The Enumeration of Liftings in Fibrations and the Embedding Problem I

Tsutomu Yasui

(Received December 23, 1975)

Introduction

As for the enumeration problem of embeddings of manifolds, many results have been obtained up to the present (e.g. [2], [5], [6], [7], [20] and [21]) but they are small in number compared with those of the existence problem. In this paper, we try one approach to the enumeration problem of embeddings of n dimensional differentiable manifolds into the real ($2 n-1$)-space $R^{2 n-1}$. As an application, we determine the cardinality of the set of isotopy classes of embeddings of the n-dimensional real projective space $R P^{n}$ into $R^{2 n-1}$.

Our plan is as follows. An embedding $f: M \rightarrow R^{m}$ of a space M into R^{m} induces a Z_{2}-equivariant map $F: M \times M-\Delta \rightarrow S^{m-1}$ by $F(x, y)=\frac{f(x)-f(y)}{\|f(x)-f(y)\|}$ for distinct points x, y of M, where Δ is the diagonal of M and the Z_{2}-actions on $M \times M-\Delta$ and S^{m-1} are the interchange of the factors and the antipodal action, respectively. Consider the correspondence which associates with an isotopy class of an embedding $f: M \rightarrow R^{m}$ the equivariant homotopy class of the map F made above. Then this correspondence is surjective if $2 m \geq 3(n+1)$ and bijective if $2 m>3(n+1)$ for any n-dimensional compact differentiable manifold M by the theorem of A. Haefliger [5, §1]. On the other hand, there is a one-to-one correspondence between the set of the equivariant homotopy classes of equivariant maps of $M \times M-\Delta$ to S^{m-1} and the set of homotopy classes of cross sections of the sphere bundle $S^{m-1} \rightarrow(M \times M-\Delta) \times_{Z_{2}} S^{m-1} \rightarrow(M \times M-\Delta) / Z_{2}$, where the reduced symmetric product $M^{*}=(M \times M-\Delta) / Z_{2}$ of M has the homotopy type of a $C W$-complex X of dimension less than $2 n(n=\operatorname{dim} M)$. Therefore, the enumeration problem of embeddings of an n-dimensional manifold M into R^{m} arrives at the enumeration problem of cross sections of an S^{m-1}-bundle ξ over a $C W$-complex X of dimension less than $2 n$.

Now, consider the case that $m=2 n-1$, and let $p: B O(m-1) \rightarrow B O(m)$ be the universal S^{m-1}-bundle. Then the enumeration of cross sections of an S^{m-1} bundle ξ over X is equivalent to the enumeration of liftings of the classifying map $\xi: X \rightarrow B O(m)$ of ξ to $B O(m-1)$. We construct the third stage Postnikov factorization
(*)

of p. Here p_{1} is the twisted principal fibration, p_{2} is the principal fibration and q_{2} is an ($m+1$)-equivalence. Since the dimension of X is less than $m+1$, the enumeration of liftings of ξ to $B O(m-1)$ is equivalent to the enumeration of liftings to T by the theorem of I. M. James and E. Thomas [11, Theorem 3.2].

From the above considerations, this paper is divided into three chapters.
In Chapter I, we study the enumeration problem of liftings of a map into the base space of a certain fibration to the total space. In § 1 , the twisted principal fibration is defined and the enumeration of liftings for this fibration is treated. Further, we are concerned with the composition of two twisted principal fibrations $T \xrightarrow{q} E \xrightarrow{p} D$ under the assumption that it is stable (see §2). We describe the set of homotopy classes of liftings of a map $u: X \rightarrow D$ to the composition $p q: T$ $\rightarrow D$ in Theorem A of $\S 2$, which is a generalization of the theorem of I. M. James and E. Thomas [12, Theorem 2.2] for principal fibrations. After preparing several propositions for the composition $p q$ in $\S \S 3-4$ without assuming the stability, Theorem A is proved in $\$ 5$.

The purpose of Chapter II is to study the enumeration problem of cross sections of sphere bundles. In $\S 6$, we notice the cohomology $H^{*}(X ; Z)$ with coefficients in the local system defined by $\phi: \pi_{1}(X) \rightarrow \operatorname{Aut}(Z)$. In $\S 7$, the third stage Postnikov factorization (*) of $p: B O(n-1) \rightarrow B O(n)$ is constructed, and we show in $\S 8$ that the composition of fibrations $p_{1} p_{2}: T \rightarrow B O(n)$ is stable in the sense of $\S 2$. From Theorem A and the fact that $q_{2}: B O(n-1) \rightarrow T$ is an $(n+1)$-equivalence, we have the following theorem in $\S 9$.

Theorem B. Let ξ be a real n-plane bundle over a CW-complex X of dimension less than $n+1$ and let $n \geq 4$. If ξ has a non-zero cross section, then the set cross (ξ) of homotopy classes of non-zero cross sections of ξ is given, as a set, by

$$
\operatorname{cross}(\xi)=H^{n-1}(X ; Z) \times \operatorname{Coker} \Theta,
$$

where the homomorphism

$$
\Theta: H^{n-2}(X ; Z) \longrightarrow H^{n}\left(X ; Z_{2}\right)
$$

is defined by

$$
\Theta(a)=\left(\rho_{2} a\right) w_{2}(\xi)+S q^{2} \rho_{2} a \quad \text { for } \quad a \in H^{n-2}(X ; Z),
$$

ρ_{2} is the mod 2 reduction, \underline{Z} is the local system on X associated with ξ and $w_{2}(\xi)$ is the second Stiefel-Whitney class of ξ.

Chapter III is devoted to an application of A. Haefliger's theorem and Theorem B on the enumeration problem of embeddings of n-dimensional manifolds into $R^{2 n-1}$. In $\S 10$, the set [$M \subset R^{2 n-1}$] of isotopy classes of embeddings of n-dimensional closed differentiable manifolds M into $R^{2 n-1}$ is described with the cohomology of M^{*}. As an application for the n-dimensional real projective space $R P^{n}$, we calculate the cohomology group $H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; \underline{Z}\right)$ and the homomorphism $\Theta: H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow H^{2 n-1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$, and we have the following theorem in §§ 11-12.

Theorem C. Let $n \neq 2^{r}$ and $n \geq 6$. Then the n-dimensional real projective space $R P^{n}$ is embedded in the real $(2 n-1)$-space $R^{2 n-1}$, and there are just four and two isotopy classes of embeddings of $R P^{n}$ into $R^{2 n-1}$ for $n \equiv 3(4)$ and $n \neq 3(4)$, respectively.

Chapter I. Enumeration of liftings in certain fibrations

§1. Twisted principal fibrations

Let Z be a given space. By a Z-space $X=(X, f)$, we mean a space X together with a (continuous) map $f: X \rightarrow Z$. For two Z-spaces $X=(X, f)$ and $Y=(Y, g)$, the pull back

$$
X \times_{Z} Y=\{(x, y) \mid f(x)=g(y)\} \quad(\subset X \times Y)
$$

of f and g is a Z-space with $(f, g): X \times_{Z} Y \rightarrow Z,(f, g)(x, y)=f(x)=g(y)$. A map $h: X \rightarrow Y$ is called a $Z-m a p$ if $g h=f$, and a homotopy $h_{t}: X \rightarrow Y$ is called a Zhomotopy if $g h_{t}=f$ for all t. In this case, we say that h_{0} is Z-homotopic to h_{1} and denote by $h_{0} \simeq_{z} h_{1}$. Further,

$$
[X, Y]_{Z}
$$

denotes the set of all Z-homotopy classes of Z-maps of X to Y.
Now, let B be a space (with base point $*$) and π be a discrete group, and assume that π acts on B preserving the base point by a homomorphism $\phi: \pi \rightarrow$ Homeo ($B, *$). Then, considering the Eilenberg-MacLane space $K=K(\pi, 1)$, the universal covering $\widetilde{K} \rightarrow K$ and the usual action of π on \widetilde{K}, we have the fiber bundle

$$
\begin{equation*}
B \longrightarrow L_{\phi}(B)=\tilde{K} \times_{\pi} B \xrightarrow{q} K=K(\pi, 1) \tag{1.1}
\end{equation*}
$$

with structure group π. Since $\tilde{K} \times_{\pi} *=K$, we have the canonical cross section
$s: K \rightarrow \tilde{K} \times{ }_{\pi} B$ such that $s(K)=K=\tilde{K} \times{ }_{n} *$.
In this paper, we consider the following situation.
(1.2) Let π act on an H-group ${ }^{*)}$ B by ϕ satisfying the following assumptions:

The multiplication $\mu: B \times B \rightarrow B$ and the homotopy inverse $v: B \rightarrow B$ of B are π equivariant and there are π-equivariant homotopies

$$
\mu\left(1_{B}, c\right) \simeq 1_{B} \simeq \mu\left(c, 1_{B}\right), \mu\left(\mu \times 1_{B}\right) \simeq \mu\left(1_{B} \times \mu\right) \text { and } \mu\left(v, 1_{B}\right) \simeq c \simeq \mu\left(1_{B}, v\right)
$$

where $c: B \rightarrow B$ is the constant map to $*$. Also, if B is homotopy abelian, we assume in addition that there is a π-equivariant homotopy $\mu t \simeq \mu$, where $t: B \times B$ $\rightarrow B \times B$ is the map defined by $t(x, y)=(y, x)$.

Then, for the K-space ($L_{\phi}(B), q$) of (1.1), we can define K-maps

$$
\begin{equation*}
\mu_{\phi}: L_{\phi}(B) \times_{K} L_{\phi}(B) \longrightarrow L_{\phi}(B), \quad v_{\phi}: L_{\phi}(B) \longrightarrow L_{\phi}(B) \tag{1.3}
\end{equation*}
$$

by

$$
\mu_{\phi}\left([\tilde{x}, b],\left[\tilde{x}, b^{\prime}\right]\right)=\left[\tilde{x}, \mu\left(b, b^{\prime}\right)\right], \quad v_{\phi}([\tilde{x}, b])=[\tilde{x}, v(b)]
$$

and there exist the following relations:

$$
\begin{aligned}
& \mu_{\phi}(1 \times s q) \Delta \simeq_{K} 1 \simeq_{K} \mu_{\phi}(s q \times 1) \Delta: L_{\phi}(B) \longrightarrow L_{\phi}(B), \\
& \mu_{\phi}\left(\mu_{\phi} \times 1\right) \simeq_{K} \mu_{\phi}\left(1 \times \mu_{\phi}\right): L_{\phi}(B) \times_{K} L_{\phi}(B) \times_{K} L_{\phi}(B) \longrightarrow L_{\phi}(B), \\
& \mu_{\phi}\left(v_{\phi} \times 1\right) \Delta \simeq_{K} s q \simeq_{K} \mu_{\phi}\left(1 \times v_{\phi}\right) \Delta: L_{\phi}(B) \longrightarrow L_{\phi}(B),
\end{aligned}
$$

and

$$
\mu_{\phi} t \simeq_{K} \mu_{\phi}: L_{\phi}(B) \times_{K} L_{\phi}(B) \longrightarrow L_{\phi}(B),
$$

if B is homotopy abelian, where Δ is the diagonal map and t is the map defined by $t(x, y)=(y, x)$.

