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ABSTRACT: Let X be a complex algebraic manifold of dimension n + 1 embedded in a sufficiently higher
dimensional complex projective space PV (C), and Y a generic hyperplane section of X. By sheaf cohomo-
logical method, we prove the well-known facts that the primitive cohomology group H?(X,C)y (1<p<n+1)
is isomorphic to the De Rham cohomology group I? (X, (p+ 1)Y)o of closed rational p-forms of the 2nd kind
on X, having poles of order p + 1 (at most) along Y only, and that the Hodge filtration of HP(X,C)q is
isomorphic to the one of IP(X, (p+1)Y ) defined by the order of poles along Y. On the other hand, we have
a long exact sequence of cohomology

— HP(X,(C) i HP(X—Y,(C) R—p> Hp_l(Y,(C) ﬂ Hp+1(X7(C) e
which is dual to

Tp—1 Gpt1

— H,y(X,C) < Hy(X ~Y,C) &= H, 1(Y.C) 5 Hp (X,C) — -+

where HS denotes compact support homology group (cf. (1.2)). Using these exact sequences, we describe
the mixed Hodge structure on H?(X — Y, C) and the Hodge filtration of the middle primitive cohomology
group H"(Y,C)g of Y in terms of rational integrals on X.

Key words: Primitive cohomology, Rational integral of the 2nd kind, Generalized Poincaré résidue map,
Hodge filtration, Mixed Hodge structure
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Summary

Let X be a non-singular irreducible algebraic variety of dimension n + 1 embedded in a sufficiently higher
dimensional complex projective space PV(C), and Y a generic hyperplane section of X. We shall use the
following notation:

Q% : the sheaf of germs of holomorphic ¢-forms on X,

Q% (kY) : the sheaf of germs of meromorphic g-forms having poles of order k
(at most) along Y as their only singularities on X,

Q% (xY) : the sheaf of germs of meromorphic g-forms having poles of arbitrary
order along Y as their only singularities on X,

Q% (logY) : the sheaf of germs of meromorphic g-forms having logarithmic
poles (at most) along Y as their only singularities on X.

We denote by %, ®% (kY), e.t.c., the subsheaves consisting of closed forms of each ones. On the complex
Oy we define a decreasing filtration F = {F* }o<k<n+1 (the Hodge filtration) by the subcomplexes

. 0 g<k
FE(Qy )1 =
(Cx) {Qg( k<q.

On the complex Q' (logY) we define the Hogde filtartion similarly, and another increasing filtration W =
{Wy C W1} (the weight filtration) by

Wo(Qx(logY)) = Uy, Wi(Qx(logY)) = Qx(logY).

Then (Qy, F) becomes the cohomological Hodge complex, and (Qy (logY), W, F') the cohomological mized
Hodge complex (cf. §3). They induce the Hodge structure on the cohomology HP(X,C), and the mixed
Hodge structure on the cohomology HP(X —Y,C). We define

DX, % ((p—k+ 1)Y)

T DY) = Xt (= )Y)

(0<k<p)

and denote by I} (X, (p + 1)Y')o the subspace of It (X, (p + 1)Y) generated by closed moromorphic p-forms
of the second kind (cf. Definition 2.2). Assume that

HP(X,Q%(kY))=0 for p>1,¢>0 and k>1.
Then we have

FFHP(X —Y,C) = I)(X, (p+1)Y) 0<k<p,

FFHP(X,C)o > IN(X, (p+1)Y)o  0<k<p,

Gr'lHI(X —Y,C) = Wgl;H (X - Y,C) = I(X,+Y ),

Grit W HY (X — Y, C) = I(X, #Y) /[TU(X, Y )o,

FrGrVl (X —Y,C) ~ FFHY(X,C)y, and

Frar i e(X — v,C) ~ Ker{F[-1]*H*~ (Y, C)o < FFHI2(Y,C)},

g+1

where HP(X,C)q denotes the p-th primitive coholomology of X, F* the k-th Hodge filtration of cohomology,
and Wg] the shift to the right on the degree of W by ¢. (Theorem 3.1, Theorem 3.3 and Proposition 2.3).
Furthermore, let Y’ be a generic hypersurface of PV (C) of sufficiently higher degree so that

HY(Y, Q% (kZ))=0 for p>1,¢>0 and k>1,
where Z =Y - Y’. Then we can define the generalized Poincaré résidue map

Rés: "X, (n+2)Y) — I"(Y,(n +1)2Z)o



and prove that

FRH(Y,C),

12

[]?(Y, (n + 1)2)0
Rés(I) (X, (n+2)Y)) @ r" (I (X, (n +1)Y")o)),

1R

where r™ denotes the map induced by the natural map H"(X,C)y — H"(Y,C)o (Thorem 4.1). These results
might be considered as a generalization of those by P. A. Griffith in the case of a hypersurface in a complex
projective space (cf. [9]).

