves on the study of the
set [RPncR2"-!]. Let n be the real line bundle associated with the double cover
ing RP"xRP"-A^(RP")*. Then the set [RP^/?2""1] is equivalent to the
set cross ((2n-\)n) (cf. § 10).

In [8, (2.5-6)],

(11.1) there is a commutative diagram of the double coverings

Vn+Xt2l(Z2 + Z2) = Zn+),2 -LU RP»xRP»-A

i i
Vn+Xi2ID4 = SZn+Xi2^U(RP")*,

where V„+1>2 is theStiefel manifoldof2-frames in R"+l, D4 is the dihedral group
of order 8, both mapsf andf are homotopy equivalences and both spaces Zn+12
and SZn+Xt2 are (2n—l)-dimensional manifolds.

The mod 2 cohomology of (RP")* (and so SZn+x2) is calculated by S. Feder
[2], [3] and D. Handel [8] and is given as follows:

(11.2) Let G„+x2 be the Grassmann manifold of 2-planes in the real (n + 1)-
space Rn+'. Then the mod 2 cohomology of G„+ x2 is given by

H*(G„+Xy, Z2) = Z2[x, y\j(an, an+x),

w/?eredegx=1, deg>' =2 and ar=5j rT* Jxr_2,y (r =n, n+l), and there is a
relation

x2iyn-i-\ _£ o if and only if i = 2'— 1 for some t.

H*((RP")*; Z2) has {1, v} as a basis of an H*(Gn+Xt2; Z2)-module, where ve
Hl((RP")*;Z2) is the first Stiefel-Whitney class of the double covering RPn
xRPn —A-*(RP")* and there are the relations

v2 = vx, Sqly = xy and x2r+,_,=0 for n - 2r + s, 0 <,s < 2r.

By the Poincare duality and (11.1-2),

(11.3) H'((RP»)*;Z2)(n = 2'+s, 0<s<2r) for 2n-3£t£2n-\ are given
as follows [20], [21]:
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/ H'((RP»)*;Z2) basis

2n-l z2 vx2r+i-2yS

2n-2 Z2 + Z2 vx2r+l-*y*,x2r*l-2y*

2n-3 Z2 + z2 + z2 yx2r+,-V» x2r+,-V, VX2'*l-2y*-l

To apply Proposition 10.1,we must study the cohomology groups //'((RP")*;
Z)(i=2n—2,2n —3) with coefficients in the local system associated with the
double covering RP" x RPn-A^(RP")*.

Let p2: Hl((RP»)*; Z)->Hl((RP")*; Z2) be the mod 2 reduction.

Lemma 11.4. Let n= 0(2). Then H2"~2((RP")*; Z)=Z2 and p2H2"-3
((RP")*; Z)=Z2+Z2 generated by {t>x2r+,-V, yx2P+'-2^-1}.

Lemma 11.5. Let n= l(2). Then H2"-2((RP")*; Z)=Z2 and p2H2"-3
((RP»)*; Z)=Z2+Z2 generated by {vx2r+1-*y*+x2r+,-:iys, vx^+'^y*-1}.

The proofs of Lemmas 11.4-5 will be made in the next section and we go on
proving Theorem C. By Proposition 10.1,

tRP"czR2»-i-] = H2"-2((RP»)*; Z)x Coker 0,

where

0: H2»-*((RP")*; Z)—*H2"-\(RP")*;Z2), 0(a) =Sq2p2a+(ln-iy2p2a.
Now, there are relations

S^2(yx2r+,-V-l) = (s-l)yx2r+,-2j's,

Sg2(tfx2r+,"V) =(*+( J))wcar+,-ay.
Sq2(x2r+1~2ys) = 0,

which are easily seen by using (11.2) and the fact Sq2(y')=tyt+l +(y)x2yt.
Therefore we have

{sq2+(^2n~X )D2)(wcartl-y-i) = 2P+1"V n=0(2)

»s 1(2),

vx

0

(sq2+(2n-l}vA(vx2r+l-*y*+x2r+l-*y*) =
vx2r+1-2y° n=l(4)

) n=3(4)
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From Lemmas 11.4-5 and (11.3), these relations show that

( Z2 n = 3(4)
Coker 0 =

[ 0 elsewhere.