Therefore we have the following
Lemma 1.4. Let X be a K-space with a map $u: X \rightarrow K$. Then the homotopy set $\left[X, L_{\phi}(B)\right]_{K}$ of K-maps is a group with unit $[s u]$ by the multiplication

$$
[f] \cdot[g]=\left[\mu_{\phi}(f \times g) \Delta\right] \text { for } K \text {-maps } f, g: X \longrightarrow L_{\phi}(B) .
$$

If, furthermore, B is homotopy abelian, then this group $\left[X, L_{\phi}(B)\right]_{K}$ is abelian.
Let $p: E \rightarrow A$ be a fibration with fiber $F=p^{-1}(*)$, and assume that p admits a cross section $s:(A, *) \rightarrow(E, *)$. Then, we can consider the path spaces

[^0]\[

$$
\begin{aligned}
& P_{A} E=\{\lambda: I \longrightarrow E \mid \lambda(0) \in s(A), p \lambda(0)=p \lambda(t) \text { for all } t \in I\}, \\
& \Omega_{A} E=\left\{\lambda \in P_{A} E \mid \lambda(0)=\lambda(1)\right\},
\end{aligned}
$$
\]

and we have the following well-known lemma.
Lemma 1.5. The projection

$$
r: P_{A} E \longrightarrow E, \quad r(\lambda)=\lambda(1)
$$

is a fibration with fiber ΩF. Furthermore,

$$
\text { pr: } P_{A} E \longrightarrow A \text { and pr: } \Omega_{A} E \longrightarrow A
$$

are fibrations with fibers $P F$ and ΩF, respectively, and they admit the canonical cross sections induced by s, where $P F=\{\lambda: I \rightarrow F \mid \lambda(0)=*\}$ and $\Omega F=\{\lambda \in P F \mid \lambda(0)$ $=\lambda(1)\}$ are the ordinary path space and loop space of F.

By applying this lemma to the fibration $q: L_{\phi}(B) \rightarrow K$ of (1.1), we obtain the fibration

$$
q r: \Omega_{K} L_{\phi}(B) \longrightarrow K, \quad(q r)^{-1}(*)=\Omega B
$$

admitting the canonical cross section s. On the other hand, the given homomorphism $\phi: \pi \rightarrow \operatorname{Homeo}(B, *)$ induces the homomorphism

$$
\phi^{\prime}: \pi \longrightarrow \operatorname{Homeo}(\Omega B, *), \quad \phi^{\prime}(g)(\lambda)(t)=\phi(g)(\lambda(t))
$$

This determines by (1.1) the fibration

$$
q^{\prime}: L_{\phi}(\Omega B) \longrightarrow K
$$

with fiber ΩB admitting the canonical cross section s^{\prime}, and we have the natural homeomorphism

$$
\psi: L_{\phi^{\prime}}(\Omega B) \xrightarrow{\approx} \Omega_{K} L_{\phi}(B), \quad \psi([\tilde{x}, \lambda])(t)=[\tilde{x}, \lambda(t)],
$$

which satisfies $q r \psi=q^{\prime}$. Also, the loop space ΩB is a homotopy abelian H group by the join V of loops:

$$
\left(\lambda_{1} \vee \lambda_{2}\right)(t)= \begin{cases}\lambda_{1}(2 t) & 0 \leq 2 t \leq 1 \\ \lambda_{2}(2 t-1) & 1 \leq 2 t \leq 2\end{cases}
$$

and the action of π on ΩB by ϕ^{\prime} satisfies (1.2). Therefore, Lemma 1.4 shows that the homotopy set $\left[X, L_{\phi}(\Omega B)\right]_{K}$ of K-maps is an abelian group by the multiplication induced by V_{ϕ}. Furthermore, the above natural homeomorphism ψ commutes with V_{ϕ}, and the K-map

$$
\vee: \Omega_{K} L_{\phi}(B) \times_{K} \Omega_{K} L_{\phi}(B) \longrightarrow \Omega_{K} L_{\phi}(B)
$$

given by the join of loops, and we have the following
Lemma 1.6. The natural K-homeomorphism $\psi: L_{\phi}(\Omega B) \rightarrow \Omega_{K} L_{\phi}(B)$ induces an isomorphism

$$
\psi_{*}:\left[X, L_{\phi}(\Omega B)\right]_{K} \cong\left[X, \Omega_{K} L_{\phi}(B)\right]_{K}
$$

for any K-space X, where the domain is the abelian group of Lemma 1.4 and the multiplication in the range is induced by \vee mentioned above.

Also, applying Lemma 1.5 to $q: L_{\phi}(B) \rightarrow K$ of (1.1), we obtain the fibration

$$
r: P_{K} L_{\phi}(B) \longrightarrow L_{\phi}(B) \quad \text { with fiber } \Omega B .
$$

Now, let $0: D \rightarrow L_{\phi}(B)$ be a given map. Then, from this fibration, 0 induces a fibration

$$
p: E=D \times_{L} P_{K} L_{\phi}(B) \longrightarrow D\left(L=L_{\phi}(B)\right) \quad \text { with fiber } \Omega B,
$$

which is called the twisted principal fibration with classifying map 0.
Let $u: X \rightarrow D$ be a given map and consider the diagram

We define a D-map

$$
\begin{equation*}
m: \Omega_{K} L_{\phi}(B) \times_{K} E \longrightarrow E \tag{1.7}
\end{equation*}
$$

by the relation $m\left(\lambda_{1},\left(x, \lambda_{2}\right)\right)=\left(x, \lambda_{1} \vee \lambda_{2}\right)$, where \vee is the join of paths, and the domain is the pull back of K-spaces $\left(\Omega_{K} L_{\phi}(B), q r\right)$ and ($E, q \theta p$) and is understood as a D-space $\left(\Omega_{K} L_{\phi}(B) \times_{K} E, p \pi_{2}\right)\left(\pi_{2}\right.$ is the projection to the second factor in this paper). Hereafter, we often write $\lambda_{1} \vee\left(x, \lambda_{2}\right)$ for $m\left(\lambda_{1},\left(x, \lambda_{2}\right)\right)$ simply. By considering a D-space $X=(X, u)$ as a K-space $(X, q \theta u)$, this map m induces a function

$$
m_{\psi}:\left[X, \Omega_{K} L_{\phi}(B)\right]_{K} \times[X, E]_{D} \longrightarrow[X, E]_{D} .
$$

Proposition 1.8. The function m_{*} mentioned above is an action of the abelian group $\left[X, \Omega_{K} L_{\phi}(B)\right]_{K}$ of Lemma 1.6 on the homotopy set $[X, E]_{D}$. If $u: X \rightarrow D$ has a lifting $v: X \rightarrow E$, that is, if there is a D-map $v:(X, u) \rightarrow(E, p)$, then the function $m_{*}(,[v]):\left[X, \Omega_{K} L_{\phi}(B)\right]_{K} \rightarrow[X, E]_{D}$ is a bijection.

Proof. This is a straightforward modification of the case that $p: E \rightarrow D$
is a usual principal fibration (cf. [12, Lemma 3.1]).

§ 2. The main result in Chapter I

Let B and C be H-groups with homomorphisms $\phi(B): \pi(B) \rightarrow \operatorname{Homeo}(B, *)$ and $\phi(C): \pi(C) \rightarrow \operatorname{Homeo}(C, *)$ such that they satisfy the assumption (1.2), and let

$$
q_{A}: L(A)=L_{\phi(A)}(A) \longrightarrow K(A)=K(\pi(A), 1) \quad(A=B, C)
$$

be the fiber bundle of (1.1) with the canonical cross section s_{A}. Consider the following situation:

Here p is the twisted principal fibration with fiber ΩB induced from $P_{K(B)} L(B)$ $\rightarrow L(B)$ by θ, q is the one with fiber ΩC induced from $P_{K(C)} L(C) \rightarrow L(C)$ by ρ, and it is assumed that

$$
q_{c} \rho=\bar{\rho} p .^{*)}
$$

For a given map $u: X \rightarrow D$, the homotopy set $[X, T]_{D}$ of D-maps of the D-space (X, u) to the D-space ($T, p q$) is the set of homotopy classes of liftings of u to T. The investigation of this set is our main purpose of Chapter I.

From now on, we assume that C is a topological group.**) For the simplicity,

$$
n: L(C) \times_{K(C)} L(C) \longrightarrow L(C) \text { and }{ }^{-1}: L(C) \longrightarrow L(C)
$$

denote the $K(C)$-maps $\mu_{\phi(C)}$ and $v_{\phi(C)}$ of (1.3) induced from the multiplication and the inverse of C.

Let

$$
\begin{equation*}
m_{B}: \Omega_{K(B)} L(B) \times_{K(B)} E \longrightarrow E \tag{2.2}
\end{equation*}
$$

[^1]be the D-map defined in (1.7), and consider the map
$$
\rho_{1}: \Omega_{K(B)} L(B) \times_{K(B)} E \longrightarrow L(C)
$$
defined by
$$
\rho_{1}(\lambda, y)=n\left(\rho m_{B}(\lambda, y),\left[\rho m_{B}\left(c_{\lambda(0)}, y\right)\right]^{-1}\right) \quad \text { for } \quad \lambda \in \Omega_{K(B)} L(B), y \in E,
$$
where c_{x} denotes the constant loop at x. Then, ρ_{1} maps $E=s_{B}(K(B)) \times_{K(B)} E$ to $K(C)=s_{C}\left(K(C)\right.$), and ρ_{1} is a $K(C)$-map, where $\Omega_{K(B)} L(B) \times_{K(B)} E$ is considered as a $K(C)$-space by the composition $\bar{\rho} p \pi_{2}=q_{c} \rho \pi_{2}\left(\pi_{2}\right.$ is the projection to the second factor). Therefore, we have $K(C)$-maps ρ_{1} and $1 \times p$ in the diagram

where $\Omega_{K(B)} L(B) \times_{K(B)} D$ is also considered as a $K(C)$-space by the composition $\bar{\rho} \pi_{2}$.

Now, we say that the composition of fibrations $T \xrightarrow{q} E \xrightarrow{p} D$ in (2.1) is stable, if there exists a $K(C)$-map d in (2.3) such that the diagram (2.3) is $K(C)$ homotopy commutative.

Suppose that the composition $p q$ is stable by a $K(C)$-map d. From the fibration $\Omega_{K(B)} L(B) \rightarrow K(B)$, we obtain the fibration

$$
\Omega_{K(B)}^{2} L(B)=\Omega_{K(B)}\left(\Omega_{K(B)} L(B)\right) \longrightarrow K(B)
$$

with the canonical cross section, by Lemma 1.5 . Then, the map d induces a $K(C)$-map

$$
\begin{equation*}
d^{\prime}:\left(\Omega_{K(B)}^{2} L(B) \times_{K(B)} D, D\right) \longrightarrow\left(\Omega_{K(C)} L(C), K(C)\right) \tag{2.4}
\end{equation*}
$$

by the equation

$$
d^{\prime}(\lambda, x)(t)=d(\lambda(t), x) \quad \text { for } \quad \lambda \in \Omega_{K(B)}^{2} L(B), x \in D \quad \text { and } \quad t \in I .
$$

For a given D-space $X=(X, u)$, these $K(C)$-maps d and d^{\prime} induce two functions

$$
\begin{align*}
& \Theta_{u}:\left[X, \Omega_{K(B)} L(B)\right]_{K(B)} \longrightarrow[X, L(C)]_{K(C)}, \tag{2.5}\\
& \Theta_{u}^{\prime}:\left[X, \Omega_{K(B)}^{2} L(B)\right]_{K(B)} \longrightarrow\left[X, \Omega_{K(C)} L(C)\right]_{K(C)},
\end{align*}
$$

given by $\Theta_{u}([a])=[d(a, u)]$ and $\Theta_{u}^{\prime}([b])=\left[d^{\prime}(b, u)\right]$, where X is considered as a $K(B)$-space ($X, q_{B} \theta u$) and $K(C)$-space $(X, \bar{\rho} u)$. Here Θ_{u}^{\prime} is a homomorphism of groups by the definition of d^{\prime} and so Coker Θ_{u}^{\prime} is defined. Set $\operatorname{Ker} \Theta_{u}=\Theta_{u}^{-1}$ ($\left[s_{c} \bar{\rho} u\right]$). Then we have the following main theorem in this chapter, which is a
generalization of [12, Theorem 2.2].
Theorem A. Suppose that the composition of the fibrations

$$
T \xrightarrow{q} E \xrightarrow{p} D
$$

in the diagram (2.1) is stable by the map d in (2.3). Let X be a CW-complex and $u: X \rightarrow D$ admit a lifting $X \rightarrow T$. Then the set

$$
[X, T]_{D}
$$

of homotopy classes of liftings of u to T is equivalent to the product

$$
\operatorname{Ker} \Theta_{u} \times \operatorname{Coker} \Theta_{u}^{\prime}
$$

where Θ_{u} and Θ_{u}^{\prime} are the functions of (2.5).