1 Some remarks on primitive cohomology and homology of alge-
braic manifolds

Let X be a non-singular irreducible algebraic variety of dimension n + 1 embedded in a higher dimensional
complex projective space PV (C) and Y a generic hyperplane section of X. In what follows we call such Y a
prime section of X. We denote by (2 the restriction to X of the fundamental form of the Fubini-Study metric
on PV (C). Qis a closed 2-form whose cohomology class [Q] € H?(X, C) is the Poincaré dual of the homology
class [Y] € Ha, (X, C) associated to the the prime section Y. We define L(w) := Q Aw for a (C-valued) C'*°
diferential g-form w on X. If w is a closed form (resp. detived form), then L(w) is also a closed form (resp.
derived form) for Q is a closed form. Hence L define a homomorphism H?(X,C) — H9"2(X,C) (0<q<2n).
Throughput this paper we always idetify the ordinary cohomology with the De Rham cohomology. We call
this cohomology operator Hodge operator and denote it by the same letter L.

Definition 1.1. A C* differential ¢-form (0<g<n + 1) w is said to be primitive if L~ ?(w) = 0
(L"=9%2 = Lo---0L). A (De Rham) cohomology class containing a closed, primitive C>° differential form

n—q—+2 times
is said to be a primitive cohomology class.

We call the subgroup of H?(X,C) which consists of all primitive cohomology classes the ¢-th primitive
cohomology group of X, which we denote by H4(X, C)o.

Remark 1.1. Originarlly, a C differetial g-form (<g<n+1) w on X is defined to be primitive if Aw =0, A is
the adjoint operator of L with respect to the Hodge metric on X which is the restriction of the Fubini-Study
metric on PV (C). The above definition of primitive forms is equivalent to the original one (cf. [11]).

The following facts are fundamental for the Hodge operator L.
Theorem 1.1. (Hard Lefshets Theorem)
LF: H"HF(X C) ~ HPHR (X, C)  (1<k<n+1)
Theorem 1.2. (Lefshets decomposition)

(i) L:H?2(X,C) — HY(X,C) is injective and
HY(X,C)~ LH"*X,C)® HY(X,C)y (2<q<n+1).

(ii) H"H 14k (X, C) ~ LEH"+14K(X C)o @ L+ H =1k (X, C)

By restriction C*° differential ¢g-forms on X to Y, we obtain a cohomology map r? : H{(X,C) —
H1(Y,C), for which the folowing holds.

Theorem 1.3. (Weak Lefshetz Theorem)
(i) r9: HY(X,C) ~ H1(Y,C) (0<g<n—1).
(ii) r™: H*"(X,C) — H"(Y,C) is injective.

For the proofs of the theorems above we refer to [11].



Corollary 1.4.
,’,n+l
0— H""(X,C)o — H""(X,C) —— H""(Y,C) — 0. (ezact)

Proof. By (1.2), (i) and (1.1), we have

0 —» H"Y(X,0) & H"(X,C)

g [

H" (Y, C) H" (Y, C)

2 lh

and,
H""Y(X,C) = H"™(X,C)o @ LH" (X, C).
Therefore,

Ker "t = H" (X, C)o

Corollary 1.5.

0 — H"™(X,C)o — H™(X,C) " H™(Y,C) >0 (exact)

In what follows, homology and cohomology are with coefficient in the complex number field if otherwise
explicitly mentioned. Taking a topological tublar neighborhood U of Y in X, we consider the homology
exact sequence concerning a pair of the topological spaces (X, X — U), which is written as follows:

(1.1) o HE(X = U) 5 Hy(X) 25 Hy(X, X —U) 25 HE (X —U) — -+,

where H¢ denotes compact support homology groups. Since X — U is a deformation retract of X — U,
HS(X —U)~ Hg(X —Y). By the excision aziom, H(X, X —U) ~ HS(U,0U). By the Thom isomorphism,
HE(U,0U) ~ HS_5(Y) for ¢ > 2. We obviously have H,(U, X —U) = 0 for 0<g<1. Therefore the homology
exact sequence (1.1) is rewritten as follows:

(1.2) S HE(X = V) 5 Hy(X) S5 Hy (V) 225 HE (X =) > -

where
(i) the map ¢, : Hg(X — U) — Hy(X) is the one induced by the natural inclusion map ¢ : X -V — X,

(ii) the map G, : Hy(X) — H,—2(Y) is the one which assignes each g-cycle on M to its intersection cycle
with Y, and

(iii) the map 7, o : Hy2(Y) — Hg_;(X — U) is the one which assighns each (¢ — 2) cycle on Y, say v, to
the cycle OU|, on X — Y, the restriction of OU over +.

In the subsequence we denote the cycle 9U), in (iii) above by 7(v). Taking the cohomology exact sequence
dual to (1.2), we have
(1.3) S HIX V) LS X)) E gy A gl —y) -
Here the map G972 : H972(Y) — H9(X) is the so-called Gysin map. We are now going to describe the
Gysin map G972 by use of differential forms. We take a sufficiently fine, finite open covering U = {U; }ics
of X such that, in each open subset U;, Y is defined by a holomorphic equation o; = 0. We put t;; = 0;/0;

for each pair of indexes (i, j) with U; NU; # 0. Then the system of transition functions, with respect to the
covering U, of the line bundle [Y] associated to Y are given by {¢;;}, and o = {o;} give rise to a cross-section



of [Y] whose zero locus is Y. We take a system {a;} of real positive functions a; of class C*° defined in Uj,

respectively, satisfying
a; .
J:|tij|2, mn UiﬂU]’#@.
aj
The system {a;} defines a fiber metric on the line bundle [Y]. The length function |o| of the cross-section

o = {o0;} of [Y] with respect to this fiber metric is given by
lo| = +Voia;o;
= loilvai
in each U;. Note that |o|? is a globally defined real non-negative function of class C°°. We define

1
= —01 2
7 59108 o],

_ 1 —
w o= 8n:%8810g|0|2.

On each U;, n and w are written as

1
n = Q—M_(dlogm + dloga;),

1 —
w = ——00dloga,.
2mi

Note that w is a globally defined closed C*° form of type (1,1) on X, representing the first Chern class
c1([Y]) of the line bundle [Y]. We denote by A*(X), A*(X —Y) and A*(Y) the De Rham complexes of
C-valued, C'*° differential forms on X, X —Y and Y, respectively.

Definition 1.2. A*(logY) is defined to be the sub-complex of A*(X —Y') generated by A*(X) and 7.

A form ¢ € A*(logY) may be (non-uniquely) written as

(1.4) p=aAn+p

where o, 8 € A*(V). The restriction a)y € A*(Y) is, however, not anbiguous. Hence we may define
R*: A*(logY) — A*~Y(Y) by

(1.5) R*(p) := 27r\/—71a|y,

which we call Résidue map. Let W* C A*(logY’) be the kernel of R*. There is an obvious inclusion

L
A* (X)W

Proposition 1.6. The inclusion v induces isomorphisms on d and O cohomologys.

For the proof we refer to ([9]), p.49~p.50.

Proposition 1.7. The Gysin map G9=2 : H=2(Y,C) — H%(X,C) is described using differential forms as
follows: For a € A72(Y), choose & € A (X)) with &yy = a and set

) =d@nn) =daAnpAn+ (-1)" @ Aw.

If a is a closed form (resp. deived from), then () is a closed form (resp. derived form) in W9. Furthermore
() is independent of the choice of & modulo derived form in W. Hence, by virtue of Proposition 1.7, the
correspondence [a] — [y(a)] defines a map

H*(Y,C) ~ H*(A*(X)) — H(X,C) ~ H(W"),

which coincides, up to a factor of +1, with the Gysin map G.



Proof. By the definition of W%st, y(a) € W¢st. It is obvious that if « is a closed form, then y(a) is also
closed in W9, Assume « is wriiten as d3 = a for § € A973(Y). We choose 3 € A973(X) with By = B and
set

§=(a—dB)An+ (1) *B Adn.

Then ¢ € W91 and

d¢ = dann+(—1)7"2%(a—dB) ANdn+ (=1)72dB A dp
= daAn+(=1)72aNdny
= (o)

Thus () is a derived form in W*.