Since H2n~2((RP")*; Z)=Z2 by Lemmas 11.4-5, we have Theorem C.

§ 12. Proofs of Lemmas 11.4-5

There are two exact sequences of cohomology groups associated with the
double covering RP"xRP"-A^(RP")* (cf. [17, pp. 282-283]), which is called
the Thom-Gysin exact sequence:

(12.1) •••-•//'-'(M*; Z)-*W(M*;Z)^Hi(MxM-A;Z)^Hi(M*; Z)->-,

...->//'-'(M*;Z)->//''(M*; Z)-*Hl(MxM-A;Z)->Hl(M*;Z)->~>,

where M = RP". Moreover, there is the Bockstein exact sequence [18]

(12.2) >H'-^M*; Z2) J±+ Hl(M*; Z) -^ Hl(M*; Z)

_£*-//'(M*;Z2)-^->-, (M= RP"),

associated with the short exact sequence 0—•Z-*2-»Z-^->Z2—»0. The
homomorphism j52 is called the twisted Bockstein operator, and by [4] and [16],
the homomorphism pj2: //•'-»((RP")*; Z2)->Hl((RP")*; Z2) is given by

(12.3) pJ2(a) = Sqla + va for aeHl-l((RP")*; Z2),

where v is the first Stiefel-Whitney class of the double covering RP"xRP" —A
-*(RP")*.

From now on, set n = 2r+s, 0<s<2r.

Proof of Lemma 11.4. Since n is even, the space SZ„+Xt2 is an orientable
(2n - l)-dimensional manifold by [2, §3] and so it follows that

H2"~i(SZn+Xt2;Z) = Z,

H2"-2(SZn+xy, Z) = Hx(SZn+Xi2; Z) = DJID4, D4] = Z2+Z2.

Since the total space Zn+it2 is also orientable and 7r1(Zn+1>2)=Z2+Z2, the follow
ing relations hold:

H2"~\Zn+Xt2; Z) = Z, H2"-2(Za+Xt2; Z) = Z2+Z2.

Hence (11.1) and the Thom-Gysin exact sequence (12.1) give rise to the two exact
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sequences

Z2+Z2-+H2"-i((RP")*; Z)->Z->Z->0,

Z2+ Z2-+H2"-2((RP")*; Z)-+Z^Z-+H2"-\(RP")*; Z)-+0.

A simple calculation yields

(12.4) H2"~2((RP")*;Z) = Z2 or Z2+Z2 or 0.

On the other hand, there are relations

p2&(*2r+,-V) = vx2"l-2y*,

Pihix2'*1-*?) = x2r+,-V + yx2r+,-V,

p2^2(x2-+,-V) = «ar+,-V. p2AV*2r+,-V-1) = »jc2r+,-aj^>,

by (11.2) and (12.3) since n iseven. Consider the Bockstein exact sequence (12.2)

>H2»-3((RP")*; Z) -*2-> H2"~3((RP")*; Z2) J±* H2"~2((RP")*; Z)

_x2^ H2"-2((RPn)*; Z) -£*-• H2"~2((RP")*; Z2) >•••.

The last three relations of the above and (11.3) show the last half of Lemma 11.4.
Also, the first two relations of the above show that the image p2H2n~2((RP")*;
Z)=Z2 generated by x2r+,-3.ys+i>x2r+,~V- Therefore we have the first half
of Lemma 11.4 by the above Bockstein exact sequence, (11.3) and (12.4).

Proof of Lemma 11.5. Consider the Bockstein exact sequence (12.2)

H2"-*((RP»)*; Z) -*2-> H2"-*((RP")*; Z2) -ii* H2"~2((RP")*; Z)

-^ H2"~2((RP")*; Z) -^-> H2"~2((RP")*; Z2) .

Since n is odd, there are relations

p2pV*2r+,-V) = i>*2r+1-V,

p2j52(x2r+,-V) = ^2r+,-V,

p2^2(yx2P+,-V1) = wc2r+,~V1,

Pa0a(*ar+l-V) = yx2r+,-v+A:2P+,-V»

by (11.2) and (12.3). Therefore, the lemma can be proved in the same way as
the proof of Lemma 11.4, by using the Bockstein exact sequence (12.2) and
(11.3).
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