§3. Correlations

Consider the diagram (2.1) and let $v: X \rightarrow E$ be a lifting of $u: X \rightarrow D$. We say that two maps $h, h^{\prime}: X \rightarrow T$ are v-related if (1) $q h=q h^{\prime}=v$ and (2) h is D homotopic to h '. The relation " v-related" is an equivalence relation, and if v is D-homotopic to v^{\prime}, then the set of v-relation classes is equivalent to the set of v^{\prime}-relation classes.

For $\eta=[v] \in[X, E]_{D}$, let $N(\eta)$ denote the set of v-relation classes of D-maps of X to T. Then

$$
N(\eta)=q_{*}^{-1}(\eta) \quad \text { and } \quad[X, T]_{D}=\cup\left\{q_{*}^{-1}(\eta) \mid \eta \in[X, E]_{D}\right\}
$$

where $q_{*}:[X, T]_{D} \rightarrow[X, E]_{D}$. Thus we have the following
Lemma 3.1 [12, Theorem 3.2]. The set $[X, T]_{D}$ is equivalent to the disjoint union of the set $N(\eta)$, where η runs through the elements of $[X, E]_{D}$.

Since the set $[X, E]_{D}$ is equivalent to the group $\left[X, \Omega_{K(B)} L(B)\right]_{K(B)}$ by Proposition 1.8, we study the set $N(\eta)$ for each $\eta \in[X, E]_{D}$ in the rest of this section.

As is constructed in (1.7), there is a D-map

$$
m_{C}: \Omega_{K(C)} L(C) \times{ }_{K(C)} T \longrightarrow T
$$

This D-map m_{c} induces an action of the group $\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ on $[X, T]_{D}$ by the same way as Proposition 1.8. It is easily seen that (1) if $h: X \rightarrow T$ is a D map and if $k, k^{\prime}: X \rightarrow \Omega_{K(C)} L(C)$ are $K(C)$-homotopic, then $m_{c}(k, h)$ and $m_{c}\left(k^{\prime}, h\right)$ are v-related, where $v=q h$, and (2) if $k: X \rightarrow \Omega_{K(C)} L(C)$ is a $K(C)$-map and if h, $h^{\prime}: X \rightarrow T$ are v-related, then $m_{C}(k, h)$ and $m_{C}\left(k, h^{\prime}\right)$ are v-related. Hence, using

Proposition 1.8, we see that the above action of $\left[X, \Omega_{K^{\prime}(C)} L(C)\right]_{K^{\prime}(C)}$ is transmitted to a transitive action on $N(\eta)$. We, therefore, have the following

Lemma 3.2. Let η be the element in the image of $q_{*}:[X, T]_{D} \rightarrow[X, E]_{D}$. The set $N(\eta)$ is equivalent to the quotient of $\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ by the stabilizer of an element of $N(\eta)$.

Let $p: E \rightarrow A$ be a fibration with fiber F and let

$$
\begin{aligned}
& \Omega_{A}^{*} E=\{\lambda: I \longrightarrow E \mid p \lambda(t)=p \lambda(0) \text { for all } t \in I, \lambda(0)=\lambda(1)\}, \\
& \Omega^{*} F=\{\lambda: I \longrightarrow F \mid \lambda(0)=\lambda(1)\} .
\end{aligned}
$$

Then the following results are known and will be used later on.
Lemma 3.3. Let $r: \Omega_{\lambda}^{*} E \rightarrow E$ be a map defined by $r(\lambda)=\lambda(1)$. Then $r: \Omega_{A}^{*} E$ $\rightarrow E$ is a fibration with fiber ΩF and $p r: \Omega_{A}^{*} E \rightarrow A$ is also a fibration with fiber $\Omega^{*} F$.

The map $\rho: E \rightarrow L(C)$ in (2.1) induces a map

$$
\rho^{\prime}: \Omega_{D}^{*} E \longrightarrow \Omega_{K}^{*}(C) L(C),
$$

which is given by $\rho^{\prime}(\lambda)(t)=\rho(\lambda(t)$), and there follows a commutative diagram below,

Therefore we have a commutative diagram

where $i: \Omega_{K(C)} L(C) \rightarrow \Omega_{K(C)}^{*} L(C)$ is the natural inclusion. We say that an element $\gamma \in\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ is ρ-correlated to $\eta \in[X, E]_{D}$ if there is an element $\chi \in\left[X, \Omega_{D}^{*} E\right]_{D}$ such that $r_{*}(\chi)=\eta$ and $\rho_{*}^{\prime}(\chi)=i_{*}(\gamma)$.

Lemma 3.4. Let $h: X \rightarrow T$ be a D-map and let $v=q h$. Suppose that $k \vee h$ $=m_{c}(k, h)$ is v-related to h for a $K(C)$-map $k: X \rightarrow \Omega_{K(C)} L(C)$. Then the class of k in $\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ is ρ-correlated to the D-homotopy class of $v: X \rightarrow E$.

Lemma 3.5. For a $K(C)$-map $k: X \rightarrow \Omega_{K(C)} L(C)$, suppose that the class of
k in $\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ is ρ-correlated to the D-homotopy class of $v: X \rightarrow E$. Then $k \vee h$ is v-related to h for any lifting $h: X \rightarrow T$ of v.

Combining Lemma 3.2 and Lemmas 3.4-5, we have the following
Proposition 3.6. If $\eta \in[X, E]_{D}$ lies in the image of $q_{*}:[X, T]_{D} \rightarrow[X$, $E]_{D}$, then the set $N(\eta)=q_{*}^{-1}(\eta)$ is equivalent to the factor group of $[X$, $\left.\Omega_{K(C)} L(C)\right]_{K(C)}$ by the subgroup of elements which are ρ-correlated to η.

Proof of Lemma 3.4. Let $g_{t}: X \rightarrow T$ be a D-homotopy such that $g_{0}=h$ and $g_{1}=k \vee h$ and let $g: X \rightarrow \Omega_{D}^{*} E$ be a D-map given by $g(x)(t)=q g_{1}(x)$ for any $x \in X$ and $t \in I$. Then $r g(x)=g(x)(1)=q g_{1}(x)=v(x)$. Hence it is sufficient to show that $i_{*}([k])=\rho_{*}^{\prime}([g])$ in $\left[X, \Omega_{K(C)}^{*} L(C)\right]_{\mathcal{K}(C)}$. Let $\tilde{\rho}: T \rightarrow P_{K(C)} L(C)$ be the map induced by ρ, which makes the following diagram commutative:

Then there is a homotopy $l_{s}: X \rightarrow \Omega_{\mathbb{K}(c)}^{*} L(C)(s \in I)$ given by

$$
l_{s}(x)(t)= \begin{cases}\tilde{\rho} g_{1+2 s t-2 s}(x)(t / 2) & 0 \leq 2 s \leq 1 \\ \tilde{\rho} g_{t}(x)(2 s+t-s t-1) & 1 \leq 2 s \leq 2\end{cases}
$$

which is a $K(C)$-homotopy between $i k$ and $\rho^{\prime} g$.
Proof of Lemma 3.5. Let $g: X \rightarrow \Omega_{D}^{*} E$ be a D-map such that $r g \simeq_{D} v$ and $\rho^{\prime} g \simeq_{K(C)} i k$. Since $\Omega_{D}^{*} E \rightarrow E$ is a fibration by Lemma 3.3, we may assume that $r g=v$. Let $\tau: \Omega_{K(C)} L(C) \rightarrow \Omega_{K(C)} L(C)$ be a $K(C)$-map given by $\tau(\lambda)(t)=\lambda(1-t)$ for all $t \in I$. Let $k^{\prime}: X \rightarrow \Omega_{K(C)} L(C)$ be a $K(C)$-map defined by $k^{\prime}=\tilde{\rho} h \vee \rho^{\prime} g \vee$ $\tau(\tilde{\rho} h)$. Then $i k^{\prime}$ is $K(C)$-homotopic to $I_{0}: X \rightarrow \Omega_{\text {K }}^{*}(C) L(C)$ defined by

$$
l_{0}(x)(t)= \begin{cases}\tilde{\rho} h(x)(3 t) & 0 \leq 3 t \leq 1 \\ \rho^{\prime} g(x)(3 t-1) & 1 \leq 3 t \leq 2 \\ \tilde{\rho} h(x)(3-3 t) & 2 \leq 3 t \leq 3\end{cases}
$$

Let $l_{s}: X \rightarrow \Omega_{\mathbb{K}}^{*}(c) L(C)$ be a $K(C)$-homotopy which is defined by

$$
l_{s}(x)(t)= \begin{cases}l_{0}(x)(t+s / 3) & 0 \leq 3 t \leq 1-s \\ l_{0}(x)((t+s) /(1+2 s)) & 1-s \leq 3 t \leq 2+s \\ l_{0}(x)(t-s / 3) & 2+s \leq 3 t \leq 3\end{cases}
$$

Then $l_{1}(x)(t)=l_{0}(x)((1+t) / 3)=\rho^{\prime} g(x)(t)$ and so $i_{*}\left(\left[k^{\prime}\right]\right)=\rho_{*}^{\prime}([g])$. Therefore, there follows $i k \simeq_{K(C)} i k^{\prime}$ because $i_{*}([k])=\rho_{*}^{\prime}([g])$ by the assumption. Let $f_{i}: X \rightarrow \Omega_{K(C)}^{*} L(C)$ be a $K(C)$-homotopy between $i k^{\prime}$ and $i k$, and let $f: X \rightarrow$ $\Omega_{K(C)} L(C)$ be a $K(C)$-map given by $f(x)(t)=f_{t}(x)(0)$. Then it is easily seen that $k^{\prime} \vee f \simeq_{K(C)} f \vee k$, i.e., $\left[k^{\prime} \vee f\right]=[f \vee k]$ in $\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$. Because $\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ is an abelian group by Lemma 1.6, it follows that $[k]=$ [$\left.k^{\prime}\right]$. Therefore, we have

$$
k \vee \tilde{\rho} h \simeq_{K(C)} k^{\prime} \vee \tilde{\rho} h \simeq_{K(C)}\left(\tilde{\rho} h \vee \rho^{\prime} g \vee \tau(\tilde{\rho} h)\right) \vee \tilde{\rho} h \simeq_{K(C)} \tilde{\rho} h \vee \rho^{\prime} g .
$$

Let $w: X \rightarrow T$ be the map defined by $w(x)=\left(v(x),\left(\tilde{\rho} h \vee \rho^{\prime} g\right)(x)\right)$. Then w is a lifting of v and w is D-homotopic to ($v, k \vee \tilde{\rho} h)=k \vee h$, i.e., w is v-related to $k \vee h$. On the other hand, let $w_{s}: X \rightarrow T$ be a homotopy which is given by

$$
\begin{gathered}
w_{s}(x)=\left(g(x)(1-s), l_{s}^{\prime}(x)\right), \\
l_{s}^{\prime}(x)(t)= \begin{cases}\tilde{\rho} h(x)(2 t /(1+s)) & 0 \leq 2 t \leq 1+s \\
\rho^{\prime} g(x)(2 t-1-s) & 1+s \leq 2 t \leq 2\end{cases}
\end{gathered}
$$

Then w_{s} is a D-homotopy between w and h. Therefore, w is v-related to h and so $k \vee h$ is v-related to h.
q.e.d.