The fact that v(«) is independent of the choice of @ modulo derived forms in W* is almost trivial. In fact, if
&' is another form in A972(X) with d[y = o, then (@—a")An € W 1(X) and d((a—a')An) = daAn—déa' An,
which shows () is uniquely determined up to derivede forms in W*. we wre now going to show that the
correspondence [a] — [y(«)] coincides with the Gysin map G. To do this it suufices to show that for any
g-cycle ¢, on X, the integral fr v(a) converges and

(1.6) / (@) :i/cq.ya

q

holds, where I' - Y denotes the intersection cycle of I' with Y. We may assume that c, intersects Y normally
in a (g —2) cycle ¢q—2 with respect to some given hermitian metric on X. For a sufficiently small positive ¢,
we take a e-tube with axis ¢,—2, and lying in ¢;, normally,

TE(Cq_Q) = { pE Cq | dX(pa Cq_z)g(': }

where dx( , ) denotes the distance function on X defined by the given hermitian metric. We give natural
orientationto T (c4—2). Then,

lim ~v(a) = lim dlaAn)
e=0 cq—Te(cq-2) &0 cq—Te(cq—2)
(1.7)
= lim ann (by Stokes’s Theorem)
e=0JaT. (cq-2)
Using local coordinates (21,- - , Zn, 2n+1) on X such that Y is defined by z,4+1 =0, @ An and 0T, (cq—2) are

locally written as

1 d
anny = —an Lont1 (regular form)
211 Zn+1
ﬂ:aTE(Cq_Q) = Cq-2 X { Zn+1 € C ‘ |Zn+1| =€ }

(with natural orientation)
Hence,

/ ann= j:/ a —|—/ (regular form),
OT:(cq—2) Cq—2 OT:(cq—2)

and since lim._,q fBT (c _2)(regularform) =0,

(1.8) / dAn:i/ a
OT:(cq—2) Cq—2

q—

From (1.7) and (1.8) it follows that the integral fcq ~v(a) converges and the equality in (1.6) holds as requied.
O



Proposition 1.8. We have the following commutative diagram:

(1.9) H1(Y,C) & R (x,0)

|
L/

HT2(Y,C)

where L' denotes the Hodge operator on H*(Y,C) associated to the fundamental form on'Y, the restriction
Qyy of the fundamental form Q to'Y.

Proof. We first show that the commutativity of the upper triangle. Let a be a closed C*° g-form on X. We
denote by [a] € HI(X, C) its cohomology class. Then,
(GTort)([al) = [dlaAn)]
= [daAnn+ (=1)%a Adn]
= [dnpAaq].

Now, we recall that w := dn is a closed (1.1)-form which represents the first Chern class of the line bundle
[Y]. Hence, w is cohomologus to 2 in H?(X,C). From this it follows that

[dn A o] =[QAa] = L([a]).
Thus (Gor*)([a]) = L([a]) as required. Similarly, the commutativity of the lower triangle can be proved. O

We now return to the long exact sequence of cohomology (1.3). By Theorem 1.1, Theorem 1.2, Theorem
1.3, Proposition 1.8 and Grothendieck’s theorem in [12] which tells us (among other things) that H4(X —
Y,C) =0 for ¢ > n+ 2, we can easily see that the long exact sequence of cohomology (1.3) breaks down into
the short exact sequences as follows:

(1.10) 0— HYX,C) X5 HIX —Y,C) —» 0  for 0<q<l,
(1.11) 0— H2(Y,C) &5 HU(X,C) "L HYX —V,C) -0 for 2<q<n,

(112)  0— H"'(v,C) &5 mx,c) o gy (x -y, ©) B gy, 0) €5 B (X, C) - o,

(1.13) 0— HYY,C) <5 H9*2(X,C) » 0 for n+ l<q<2n.

We now define the notions of primitive cycles and finite cycles on X with respect to the prime section
Y.

Definition 1.3. A g-cycle ¢, on X is defined to be primitive if its intersection cycle ¢, - Y with Y is zero in
H,_2(Y,C). A g-cycle ¢, on X is defined to be finite if its support is contained is contained in X — Y.

We call homology classes of primitive cycles primitive homology classes and those of finite cycles finite
homology calsses. We denote the subspace of primitive (resp. finite) g-homology classes by Hy(X,C)q (resp.
H,(X,C)ys) and call it the primitive g-homology group of(resp. finite g-homology groups of X. Then by the
definitions,

Hy(X,C)g = Ker{ Hy(X,C) L H, »(v,C)}

Hy(X,C)y = Im{ Hy(X —Y,C) = Hy(X,C) }.