§4. Compositions of twisted principal fibrations

Let $p: E \rightarrow D$ be the twisted principal fibration with fiber $F(=\Omega B)$ in the diagram (2.1) and let

$$
m_{B}:\left(\Omega_{K(B)} L(B) \times_{K(B)} E, \Omega_{K(B)} L(B) \times_{K(B)} F\right) \longrightarrow(E, F)
$$

be the map of (2.2). Obviously, $\Omega_{K(B)} L(B) \times_{K(B)} F=F \times F$ and $m_{B}: F \times F \rightarrow F$ is the ordinary multiplication of $F=\Omega B$. Consider the map

$$
m_{B}^{\prime}:\left(\Omega_{K(B)}^{2} L(B) \times_{K(B)} E, \Omega_{K(B)}^{2} L(B) \times_{K(B)} F\right) \longrightarrow\left(\Omega_{D}^{*} E, \Omega^{*} F\right),
$$

which is given by

$$
m_{B}^{\prime}(\lambda, x)(t)=m_{B}(\lambda(t), x) \text { for } \quad \lambda \in \Omega_{K(B)}^{2} L(B), \quad x \in E \quad \text { and } t \in I .
$$

It is easily seen that $\Omega_{K(B)}^{2} L(B) \times_{K(B)} F=\Omega F \times F$ and $m_{B}^{\prime}: \Omega F \times F \rightarrow \Omega^{*} F$ coincides with the map defined in [10, Theorem 2.7]. Now, pr: $\Omega_{D}^{*} E \rightarrow D$ is a fibration with fiber $\Omega^{*} F$ by Lemma 3.3 on the one hand and on the other hand $p \pi_{2}: \Omega_{K(B)}^{2} L(B)$ $\times_{K(B)} E \rightarrow D$ (π_{2} is the projection to the second factor) is a fibration with fiber $\Omega F \times F$, and m_{B}^{\prime} makes the following diagram of fibrations commutative:

The map $m_{B}^{\prime}: \Omega F \times F \rightarrow \Omega^{*} F$ is a weak homotopy equivalence by [10, Theorem 2.7] and so is the map $m_{B}^{\prime}: \Omega_{K(B)}^{2} L(B) \times_{K(B)} E \rightarrow \Omega_{D}^{*} E$, which is seen immediately by using the homotopy exact sequences of fibrations and the five lemma. Therefore the function

$$
m_{B^{*}}^{\prime}:\left[X, \Omega_{K(B)}^{2} L(B)\right]_{K(B)} \times[X, E]_{D} \longrightarrow\left[X, \Omega_{D}^{*} E\right]_{D}
$$

is a bijection for all $C W$-complex X, by [11, Theorem 3.2].
The $K(C)$-map ρ_{1} in (2.3) induces a $K(C)$-map

$$
\rho_{1}^{\prime}:\left(\Omega_{K(B)}^{2} L(B) \times_{K(B)} E, E\right) \longrightarrow\left(\Omega_{K(C)} L(C), K(C)\right),
$$

which is defined by

$$
\rho_{1}^{\prime}(\lambda, x)(t)=\rho_{1}(\lambda(t), x)
$$

If $v: X \rightarrow E$ is a D-map and $a, b: X \rightarrow \Omega_{K(B)}^{2} L(B)$ are $K(B)$-maps, then the relation

$$
\rho_{1}^{\prime}(a \vee b, v)=\rho_{1}^{\prime}(a, v) \vee \rho_{1}^{\prime}(b, v)
$$

holds. Therefore the function

$$
\begin{equation*}
\Delta(\rho,[v]):\left[X, \Omega_{K(B)}^{2} L(B)\right]_{K(B)} \longrightarrow\left[X, \Omega_{K(C)} L(C)\right]_{K(C)} \tag{4.1}
\end{equation*}
$$

defined by

$$
\Delta(\rho,[v])([a])=\left[\rho_{1}^{\prime}(a, v)\right],
$$

is a homomorphism of groups. We consider also a $K(C)$-map

$$
n^{\prime}: \Omega_{K(C)} L(C) \times_{K(C)} L(C) \longrightarrow \Omega_{K(C)}^{*} L(C)
$$

defined by the relation

$$
n^{\prime}(\lambda, x)(t)=n(\lambda(t), x) \quad \text { for } \quad \lambda \in \Omega_{K(C)} L(C), \quad x \in L(C) \text { and } t \in I,
$$

where $n=\mu_{\phi(C)}: L(C) \times_{K(C)} L(C) \rightarrow L(C)$ is the induced multiplication of (1.3). Because C is a topological group, the map n^{\prime} is a $K(C)$-homeomorphism. Therefore the induced function

$$
n_{*}^{\prime}:\left[X, \Omega_{K(C)} L(C)\right]_{K(C)} \times[X, L(C)]_{K(C)} \longrightarrow\left[X, \Omega_{K(C)}^{*} L(C)\right]_{K(C)}
$$

is a bijection for any space X. By the direct calculations, we obtain

$$
n^{\prime}\left(\rho_{1}^{\prime}, \rho r m_{B}\right) \Delta=\rho^{\prime} m_{B}^{\prime}: \Omega_{K(B)}^{2} L(B) \times_{K(B)} E \longrightarrow \Omega_{K(C)}^{*} L(C),
$$

where Δ is the diagonal map. This implies the following lemma.
Lemma 4.2. There are the following relations:
(1) $r_{\star} m_{B}^{\prime}(\beta, \eta)=\eta$,
(2) $\rho_{*}^{\prime} m_{B}^{\prime}(\beta, \eta)=n_{*}^{\prime}\left(\Delta(\rho, \eta)(\beta), \rho_{*} \eta\right)$,
(3) $n_{*}^{\prime}\left(\gamma,\left[s_{c} \bar{\rho} u\right]\right)=i_{*}(\gamma)$.

Using the above lemma, we can prove the following
Proposition 4.3. Under the situation of (2.1), the conditions (i) and (ii) are equivalent.
(i) The element $\eta \in[X, E]_{D}$ is contained in the image of $q_{*}:[X, T]_{D} \rightarrow[X, E]_{D}$ and $\gamma \in\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$ is ρ-correlated to η.
(ii) The element $\eta \in[X, E]_{D}$ is contained in $\rho_{*}^{-1}\left(\left[s_{c} \bar{\rho} u\right]\right)$ and γ lies in the image of $\Delta(\rho, \eta):\left[X, \Omega_{K(B)}^{2} L(B)\right]_{K(B)} \rightarrow\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}$.

From Lemma 3.1, Proposition 3.6 and Proposition 4.3, we have the following

Theorem 4.4. Under the situation of (2.1), the set $[X, T]_{D}$ is equivalent to the disjoint union of Coker $\Delta(\rho, \eta)$ of the homomorphism $\Delta(\rho, \eta)$ of (4.1), as η runs through $\rho_{*}^{-1}\left(\left[s_{c} \bar{\rho} u\right]\right)$, where $\rho_{*}:[X, E]_{D} \rightarrow[X, L(C)]_{K(C)}$.

§5. Proof of Theorem A in §2

Assume that the composition of fibrations $T \xrightarrow{q} E \xrightarrow{p} D$ in the diagram (2.1) is stable by a $K(C)$-map $d:\left(\Omega_{K(B)} L(B) \times_{K(B)} D, D\right) \rightarrow(L(C), K(C))$, i.e., the following diagram is $K(C)$-homotopy commutative:

where ρ_{1} is the map defined in (2.3). Let

$$
d^{\prime}:\left(\Omega_{K(B)}^{2} L(B) \times_{K(B)} D, D\right) \longrightarrow\left(\Omega_{K(C)} L(C), K(C)\right)
$$

be the map induced from the map d by $d^{\prime}(\lambda, x)(t)=d(\lambda(t), x)$. Then the diagram below is $K(C)$-homotopy commutative:

For any map $u: X \rightarrow D$, there are two functions

$$
\begin{aligned}
& \Theta_{u}:\left[X, \Omega_{K(B)} L(B)\right]_{K(B)} \longrightarrow[X, L(C)]_{K(C)} \\
& \Theta_{u}^{\prime}:\left[X, \Omega_{K(B)}^{2} L(B)\right]_{K(B)} \longrightarrow\left[X, \Omega_{K(C)} L(C)\right]_{K(C)}
\end{aligned}
$$

which are defined by

$$
\Theta_{u}([a])=[d(a, u)], \quad \Theta_{u}^{\prime}([b])=\left[d^{\prime}(b, u)\right] .
$$

If $u: X \rightarrow D$ has a lifting to E, then the homomorphism Θ_{u}^{\prime} is equal to the homomorphism $\Delta(\rho, \eta)$ of (4.1) for any $\eta \in[X, E]_{D}$ by the definition of $\Delta(\rho, \eta)$ and the above commutative diagram. Therefore

$$
\text { Coker } \Theta_{u}^{\prime}=\operatorname{Coker} \Delta(\rho, \eta) \quad \text { for any } \quad \eta \in[X, E]_{D}
$$

Let $\eta=[v] \in[X, E]_{D}$. Then

$$
\Theta_{u}([a])=[d(a, u)]=\left[\rho_{1}(a, v)\right]=\left[n\left(\rho m_{B}(a, v), \rho m_{B}\left(c_{a(0)}, v\right)^{-1}\right)\right]
$$

by definition. If $v: X \rightarrow E$ has a lifting to T, then $\left[\rho m_{B}\left(c_{a(0)}, v\right)\right]$ is equal to the unit $\left[s_{c} \bar{\rho} u\right]$. Thus the function

$$
\rho_{*} m_{B} \cdot(, \eta):\left[X, \Omega_{K(B)} L(B)\right]_{K(B)} \longrightarrow[X, E]_{D} \longrightarrow[X, L(C)]_{K(C)}
$$

is equal to Θ_{u}, if u has a lifting to T. Since $m_{B^{*}}(, \eta)$ is a bijection by Proposition 1.8, we see that $\rho_{*}^{-1}\left(\left[s_{c} \bar{\rho} u\right]\right)$ is equivalent to $\operatorname{Ker} \Theta_{u}=\Theta_{u}^{-1}\left(\left[s_{c} \bar{\rho} u\right]\right)$.

The above argument and Theorem 4.4 complete the proof of Theorem A.
Remark. We see easily that the function Θ_{u} is also a homomorphism.

Chapter II. Enumeration of cross sections of sphere bundles

§6. Some remarks on the cohomology with local coefficients

The non-trivial homomorphism $\phi: Z_{2} \rightarrow \operatorname{Aut}(Z)$, where $\operatorname{Aut}(Z)$ is the group of automorphisms of the infinite cyclic group Z, induces a homomorphism $\phi: Z_{\mathbf{2}}$ \rightarrow Homeo $(K(Z, n))(n>1)$. As indicated in (1.1), there is a fibration

$$
K(Z, n) \xrightarrow{i} L_{\phi}(Z, n) \xrightarrow{q} K=K\left(Z_{2}, 1\right), \quad L_{\phi}(Z, n)=L_{\phi}(K(Z, n)),
$$

with a canonical cross section s. A map $u: X \rightarrow K$ determines a local system on
X which is given by $\phi u_{*}: \pi_{1}(X) \rightarrow \pi_{1}(K)=Z_{2} \rightarrow \operatorname{Aut}(Z)$. We denote the cohomology with coefficients in the above local system by $H^{*}\left(X ; Z_{u^{*} \phi}\right)$ or $H^{*}(X ; Z)$ simply. Notice that the following results.

Proposition $6.1[13, \S 1$ and $\S 3]$. There is a unique element $\lambda \in H^{n}\left(L_{\phi}(Z\right.$, $\left.n), K ; Z_{q^{*} \phi}\right)$ such that $i^{*} \lambda=\iota_{n} \in H^{n}(K(Z, n) ; Z)$, the fundamental class of $K(Z, n)$, where $i: K(Z, n) \rightarrow\left(L_{\phi}(Z, n), K\right)$ is the natural inclusion, and there is a natural isomorphism

$$
\Phi:\left[X, A ; L_{\phi}(Z, n), K\right]_{K} \cong H^{n}\left(X, A ; Z_{u \cdot \phi}\right)
$$

for any pair of regular cell complex (X, A) and for any map $u: X \rightarrow K$ which is defined by

$$
\Phi([a])=a^{*}(\lambda) .
$$

If A is empty, this is the isomorphism

$$
\Phi:\left[X, L_{\phi}(Z, n)\right]_{K} \longrightarrow H^{n}\left(X ; Z_{u * \phi}\right), \quad \Phi([a])=a^{*} j^{*} \lambda_{,},
$$

where $j: L_{\phi}(Z, n) \rightarrow\left(L_{\phi}(Z, n), K\right)$ is the natural inclusion.
We say that the elements λ and $j^{*} \lambda$ are the fundamental classes of the fibration $q: L_{\phi}(Z, n) \rightarrow K$ and we denote $\lambda, j^{*} \lambda$ and their mod 2 reductions by the same symbol λ, whenever no confusion can arise.

For a map $u: X \rightarrow K$, consider the pull back of $q: L_{\phi}(Z, n) \rightarrow K$ by u,

(π_{i} is the projection to the i-th factor). Then $i^{*} \pi_{1}^{*} \lambda=\iota_{n}$ follows immediately from the relation $i^{*} \lambda=\iota_{n}$. Therefore, we see easily the following

Lemma 6.2. Let $v: H^{*}\left(K(Z, n) ; Z_{2}\right) \rightarrow H^{*}\left(L_{\phi}(Z, n) \times_{K} X ; Z_{2}\right)$ be the homomorphism of $Z_{2^{2}}$-algebras given by $v\left(S q^{I} \iota_{n}\right)=S q^{I} \lambda_{X}$, where ι_{n} is the image of the mod 2 reduction of the fundamental class ι_{n} of $K(Z, n)$ and $\lambda_{x}=\pi_{1}^{*} \lambda \in H^{n}\left(L_{\phi}(Z\right.$, $n) \times_{K} X ; Z_{2}$). Then

$$
\nu \otimes \pi_{2}^{*}: H^{*}\left(K(Z, n) ; Z_{2}\right) \otimes H^{*}\left(X ; Z_{2}\right) \longrightarrow H^{*}\left(L_{\phi}(Z, n) \times_{K} X ; Z_{2}\right)
$$

is an isomorphism of Z_{2}-algebras and so any element x in $H^{*}\left(L_{\phi}(Z, n) x_{K} X ; Z_{2}\right)$ is described uniquely in the form

$$
x=\sum_{i} S q^{\prime} \lambda_{x} \pi_{2}^{*} a_{i}, \quad a_{i} \in H^{*}\left(X ; Z_{2}\right)
$$

§7. The third stage Postnikov factorization of $\operatorname{BO}(\boldsymbol{n}-1) \rightarrow \boldsymbol{B O}(n)$

Let $p: B O(n-1) \rightarrow B O(n)$ be the universal S^{n-1}-bundle ($n \geq 4$). Our purpose in this section is the construction of the third stage Postnikov factorization of this bundle using the methods of J. F. McClendon [13] and E. Thomas [19].

Let $\phi: \pi_{1}(B O(n))=Z_{2} \rightarrow \operatorname{Aut}\left(\pi_{n-1}\left(S^{n-1}\right)\right)=\operatorname{Aut}(Z)$ be the local system on $B O(n)$ associated with $p: B O(n-1) \rightarrow B O(n)$, and let s_{n-1} be the generator of $H^{n-1}\left(S^{n-1} ; Z\right)=Z$. Then, by [13, Theorem 4.1 and $\left.\S \S 2-3\right]$, there is a map $W: B O(n) \rightarrow L_{\phi}(Z, n)$ such that $[W] \in\left[B O(n), L_{\phi}(Z, n)\right]_{K}=H^{n}(B O(n) ; \underline{Z})$ is the transgression image of s_{n-1}, and we have a commutative diagram

where $p_{1} q_{1}=p$ and p_{1} is the twisted principal fibration induced by W. By using the homotopy exact sequences of fibrations, we see easily that both maps s_{n-1} and q_{1} are homotopically equivalent to the fibrations $F \stackrel{C}{ } S^{n-1} \xrightarrow{s_{n-1}} \Omega K(Z, n)$ and $F \xrightarrow{c} B O(n-1) \xrightarrow{q_{1}} E$ (cf. $[19, \S 1]$) and

$$
\pi_{i}(F)= \begin{cases}0 & \text { for } \quad i \leq n-1 \\ \pi_{i}\left(S^{n-1}\right) & \text { for } \quad i \geq n .\end{cases}
$$

Therefore $q_{1}: B O(n-1) \rightarrow E$ is an n-equivalence.*) Since the generator of $H^{n}(F$; $\left.Z_{2}\right)=Z_{2}$ is transgressive for the fibration $q_{1}: B O(n-1) \rightarrow E$, its transgression image is a non-zero element ρ in $H^{n+1}\left(E ; Z_{2}\right)$ and there is a commutative diagram

Here $p_{2} q_{2}=q_{1}, p_{2}$ is the principal fibration with the classifying map ρ and it is easily seen that q_{2} is an $(n+1)$-equivalence and $q_{2} \mid F$ represents the generator of

[^2]$H^{n}\left(F ; Z_{2}\right)$.
In the rest of this section, we concentrate ourselves on the characterization of the map $\rho: E \rightarrow K\left(Z_{2}, n+1\right)$. Let
$$
m: \Omega_{K} L_{\phi}(Z, n) \times_{K} E \longrightarrow E
$$
be the action defined in (1.7) and set
\[

$$
\begin{equation*}
\mu=m\left(1 \times q_{1}\right): \Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n-1) \longrightarrow E . \tag{7.1}
\end{equation*}
$$

\]

The map μ makes the following diagram commutative:

The projection π_{2} to the second factor admits a cross section s defined by $s(x)$ $=\left(c_{q W p(x)}, x\right)$, where c_{y} is the constant loop at y, and the relation

$$
\begin{equation*}
\mu s \simeq_{B O(n)} q_{1} \tag{7.2}
\end{equation*}
$$

holds obviously. The local system $\pi_{1}(B O(n))=Z_{2} \rightarrow \operatorname{Aut}\left(H^{i}\left(K(Z, n-1) ; Z_{2}\right)\right)$ on $B O(n)$, which is associated with $p_{1}: E \rightarrow B O(n)$, is trivial for $i=n-1$ and hence so for all i. Also $H^{l}\left(K(Z, n-1) ; Z_{2}\right)=0$ for $0<i<n-1$ and $H^{i}(B O(n), B O(n$ $\left.-1) ; Z_{2}\right)=0$ for $i<n$. Therefore, by the similar proof to [19, Property 4], we see that the sequence

$$
\begin{aligned}
\cdots \longrightarrow & H^{i}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n-1) ; Z_{2}\right) \xrightarrow{\tau_{0}} H^{i+1}\left(B O(n), B O(n-1) ; Z_{2}\right) \\
\xrightarrow{p^{*} j^{*}} & H^{i+1}\left(E ; Z_{2}\right) \xrightarrow{\mu^{*}} H^{i+1}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n-1) ; Z_{2}\right) \longrightarrow \\
& \cdots \longrightarrow H^{2 n-2}\left(E ; Z_{2}\right)
\end{aligned}
$$

is exact, where $j: B O(n) \rightarrow(B O(n), B O(n-1))$ is the natural inclusion, and τ_{0} is the relative transgression. On the other hand, $p^{*}: H^{i}\left(B O(n) ; Z_{2}\right) \rightarrow H^{i}(B O(n-1)$; Z_{2}) is epimorphic for all i. Also $\operatorname{Ker} p^{*}$ is the ideal generated by the universal n-th Stiefel-Whitney class w_{n}. Since w_{n} is the transgression image of s_{n-1} of $p: B O(n-1) \rightarrow B O(n)$, we have $w_{n}=\tau\left(\epsilon_{n-1}\right) \in \operatorname{Ker} p_{1}^{*}$, where τ is the transgression of $K(Z, n-1) \xrightarrow{c} E \xrightarrow{p_{1}} B O(n)$. Thus we see that $\operatorname{Ker} p^{*}=\operatorname{Ker} p_{1}^{*}$. Therefore, the same argument as in [19, Property 5] provides the exact sequence

$$
\begin{align*}
& 0 \longrightarrow H^{t}\left(E ; Z_{2}\right) \xrightarrow{\mu^{*}} H^{t}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n-1) ; Z_{2}\right) \tag{7.3}\\
& \xrightarrow{\tau_{1}} H^{t+1}\left(B O(n) ; Z_{2}\right)
\end{align*}
$$

for $t<2 n-2$, where $\tau_{1}=j^{*} \tau_{0}$. (7.2) and (7.3) imply that

$$
\begin{equation*}
\mu^{*}: \operatorname{Ker} q_{1}^{*} \longrightarrow \operatorname{Ker} s^{*} \cap \operatorname{Ker} \tau_{1} \tag{7.4}
\end{equation*}
$$

is isomorphic in dimension less than $2 n-2$.
By considering $\Omega_{K} L_{\phi}(Z, n)=L_{\phi}(Z, n-1)$ by the natural K-homeomorphism ψ of Lemma 1.6, there is an element $\lambda_{B O(n-1)}$ in $H^{n-1}\left(\Omega_{K} L_{\phi}(Z, n) \times{ }_{K} B O(n-1)\right.$; Z_{2}) by Lemma 6.2 for the fibration $\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n-1) \rightarrow B O(n-1)$ such that $i^{*} \lambda_{B O(n-1)}=\iota_{n-1}$, the mod 2 reduction of the fundamental class of $K(Z, n-1)$. Here the diagram

implies that $\tau_{1}\left(\lambda_{B O(n-1)}\right)=j^{*} \tau_{0}\left(\lambda_{B O(n-1)}\right)=\tau i^{*}\left(\lambda_{B O(n-1)}\right)=\tau\left(\ell_{n-1}\right)=w_{n}$. Any element x in $H^{n+1}\left(\Omega_{K} L_{\phi}(Z, n) \times{ }_{K} B O(n-1) ; Z_{2}\right)$ is described in the form

$$
x=\pi_{2}^{*} b+\varepsilon_{1} \lambda_{B O(n-1)} \pi_{2}^{*} w_{1}^{2}+\varepsilon_{2} \lambda_{B O(n-1)} \pi_{2}^{*} w_{2}+\varepsilon_{3} S q^{2} \lambda_{B O(n-1)},
$$

where $\varepsilon_{i}=0$ or 1 for $i=1,2,3$ by Lemma 6.2. If $x \in \operatorname{Ker} s^{*} \cap \operatorname{Ker} \tau_{1}$, then $0=s^{*} x$ $=b$. Because τ_{1} is an $H^{*}\left(B O(n) ; Z_{2}\right)$-homomorphism and $\tau_{1} S q^{i}=S q^{i} \tau_{1}$ by [19, §3], it follows that

$$
\begin{aligned}
& \tau_{1}\left(\lambda_{B O(n-1)} \pi_{2}^{*} w_{1}^{2}\right)=w_{n} w_{1}^{2}, \quad \tau_{1}\left(\lambda_{B O(n-1)} \pi_{2}^{*} w_{2}\right)=w_{n} w_{2}, \\
& \tau_{1}\left(S q^{2} \lambda_{B O(n-1)}\right)=S q^{2} w_{n}=w_{n} w_{2} .
\end{aligned}
$$

Hence $\operatorname{Ker} s^{*} \cap \operatorname{Ker} \tau_{1}=Z_{2}$ generated by $\lambda_{B O(n-1)} \pi_{2}^{*} w_{2}+S q^{2} \lambda_{B O(n-1)}$ and so the map $\rho: E \rightarrow K\left(Z_{2}, n+1\right)$ is characterized by the relation

$$
\begin{equation*}
\mu^{*} \rho=\lambda_{B O(n-1)} \pi_{2}^{*} w_{2}+S q^{2} \lambda_{B O(n-1)} \tag{7.5}
\end{equation*}
$$

Summing up the above arguments, we have
Theorem 7.6. The third stage Postnikov factorization of $p: B O(n-1)$ $\rightarrow B O(n)$ is given as follows:

where $\phi: \pi_{1}\left(K\left(Z_{2}, 1\right)\right)=Z_{2} \rightarrow A u t(Z)$ is the non-trivial local system on $K\left(Z_{2}, 1\right)$, $p_{1}: E \rightarrow B O(n)$ is the twisted principal fibration induced by the map $W, p_{2}: T \rightarrow E$ is the principal fibration with classifying map $\rho, q_{1}: B O(n-1) \rightarrow E$ is an n equivalence, $q_{2}: B O(n-1) \rightarrow T$ is an $(n+1)$-equivalence and the map ρ is characterized by the relation (7.5).