Proposition 1.9. Primitive q-cycles possibly exist on X only for q with 0<g<n +1, and
H,(X,C)o=H,(X,C)y for 0<g<n + 1.

Proof. From the homology sequences dual to the cohomology sequences in (1.10) through (1.12) the assertion
easily follows. O

To state about the relation between primitive cohomology and homology groups, we introduce the nota-
tion for a subspace S of H1(X,C) (resp. Hy(X,C)) as follows:

Ann(S) :=={ [a] € Hy(X,C) | | < [w],[a] >=0 for any [w] € S },

where < , > denotes the pairing between cohomology and homology. We call this the annihilator subspace
of Hy(X,C) by the subspace S.

Proposition 1.10.
(ii) Hy(X,C) ~ Hy(X,C)o ® Ann(Hy(X,Co) (2<g<n+1)

Proof. The assertion (i) follows from the definition of primitive homology. We will now prove the assertion
(ii). By (i) of 1.3 and Proposition 1.9, G4=2H972(X,C) = LH?%(X,C). Hence, by (ii) of Theorem 1.3,

(1.14) H7%(X,C) ~GI?H"%(Y,C) ® HY(X,C),
Therefore, by duality
(1.15) H,(X,C) ~ Ann(G972H?2(Y,C)) @ Ann(H?%(X,C)y).

By considering the paring between the exact sequences of cohomology (1.10), (1.11) and their dual exact
sequences of homology,

(1.16) Ann(GI2HT(Y,C) ~ 1. Hy, (X —Y,C) = H,(X,C);

From (1.15), (1.16) and Proposition 1.11 follows the assertion (ii). O

Proposition 1.11. For 0<g<n+1,r?: H1(X,C) — HY(X —Y,C) is injective on the subspace H1(X,C)g
and

HY(X,C) ~ r"HY(X,C) — HY(X —Y,C).

Proof. By the exactness of the cohomology sequences (1.11) and (??), Im G = ker r*. Hence the assertion
follows from (1.14). O

Definition 1.4. Cycles with compact support in X — Y is defined to be résidue cycle if they bounds in X.
We call their homology classes résidue homology classes.

We denote the subspace of Hi(X — Y, C) comprising résidue homology classes by HJ(X —Y,C),¢s. By
the definition,
Hi(X —Y,C)pes = Ker { H)(X —Y,C) = H,(X,C) }.

Actually, Hf(X —Y,C)¢s # 0 only for ¢ =n + 1 and
(1.17) H (X =Y,C)res = o Hp (Y, C)
because of the exact homology sequence (1.2) which is dual to (1.3).

Proposition 1.12.
"L H (X, C) = Ann(HE (X — Y, C)res).



Proof. By considering the paring between the cohomology exact sequence (??) and its dual homology se-
quence, we have
" H" Y (X, C) = Ann(1,, H, (Y, C)).

Hence the assertion follows from (1.17). O

We denote by H4(X,C)o the primitive cohomology group with respect to the Hodge operator L' on Y
which is associated to {2}y, the restriction of the fundamental form € on X. We are now going to discuss
the primitive cohomology and homology of Y. For use later we wish to make clear the relation between
the image of the map R"*! : H"*1(X —Y,C) — H"(Y,C)) in the exact sequence (??) and the primitive
cohomology group H"(Y,C)g. The result is as follows:

Lemma 1.13. The restriction map v : H"(X,C) — H"(Y,C), which is injective by the Weak Lefshetz
Thorem, give rise to an isomorphism from H™(Y,C)qy into H*(Y,C)y and

r*"(H"(X,C))NnH™(Y,C)g = r"(H™(X,C)o)

Proof. By the definition of primitive cohomology, the isomorphism in (1.13) for n + 2, and 1.3, (ii), we have
the following commutative diagram of exact sequences:

0

I
(1.18) 0 —— H"(X,C)y —— H™(X,C) SEECAEN H"(X,C)
o e

0 —— H™Y,C)y —— H™Y,C) —=— H"2(y,C)

From this we infer that r"(H"(Y,C))o — H"(Y,C), and T‘”H"(Y,(C)D(Hn(}/’ C)o — H™(Y,C) is an isomor-
phism into. To show the latter part, we consider the following Lefshetz decompositions of H"(Y,C) and
H™(Y,C):

(1.19) H"(X,C) = H"(X,C)y® LH" (X, C),

(1.20) H"(Y,C) = H"(Y,C)o © L'H" (Y, C).