§8. The stability of the third stage Postnikov factorization of p : $B O(n-1) \rightarrow B O(n)$

There is a map

$$
\begin{equation*}
d:\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n), B O(n)\right) \longrightarrow\left(K\left(Z_{2}, n+1\right), *\right), \tag{8.1}
\end{equation*}
$$

which represents the element $\lambda_{B O(n)} \pi_{2}^{*} w_{2}+S q^{2} \lambda_{B O(n)}$ in $H^{n+1}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n)\right.$, $\left.B O(n) ; Z_{2}\right)$, i.e., $d^{*}(\iota)=\lambda_{B O(n)} \pi_{2}^{*} w_{2}+S q^{2} \lambda_{B O(n)}$, where ι is the fundamental class of $K\left(Z_{2}, n+1\right)$. The relation

$$
\begin{equation*}
\left(1 \times p_{1}\right)^{*} d^{*}(\iota)=\lambda_{E} \pi_{2}^{*} p_{1}^{*} w_{2}+S q^{2} \lambda_{E} \in H^{n+1}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} E, E ; Z_{2}\right) \tag{8.2}
\end{equation*}
$$

follows easily. Let

$$
\rho_{1}:\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} E, E\right) \longrightarrow\left(K\left(Z_{2}, n+1\right), *\right)
$$

be the map given by the relation $\rho_{1}(k, y)=\rho m(k, y) \cdot\left[\rho m\left(c_{k(0)}, y\right)\right]^{-1}$ (cf. (2.3)). Then the following relation holds:

$$
\begin{equation*}
\rho_{1}^{*}(\iota)=m^{*} \rho^{*}(\iota)-\pi_{2}^{*} \rho^{*}(\iota) \in H^{n+1}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} E, E ; Z_{2}\right) . \tag{8.3}
\end{equation*}
$$

To see that the composition of fibrations $T \xrightarrow{p_{2}} E \xrightarrow{p_{1}} B O(n)$ in the diagram (7.7) is stable by the map d in the sense of $\S 2$, it is sufficient to show that

$$
\begin{equation*}
\left(m^{*}-\pi_{2}^{*}\right) \rho^{*}(\iota)=\lambda_{E} \pi_{2}^{*} p_{1}^{*} w_{2}+S q^{2} \lambda_{E}, \tag{8.4}
\end{equation*}
$$

by (8.2) and (8.3). Now, consider the map μ of (7.1). Then the diagram

is commutative because $\left(1 \times q_{1}\right)^{*}\left(m^{*}-\pi_{2}^{*}\right)(x)=\left(1 \times q_{1}\right)^{*} m^{*}(x)-\left(1 \times q_{1}\right)^{*} \pi_{2}^{*}(x)$ $=\mu^{*}(x)$ for any x in $\operatorname{Ker} q_{1}^{*}$. Therefore we have

$$
\begin{aligned}
\left(1 \times q_{1}\right)^{*}\left(m^{*}-\pi_{2}^{*}\right) \rho^{*}(\imath) & =\mu^{*} \rho^{*}(\ell) \quad \text { by } \quad \rho^{*}(\imath) \in \operatorname{Ker} q_{1}^{*} \\
& =\lambda_{B O(n-1)} \pi_{2}^{*} p^{*} w_{2}+S q^{2} \lambda_{B O(n-1)} \text { by }(7.5)
\end{aligned}
$$

$$
=\left(1 \times q_{1}\right)^{*}\left(\lambda_{E} \pi_{2}^{*} p_{1}^{*} w_{2}+S q^{2} \lambda_{E}\right)
$$

Consider the following commutative diagram:

$$
\begin{aligned}
& H^{n+1}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} E ; Z_{2}\right) \stackrel{v \otimes \pi \pi_{2}^{*}}{\longleftarrow} \sum_{i=0}^{2} H^{n-i}\left(K(Z, n-1) ; Z_{2}\right) \otimes H^{i}\left(E ; Z_{2}\right) \\
& \left|\left(1 \times q_{1}\right)^{*} \quad\right| 1 \otimes q_{1} \\
& H^{n+1}\left(\Omega_{K} L_{\phi}(Z, n) \times_{K} B O(n-1) ; Z_{2}\right) \stackrel{\nu \otimes \pi^{*}}{\stackrel{2}{L}} \sum_{i=0}^{2} H^{n-i}\left(K(Z, n-1) ; Z_{2}\right) \otimes \\
& H^{i}\left(B O(n-1) ; Z_{2}\right) .
\end{aligned}
$$

The horizontal maps are monomorphisms by Lemma 6.2. Further $q_{1}^{*}: H^{i}(E$; $\left.Z_{2}\right) \rightarrow H^{i}\left(B O(n-1) ; Z_{2}\right)$ is monomorphic for $i \leq 2$ because q_{1} is an n-equivalence, and so the vertical map in the right hand side is a monomorphism. This result and the above equality imply (8.4), and we have the following

Proposition 8.5. The composition of the fibrations $T \xrightarrow{p_{2}} E \xrightarrow{p_{1}} B O(n)$ in the diagram (7.7) is stable by the map d in (8.1).

§9. Enumeration of cross sections of sphere bundles

Let ξ be a real n-plane bundle over a $C W$-complex X. If ξ has a non-zero cross section, cross (ξ) denotes the set of (free) homotopy classes of non-zero cross sections of ξ. The space X is a $B O(n)$-space with the classifying map $\xi: X \rightarrow B O(n)$ of ξ. Then the relation

$$
\operatorname{cross}(\xi)=[X, B O(n-1)]_{B O(n)}
$$

follows from [11, Lemma 2.2]. If the dimension of X is less than $n+1$ and $n \geq 4$, then

$$
[X, B O(n-1)]_{B O(n)}=[X, T]_{B O(n)}
$$

follows from [11, Theorem 3.2], because $q_{2}: B O(n-1) \rightarrow T$ is an $(n+1)$-equivalence. On the other hand, it follows from Theorem A of $\S 2$ that

$$
[X, T]_{B O(n)}=\operatorname{Ker} \Theta_{\xi} \times \operatorname{Coker} \Theta_{\xi}^{\prime}
$$

Here

$$
\begin{aligned}
& \Theta_{\xi}:\left[X, \Omega_{K} L_{\phi}(Z, n)\right]_{K} \longrightarrow\left[X, K\left(Z_{2}, n+1\right)\right]=H^{n+1}\left(X ; Z_{2}\right)=0, \\
& \Theta_{\xi}^{\prime}:\left[X, \Omega_{K}^{2} L_{\phi}(Z, n)\right]_{K} \longrightarrow\left[X, \Omega K\left(Z_{2}, n+1\right)\right]=H^{n}\left(X ; Z_{2}\right),
\end{aligned}
$$

and $\Theta_{\xi}^{\prime}([a])=\left[d^{\prime}(a, \xi)\right]$, where $d^{\prime}:\left(\Omega_{K}^{2} L_{\phi}(Z, n) \times_{K} B O(n), B O(n)\right) \rightarrow\left(\Omega K\left(Z_{2}, n\right.\right.$ $+1), *)$ is the map given by $d^{\prime}(a, x)(t)=d(a(t), x)$ (cf. (2.4)). Also,

$$
\left[X, \Omega_{K} L_{\phi}(Z, n)\right]_{K}=H^{n-1}(X ; Z), \quad\left[X, \Omega_{K}^{2} L_{\phi}(Z, n)\right]_{K}=H^{n-2}(X ; Z)
$$

by Proposition 6.1, where \underline{Z} is the local system on X associated with ξ given by the composition

$$
\pi_{1}(X) \xrightarrow{\xi_{*}} \pi_{1}(B O(n)) \xrightarrow{q_{*} W_{*}} \pi_{1}(K)=Z_{2} \xrightarrow{\phi} \operatorname{Aut}(Z), \quad\left(K=K\left(Z_{2}, 1\right)\right) .
$$

Now, we show that the homomorphism $\Theta_{\xi}^{\prime}: H^{n-2}(X ; Z) \rightarrow H^{n}\left(X ; Z_{2}\right)$ is given by

$$
\begin{equation*}
\Theta_{\xi}^{\prime}(a)=\left(\rho_{2} a\right) w_{2}(\xi)+S q^{2} \rho_{2} a, \quad \text { for any, } \quad a \in H^{n-2}(X ; Z), \tag{9.1}
\end{equation*}
$$

where ρ_{2} is the mod 2 reduction and $w_{2}(\xi)$ is the second Stiefel-Whitney class of ξ.

Let $\iota^{\prime} \in H^{n}\left(K\left(Z_{2}, n\right) ; Z_{2}\right)$ be the fundamental class of $K\left(Z_{2}, n\right)$. Then

$$
\begin{equation*}
\Theta_{\xi}^{\prime}([a])=(a, \xi)^{*} d^{\prime *}\left(c^{\prime}\right) \tag{9.2}
\end{equation*}
$$

for any K-map $a: X \rightarrow \Omega_{K}^{2} L_{\phi}(Z, n)$. Consider the two commutative diagrams of the mod 2 cohomology groups

where $\quad K^{\prime}=K\left(Z_{2}, n+1\right), \Omega^{\prime}=\Omega_{K} L_{\phi}(Z, n), B=B O(n), K^{\prime \prime}=\Omega K(Z, n) \quad$ and $\quad d^{\prime}$: $P_{K} \Omega^{\prime} \times_{K} B \rightarrow P K^{\prime}$ is the map defined by the same equation $d^{\prime}(b, x)(t)=d(b(t), x)$ as (2.4). Since $\delta^{-1} r^{*}\left(\iota_{n-1}\right)=\iota_{n-2}$, we have

$$
\delta^{-1} r^{*} \lambda=\lambda^{\prime}, \quad \delta^{-1} r^{*} \lambda_{B}=\lambda_{B}^{\prime},
$$

where $\lambda \in H^{n-1}\left(\Omega^{\prime}, K\right)$ and $\lambda^{\prime} \in H^{n-2}\left(\Omega_{K} \Omega^{\prime}, K\right)$ are the fundamental classes of the fibrations $\Omega^{\prime} \rightarrow K$ and $\Omega_{K} \Omega^{\prime} \rightarrow K$ of Proposition 6.1 and $\lambda_{B}=\pi_{1}^{*} \lambda \in H^{n-1}\left(\Omega^{\prime}\right.$ $\left.\times_{K} B, B\right), \lambda_{B}^{\prime}=\pi_{1}^{*} \lambda^{\prime} \in H^{n-2}\left(\Omega_{K} \Omega^{\prime} \times_{K} B, B\right)$. Therefore, by the equation $d^{*}(\iota)$ $=\lambda_{B} \pi_{2}^{*} w_{2}+S q^{2} \lambda_{B}$ by (8.1) and $\delta^{-1} r^{*}(\iota)=\iota^{\prime}$, we have $d^{* *}\left(\iota^{\prime}\right)=\delta^{-1} r^{*} d^{*}(\iota)=$ $\lambda_{B}^{\prime} \pi_{2}^{*} w_{2}+S q^{2} \lambda_{B}^{\prime}=\left(\pi_{1}^{*} \lambda^{\prime}\right)\left(\pi_{2}^{*} w_{2}\right)+S q^{2} \pi_{1}^{*} \lambda^{\prime}$. This equality and (9.2) yield

$$
\begin{aligned}
\Theta_{\xi}^{\prime}([a]) & =(a, \xi)^{*}\left(\left(\pi_{1}^{*} \lambda^{\prime}\right) \cdot\left(\pi_{2}^{*} w_{2}\right)+S q^{2} \pi_{1}^{*} \lambda^{\prime}\right) \\
& =\left(a^{*} \lambda^{\prime}\right)\left(\xi^{*} w_{2}\right)+S q^{2} a^{*} \lambda^{\prime} .
\end{aligned}
$$

Therefore, the homomorphism $\Theta_{\xi}^{\prime}: H^{n-2}(X ; Z) \rightarrow H^{n}\left(X ; Z_{2}\right)$ is given by

$$
\Theta_{\xi}^{\prime}(a)=\left(\rho_{2} a\right) w_{2}(\xi)+S q^{2} \rho_{2} a
$$

by Proposition 6.1, where $w_{2}(\xi)$ is the second Stiefel-Whitney class of ζ and ρ_{2} is the $\bmod 2$ reduction.

From the consideration made above, we obtain the following
Theorem B. Let ξ be a real n-plane bundle over a CW-complex X of dimension less than $n+1$ and let $n \geq 4$. If ξ admits a non-zero cross section, then the set cross (ξ) of homotopy classes of non-zero cross sections of ξ is, as a set, given by

$$
\operatorname{cross}(\xi)=H^{n-1}(X ; \underline{Z}) \times \operatorname{Coker} \Theta
$$

where $\Theta: H^{n-2}(X ; Z) \rightarrow H^{n}\left(X ; Z_{2}\right)$ is defined by

$$
\Theta(a)=\left(\rho_{2} a\right) w_{2}(\xi)+S q^{2} \rho_{2} a, \quad \text { for } \quad a \in H^{n-2}(X ; Z),
$$

ρ_{2} is the $\bmod 2$ reduction and Z is the local system on X associated with ξ.

Chapter III. Enumeration of embeddings

§ 10. Enumeration of embeddings of manifolds

Let M be an n-dimensional differentiable closed manifold. Let M^{*} be the reduced symmetric product of M obtained from $M \times M-\Delta$ (Δ is the diagonal of M) by identifying (x, y) and (y, x) and let η be the real line bundle over M^{*} associated with the double covering $M \times M-\Delta \rightarrow M^{*}$. Then the set [$M \subset R^{2 n-1}$] of isotopy classes of embeddings of M into the real ($2 n-1$)-space $R^{2 n-1}$ for $n \geq 6$ is equivalent to the set of homotopy classes of cross sections of the $S^{2 n-2}$-bundle $(M \times M-\Delta) \times{ }_{Z_{2}} S^{2 n-2} \rightarrow M^{*}$ by the theorem of A. Haefliger [5, §1]. Because this bundle is the associated $S^{2 n-2}$-bundle of $(2 n-1) \eta$, we have

$$
\left[M \subset R^{2 n-1}\right]=\operatorname{cross}((2 n-1) \eta)
$$

Since M^{*} is an open $2 n$-dimensional manifold, there is a proper Morse function on M^{*} with no critical point of index $2 n$ by [15, Lemma 1.1], and so M^{*} has the homotopy type of a $C W$-complex of dimension less than $2 n$ by [14, Theorem 3.5]. Therefore we have the following proposition from Theorem B of $\S 9$ and the fact

$$
w_{2}((2 n-1) \eta)=\binom{2 n-1}{2} w_{1}(\eta)^{2} .
$$

Proposition 10.1. Let $n \geq 6$ and let M be an n-dimensional differentiable closed manifold which is embedded in $R^{2 n-1}$. Then the set $\left[M \subset R^{2 n-1}\right]$ of isotopy classes of embeddings of M into $R^{2 n-1}$ is, as a set, given by

$$
\left[M \subset R^{2 n-1}\right]=H^{2 n-2}\left(M^{*} ; \underline{Z}\right) \times \operatorname{Coker} \Theta
$$

where the homomorphism

$$
\Theta: H^{2 n-3}\left(M^{*} ; \underline{Z}\right) \longrightarrow H^{2 n-1}\left(M^{*} ; Z_{2}\right)
$$

is given by

$$
\Theta(a)=\binom{2 n-1}{2} w_{1}(\eta)^{2} \rho_{2} a+S q^{2} \rho_{2} a,
$$

$w_{1}(\eta)$ is the first Stiefel-Whitney class of the double covering $M \times M-\Delta \rightarrow M^{*}$ and Z is the local system on M^{*} defined from this double covering.

Corollary 10.2. In addition to the conditions of the above proposition, we assume that $H_{1}\left(M ; Z_{2}\right)=0$. Then we have

$$
\left[M \subset R^{2 n-1}\right]=H^{2 n-2}\left(M^{*} ; \underline{Z}\right)
$$

Proof. Because $H_{1}\left(M ; Z_{2}\right)=0$, we have $H_{1}\left(M \times M, \Delta ; Z_{2}\right)=0$ by the exact sequence of the pair $(M \times M, \Delta)$. The Thom-Gysin exact sequence

$$
\longrightarrow H^{2 n-1}\left(M \times M-\Delta ; Z_{2}\right) \longrightarrow H^{2 n-1}\left(M^{*} ; Z_{2}\right) \longrightarrow H^{2 n}\left(M^{*} ; Z_{2}\right) \quad(=0)
$$

and the Poincaré duality $H^{2 n-1}\left(M \times M-\Delta ; Z_{2}\right)=H_{1}\left(M \times M, \Delta ; Z_{2}\right)(=0)$ yield $H^{2 n-1}\left(M^{*} ; Z_{2}\right)=0$, which implies that Coker $\Theta=0$.

Remark. There is a description in [6, 1.3, e, Théorème] that

$$
\left[M \subset R^{2 n-1}\right]=H^{2 n-2}\left(M^{*} ; Z\right)= \begin{cases}H^{n-2}(M ; Z) & \text { if } n-1 \text { is odd } \\ H^{n-2}\left(M ; Z_{2}\right) & \text { if } n-1 \text { is even }\end{cases}
$$

under the assumption $H_{1}(M ; Z)=0$.

§11. Enumeration of embeddings of real projective spaces $\boldsymbol{R P} \boldsymbol{P}^{\boldsymbol{n}}$

Our purpose in this section is to prove the following
Theorem C. Let $n \neq 2^{r}$ and let $n \geq 6$. Then the n-dimensional real projective space $R P^{n}$ is embedded into the real $(2 n-1)$-space $R^{2 n-1}$. Furthermore, the cardinality $\#\left[R P^{n} \subset R^{2 n-1}\right]$ of the set $\left[R P^{n} \subset R^{2 n-1}\right]$ of isotopy classes of embeddings of $R P^{n}$ into $R^{2 n-1}$ is given by

$$
\#\left[R P^{n} \subset R^{2 n-1}\right]= \begin{cases}4 & n \equiv 3(4) \\ 2 & \text { otherwise } .\end{cases}
$$

The first half of this theorem is shown in [1, Theorem 1] for even n and in [9 , Theorem 1.1] for odd n. Thus we concentrate ourselves on the study of the set $\left[R P^{n} \subset R^{2 n-1}\right]$. Let η be the real line bundle associated with the double covering $R P^{n} \times R P^{n}-\Delta \rightarrow\left(R P^{n}\right)^{*}$. Then the set $\left[R P^{n} \subset R^{2 n-1}\right]$ is equivalent to the set cross $((2 n-1) \eta)(c f . \S 10)$.

In [8, (2.5-6)],
(11.1) there is a commutative diagram of the double coverings

where $V_{n+1,2}$ is the Stiefel manifold of 2-frames in R^{n+1}, D_{4} is the dihedral group of order 8 , both maps f and f^{\prime} are homotopy equivalences and both spaces $Z_{n+1,2}$ and $S Z_{n+1,2}$ are $(2 n-1)$-dimensional manifolds.

The mod 2 cohomology of $\left(R P^{n}\right)^{*}$ (and so $S Z_{n+1,2}$) is calculated by S. Feder [2], [3] and D. Handel [8] and is given as follows:
(11.2) Let $G_{n+1,2}$ be the Grassmann manifold of 2-planes in the real $(n+1)$ space R^{n+1}. Then the $\bmod 2$ cohomology of $G_{n+1.2}$ is given by

$$
H^{*}\left(G_{n+1,2} ; Z_{2}\right)=Z_{2}[x, y] /\left(a_{n}, a_{n+1}\right)
$$

where $\operatorname{deg} x=1, \operatorname{deg} y=2$ and $a_{r}=\sum_{i}\binom{r-i}{i} x^{r-2 i y^{i}(r=n, n+1)}$, and there is a relation

$$
x^{2 i} y^{n-i-1} \neq 0 \text { if and only if } i=2^{t}-1 \text { for some } t
$$

$H^{*}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ has $\{1, v\}$ as a basis of an $H^{*}\left(G_{n+1,2} ; Z_{2}\right)$-module, where $v \in$ $H^{1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ is the first Stiefel-Whitney class of the double covering $R P^{n}$ $\times R P^{n}-\Delta \rightarrow\left(R P^{n}\right)^{*}$ and there are the relations

$$
v^{2}=v x, S q^{1} y=x y \quad \text { and } \quad x^{2 r+1-1}=0 \text { for } n=2^{r}+s, 0 \leq s<2^{r}
$$

By the Poincaré duality and (11.1-2),
(11.3) $H^{t}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)\left(n=2^{r}+s, 0<s<2^{r}\right)$ for $2 n-3 \leq t \leq 2 n-1$ are given as follows [20], [21]:

t	$H^{t}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$	basis
$2 n-1$	Z_{2}	$v x^{2 r+1-2} y^{s}$
$2 n-2$	$Z_{2}+Z_{2}$	$v x^{2 r+1-3} y^{s}, x^{2 r+1-2} y^{s}$
$2 n-3$	$Z_{2}+Z_{2}+Z_{2}$	$v x^{2 r+1-4} y^{s}, x^{2 r+1-3} y^{s}, v x^{2 r+1-2} y^{s-1}$

To apply Proposition 10.1, we must study the cohomology groups $H^{i}\left(\left(R P^{n}\right)^{*}\right.$; $Z)(i=2 n-2,2 n-3)$ with coefficients in the local system associated with the double covering $R P^{n} \times R P^{n}-\Delta \rightarrow\left(R P^{n}\right)^{*}$.

Let $\rho_{2}: H^{i}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow H^{i}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ be the $\bmod 2$ reduction.
Lemma 11.4. Let $n \equiv 0(2)$. Then $H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}$ and $\rho_{2} H^{2 n-3}$ $\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}+Z_{2}$ generated by $\left\{v x^{2 r+1-4} y^{s}, v x^{2 r+1-2} y^{s-1}\right\}$.