Note that, since 7"~2 : H" 2(X,C) — H"2(Y,C) is an isomorphism by the Weak Lefshetz Theorem,
" H"(X,C) — H™(Y,C) maps LH" 2(X,C) onto L' H"~2(X, C) isomorphically. The inclusion

(1.21) r"H™(X,C)o — r"H™(X,C) N H"(Y,C),

is obvious, since r"H"(X,C)y — H"(Y,C)o as has been proved just above. We will prove the reverse

inclusion. Given x € r"H™(X,C) N H™(Y,C)y, there exists a y € H"(X,C) with r"(y) = x. We write y

as y = y1 + yo where y; € H"(X, )0 and yo € LH" 2(X,C). Then z = r"(y) = r"(y1) + r"(y2), and
r(y1) € H™(Y,C)g, ri(y2) € L'H"2(Y,C)o. Hence

@ —1"(y1) =r"(y2) € H"(Y,C)o N L'H"*(Y,C)o =

Thus 7" (y) = 0, from which y, = 0 follows since 7™ maps LH"?(X,C) onto L' H"~2(Y, C) isomorphically.
Hence z = r™(y1). This shows that

(1.22) P H™(X,C) N H™(Y,C)o — r"H"(X,C)o
By (1.21) and (1.22), r"H™(X,C) N H™(Y,C)o = r"H™(X, C)( as required. O



Lemma 1.14. There is an exact sequence

(1.23) 0 — LH™(X,C)y — H"2(X,C) Z0 H'™#2(Y,C) — 0.

Proof. To see the surjectivity of ry , 5, we consider the following commutative diagram:

n+2

H™2(X,C) — H™2(Y,C)

o
H™(X,C) e H"2(Y,C) +—— 0

the commutativity of which follows from the description of the Gysin map G™ 2 using differential forms
(1.8). From this diagram the surjectivity of r"*2 follows, since L'? is an isomorphism (Hard Lefshetz for V).
The injectivity of L : H*(X,C)y — H"*2(X,C) follows from the fact that L : H"(X,C)y — H""%(X,C) is
an isomorphism (Hard Lefshetz for X).

To prove the exactness at the term H""2(X,C), we consider the following commutative diagram:

0 0

! l

H”(X, (C)O inclusion Hn (X (C)o H’H‘z(
(1'24) (Lemma 1.13)lr" lrn l i3

0 —— H"(Y,C)g —— H"(Y,C) L, H""2(Y,C) —— 0 (exact)

l

C)

By this diagram we can easily see LH"(X,C)g C Ker r™. We will prove the converse inclusion by casing
the diagram (1.24). Given z € Ker ", there exists a y € H"(X,C) with L(y) = z. Then L'(r"(y)) =
r"t2(L(y)) = r"*2(x) = 0, hence 7" (y) € T H"(X,C)NH"(X,C)y. We should now recall that r" H™(X,C)N
H"(Y,C)o =r"H"(X,C)p (Lemma 1.13) and r™ is injective. This impliesy € H™(X, C)o, that is, x = L(y) €
LH"(X,C)g, which means Ker r™ C LH"(X,C)y. Consequently, we conclude Ker ™ = LH"(X,C), as
requied. O

Theorem 1.15.
H"(Y,C)g = R"™Y(H" (X —Y,C) @ r"(H™(X,C)p)

Proof. Let us consider the Lefshetz decompositions of H"(Y,C)q and H""2(X,C):

H™(Y,C) = H"(Y,C)o® L'H"*(Y,C)
H""?(X,C) = LH"(X,C)o ® L*H"%(X, C).

Claim: Concerning the Gysin map G" : H"(Y,C) — H""2(X,C), we have

(a) G*(L'H"2(Y,C) C L?H""%(X,C) G™ maps L’H"2(Y,C) onto
L?H"~2(X,C) isomorphically,

(b) G*(H™(Y,C)o) = LH"(X,C)y, and
(c¢) Ker G Cc H™(Y,C)y.