Lemma 11.5. Let $n \equiv 1(2)$. Then $H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}$ and $\rho_{2} H^{2 n-3}$ $\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}+Z_{2}$ generated by $\left\{v x^{2 r+1-4} y^{s}+x^{2^{r+1}-3} y^{s}, v x^{\left.2^{r+1-2} y^{s-1}\right\} . ~}\right.$

The proofs of Lemmas $11.4-5$ will be made in the next section and we go on proving Theorem C. By Proposition 10.1,

$$
\left[R P^{n} \subset R^{2 n-1}\right]=H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; \underline{Z}\right) \times \operatorname{Coker} \Theta
$$

where

$$
\Theta: H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \longrightarrow H^{2 n-1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right), \Theta(a)=S q^{2} \rho_{2} a+\binom{2 n-1}{2} v^{2} \rho_{2} a
$$

Now, there are relations

$$
\begin{aligned}
& S q^{2}\left(v x^{2 r+1-2} y^{s-1}\right)=(s-1) v x^{2 r+1-2} y^{s} \\
& S q^{2}\left(v x^{2 r+1-4} y^{s}\right)=\left(s+\binom{s}{2}\right) v x^{2 r+1-2} y^{s} \\
& S q^{2}\left(x^{2 r+1-2} y^{s}\right)=0
\end{aligned}
$$

which are easily seen by using (11.2) and the fact $S q^{2}\left(y^{t}\right)=t y^{t+1}+\binom{t}{2} x^{2} y^{t}$. Therefore we have

$$
\begin{aligned}
& \left(S q^{2}+\binom{2 n-1}{2} v^{2}\right)\left(v x^{2 r+1-2} y^{s-1}\right)= \begin{cases}v x^{2 r+1-2} y^{s} & n \equiv 0(2) \\
0 & n \equiv 1(2),\end{cases} \\
& \left(S q^{2}+\binom{2 n-1}{2} v^{2}\right)\left(v x^{2^{r+1}-4} y^{s}+x^{2 r+1-3} y^{s}\right)= \begin{cases}v x^{2^{r+1}-2} y^{s} & n \equiv 1(4) \\
0 & n \equiv 3(4) .\end{cases}
\end{aligned}
$$

From Lemmas 11.4-5 and (11.3), these relations show that

$$
\operatorname{Coker} \Theta= \begin{cases}Z_{2} & n \equiv 3(4) \\ 0 & \text { elsewhere }\end{cases}
$$

Since $H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right)=Z_{2}$ by Lemmas 11.4-5, we have Theorem C.

§ 12. Proofs of Lemmas 11.4-5

There are two exact sequences of cohomology groups associated with the double covering $R P^{n} \times R P^{n}-\Delta \rightarrow\left(R P^{n}\right)^{*}$ (cf. [17, pp. 282-283]), which is called the Thom-Gysin exact sequence:

$$
\begin{align*}
& \cdots \rightarrow H^{i-1}\left(M^{*} ; Z\right) \rightarrow H^{i}\left(M^{*} ; Z\right) \rightarrow H^{i}(M \times M-\Delta ; Z) \rightarrow H^{i}\left(M^{*} ; Z\right) \rightarrow \cdots, \tag{12.1}\\
& \cdots \rightarrow H^{i-1}\left(M^{*} ; Z\right) \rightarrow H^{i}\left(M^{*} ; Z\right) \rightarrow H^{i}(M \times M-\Delta ; Z) \rightarrow H^{i}\left(M^{*} ; Z\right) \rightarrow \cdots,
\end{align*}
$$

where $M=R P^{n}$. Moreover, there is the Bockstein exact sequence [18]

$$
\begin{align*}
\cdots & H^{i-1}\left(M^{*} ; Z_{2}\right) \xrightarrow{\beta_{2}} H^{\prime}\left(M^{*} ; Z\right) \xrightarrow{\times 2} H^{i}\left(M^{*} ; Z\right) \tag{12.2}\\
& \xrightarrow{\rho_{2}} H^{i}\left(M^{*} ; Z_{2}\right) \xrightarrow{A_{2}} \cdots, \quad\left(M=R P^{n}\right),
\end{align*}
$$

associated with the short exact sequence $0 \longrightarrow Z \stackrel{\times 2}{ } Z \xrightarrow{\rho_{2}} Z_{2} \longrightarrow 0$. The homomorphism $\tilde{\beta}_{2}$ is called the twisted Bockstein operator, and by [4] and [16], the homomorphism $\rho_{2} \widetilde{\beta}_{2}: H^{i-1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \rightarrow H^{i}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right)$ is given by

$$
\begin{equation*}
\rho_{2} \widetilde{\beta}_{2}(a)=S q^{1} a+v a \quad \text { for } \quad a \in H^{i-1}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \tag{12.3}
\end{equation*}
$$

where v is the first Stiefel-Whitney class of the double covering $R P^{n} \times R P^{n}-\Delta$ $\rightarrow\left(R P^{n}\right)^{*}$.

From now on, set $n=2^{r}+s, 0<s<2^{r}$.
Proof of Lemma 11.4. Since n is even, the space $S Z_{n+1,2}$ is an orientable ($2 n-1$)-dimensional manifold by $[2, \S 3]$ and so it follows that

$$
\begin{aligned}
& H^{2 n-1}\left(S Z_{n+1,2} ; Z\right)=Z \\
& H^{2 n-2}\left(S Z_{n+1,2} ; Z\right)=H_{1}\left(S Z_{n+1,2} ; Z\right)=D_{4} /\left[D_{4}, D_{4}\right]=Z_{2}+Z_{2}
\end{aligned}
$$

Since the total space $Z_{n+1,2}$ is also orientable and $\pi_{1}\left(Z_{n+1,2}\right)=Z_{2}+Z_{2}$, the following relations hold:

$$
H^{2 n-1}\left(Z_{n+1,2} ; Z\right)=Z, \quad H^{2 n-2}\left(Z_{n+1,2} ; Z\right)=Z_{2}+Z_{2}
$$

Hence (11.1) and the Thom-Gysin exact sequence (12.1) give rise to the two exact
sequences

$$
\begin{aligned}
& Z_{2}+Z_{2} \rightarrow H^{2 n-1}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow Z \rightarrow Z \rightarrow 0, \\
& Z_{2}+Z_{2} \rightarrow H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow Z \rightarrow Z \rightarrow H^{2 n-1}\left(\left(R P^{n}\right)^{*} ; Z\right) \rightarrow 0
\end{aligned}
$$

A simple calculation yields

$$
\begin{equation*}
H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; \underline{Z}\right)=Z_{2} \text { or } Z_{2}+Z_{2} \text { or } 0 . \tag{12.4}
\end{equation*}
$$

On the other hand, there are relations

$$
\begin{aligned}
& \rho_{2} \tilde{\beta}_{2}\left(x^{2^{r+1}-2} y^{s}\right)=v x^{2^{r+1}-2} y^{s}, \\
& \rho_{2} \tilde{\beta}_{2}\left(x^{2 r+1-3} y^{s}\right)=x^{2 r+1-2} y^{s}+v x^{2 r+1-3} y^{s}, \\
& \rho_{2} \tilde{\beta}_{2}\left(x^{2 r+1-4} y^{s}\right)=v x^{2 r+1-4} y^{s}, \quad \rho_{2} \tilde{\beta}_{2}\left(x^{2 r+1-2} y^{s-1}\right)=v x^{2^{r+1}-2} y^{s-1}
\end{aligned}
$$

by (11.2) and (12.3) since n is even. Consider the Bockstein exact sequence (12.2)

$$
\begin{aligned}
& \cdots \longrightarrow H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \xrightarrow{\beta_{2}} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right) \\
& \xrightarrow{\times 2} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; \underline{Z}\right) \xrightarrow{\rho_{2}} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \longrightarrow \cdots .
\end{aligned}
$$

The last three relations of the above and (11.3) show the last half of Lemma 11.4. Also, the first two relations of the above show that the image $\rho_{2} H^{2 n-2}\left(\left(R P^{n}\right)^{*}\right.$; $Z)=Z_{2}$ generated by $x^{2 r+1-3} y^{3}+v x^{2 r+1-3} y^{s}$. Therefore we have the first half of Lemma 11.4 by the above Bockstein exact sequence, (11.3) and (12.4).

Proof of Lemma 11.5. Consider the Bockstein exact sequence (12.2)

$$
\begin{gathered}
H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-3}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) \xrightarrow{\beta_{2}} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right) \\
\xrightarrow{\times 2} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z\right) \xrightarrow{\rho_{2}} H^{2 n-2}\left(\left(R P^{n}\right)^{*} ; Z_{2}\right) .
\end{gathered}
$$

Since \boldsymbol{n} is odd, there are relations

$$
\begin{aligned}
& \rho_{2} \tilde{\beta}_{2}\left(x^{2 r+1-2} y^{s}\right)=v x^{2 r+1-2} y^{s}, \\
& \rho_{2} \tilde{\beta}_{2}\left(x^{2 r+1-3} y^{s}\right)=v x^{2 r+1-3} y^{s}, \\
& \rho_{2} \tilde{\beta}_{2}\left(v x^{2 r+1-3} y^{s-1}\right)=v x^{2 r+1-2} y^{s-1}, \\
& \rho_{2} \tilde{\beta}_{2}\left(x^{2 r+1-4} y^{s}\right)=v x^{2 r+1-4} y^{s}+x^{2 r+1-3} y^{s},
\end{aligned}
$$

by (11.2) and (12.3). Therefore, the lemma can be proved in the same way as the proof of Lemma 11.4, by using the Bockstein exact sequence (12.2) and (11.3).

References

[1] D. B. A. Epstein and R. L. E. Schwarzenberger, Imbeddings of real projective spaces, Ann. of Math. 76 (1962), 180-184.
[2] S. Feder, The reduced symmetric product of a projective space and the embedding problem, Bol. Soc. Mat. Mexicana 12 (1967), 76-80.
[3] ——. The reduced symmetric product of projective spaces and the genteralized Whitney theorem, Illinois J. Math. 16 (1972), 323-329.
[4] R. Greenblatt, The twisted Bockstein coboundary, Proc. Camb. Phil. Soc. 61 (1965), 295-297
[5] A. Haefliger, Plongements différentiables dans le domaine stable, Comment. Math. Helv. 37 (1962), 155-176.
[6] -, Plongement de variétés dans le domaine stable, Séminaire Bourbaki 150 (1962/63), $\mathrm{n}^{\circ} .245$.
[7] A. Haefliger and M. W. Hirsch, On the existence and classification of differentiable embeddings, Topology 2 (1963), 129-135.
[8] D. Handel, An embedding theorem for real projective spaces, Topology 7 (1968), 125-130.
[9] I. M. James, Some embeddings of projective spaces, Proc. Camb. Phil. Soc. 55 (1959), 294-298.
[10] I. M. James and E. Thomas, An approach to the enumeration problem for non-stable vector bundles, J. Math. Mech. 14 (1965), 489-506.
[11] —, Note on the classification of cross-sections. Topology 4 (1966), 351-359.
[12] On the enumeration of cross-sections, Topology 5 (1966), 95-114.
[13] J. F. McClendon, Obstruction theory in fiber spaces, Math. Z. 120 (1971), 1-17.
[14] J. Milnor, Morse Theory, Princeton Univ. Press, 1963.
[15] A. Phillips, Submersions of open manifolds, Topology 6 (1967), 171-206.
[16] H. Samelson, A note on the Bockstein operator. Proc. Amer. Math. Soc. 15 (1964), 450-453.
[17] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[18] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
[19] E. Thomas, Seminar on Fiber Spaces, Lecture Notes in Math. 13, Springer-Verlag, 1966.
[20] T. Yasui, Note on the enumeration of embeddings of real projective spaces, Hiroshima Math. J. 3 (1973), 409-418.
[21] ——, II, Hiroshima Math. J. 6 (1976), 221-225.

Department of Mathematics, Faculty of Education, Yamagata University

[^0]: *) The H-group is the homotopy associative H-space with a homotopy inverse.

[^1]: *) In our applications of the later chapters, we are concerned with the case where $K(C)=*$. For this case, $L(C)=C$ and q is a usual principal fibration and the existence of such a map $\bar{\rho}$ with $q_{c} \rho=\bar{\rho} p$ is trivial.
 ${ }^{* *)}$ This assumption gives neat formulas but essentially the same theory carries through in the case that C is an H-group.

[^2]: *) A map $g: X \rightarrow Y\left(X, Y\right.$ are connected) is called an n-equivalence if $g_{*}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is isomorphic for $i<n$ and epimorphic for $i=n$.