Proof of (a): By Proposition 1.9, we have the following commutative diagram:

H"2(X,C)
n—2 l L
T ~

n—2
2 (v, 0 — (X, C)

X‘ i’"nGnX\

H™(Y,C) H"2(X,C)

where r"~2 : H" %(X,C) — H" 2(Y,C) is an isomorphism by the Weak Lefshetz Theorem. From this dia-
gram G"(L'H"2(Y,C) C L?H"%(X, C) follows. The fact that G™ maps L' H"~%(Y,C) onto L2H"~%(X,C)
isomorphically is proved as follows: Since L : H"~2(X,C) — H"(X,C) is injective, and since L : H"(X,C) —
H"t2(X,C) is an isomorphism (Hard Lefshetz Theorem), L? : H" ?(X,C) — L?H"*%(X,C) is an isomor-
phism. Besides, since L' : H"=2(Y,C) — H"(Y,C) is injective, L' : H"72(Y,C) — L'H"~2(Y,C) is also an
isomorphism. Therefore, taking into account that »"=2 : H"2(X,C) — H" 2(Y,C) is an isomorphism, we
conclude that the Gysin map G™ maps L'H"2(Y, C) onto L2H"~2(X,C) isomorphically.

Proof of (b): Combining (1.9) for ¢ = n, Proposition 1.9, (1.23) and (1.13), we have the following
commutative diagram:

(exact)
0

e

L
0—H"(Y,C)g —=H"(Y,C) —H"*2(Y,C) —0 (exact)

jor

H"+2(X,C)

LH"(X,C), 0

e

0

From this it follows
G"(H"(Y,C)o) C Ker 1y, o = LH"(X,C)g

Actually, they coincides with each other, since G™ is surjective and (a) holds.

Proof of (¢): Let x € Ker G™. We write it as * = 1 + x9, where 1 € H"(Y,C)y and xy €
L'H"%(Y,C)p. Then G"(z) = G"(x1) + G"(z2) = 0, and by (a) and (b), G"(x1) € LH"(X,C)g and
G"(z2) € L?H"2(X,C)o. Hence G"(z2) = —G"(z1) € LH"(X,C)o N L2H"2(X,C)y = 0. Thus
G"(z2) = 0, whence x5 = 0. This is because G™ maps L'H"?(Y,C) onto L2H"~%(Y,C) isomorphically.
Therefore x = 21 € H"(Y, C)g, which means Ker G™ C H"(Y,C)o.

q.e.d. for the Claim.

Now we can easily deduce the Proposition. In fact, by Lemma 1.13 and the claim (a), (b) (c) above, we
have the following commutative diagram:



0

|

Ker G™

.

LR lGn
LH"(Y,C)o
0,

which implies

Hn(Y, (C)() ~ Ker G" @ ’l"n(Hn(X, (C)()).
Here, recall that Ker G™ = I'm R™™! by (1.12), then we are done. O

We wish to identify the subspace of H"(Y,C)y which is dual to Im R"*!. For this puopose we need to
introduce the following notion.

Definition 1.5. Cycles in Y is defined to be vanishing cycles with respect to X if they bound in X. We
call their homology classes vanishing homology classes.

We denote the subspace H,(Y,C) comprising vanishing homology classes by H,(Y,C),. Note that
H,(Y,C), may not be zero only if ¢ = n.

Proposition 1.16. H,(Y,C), is included in H,(Y,C)y and
H,(Y,C) = H,(Y,C), @ Ann(Im R™*1)

or, equivalently
Hy,(Y,C)o = H,(Y,C), ® [Ann(Im R") N H, (Y, C)o]
Proof. By virture of Theorem 1.15, it suffices to show that
H,(Y,C)o N Ann(r"H"™(X,C)o) = H,(Y,C),.
The inclusion H,(Y,C), C Ann(r"H"(X,C)p) is trivial. To see that H,(Y,C), C H,(Y,C)y, consider the
following diagram:

H,(v,C) -2 H, ,(z.C),

(1.25) nl gl -

Hn(X7(C) T n72(Yv (C)vv
where Z is the intersection of a generic member |Y| (linear sysytem of effective divisors which are linearly
equivalent to Y') with Y, which is a non-singular, irreducible hypersurface of Y and for which ¢;([Z]) ~ Q}y
(cohomologous), where (™ (resp. ¢"~2) is the homomorphism induced by the inclusion map ¢ : ¥ < X
(resp. ¢ : Z — Y, and where -[Z] (resp. [Y]) is the map which assignes each n-cycle in Y (resp. X)
to its intersection cycle with Z (resp. Y). By the diagram (1.25), H,(Y,C), — Ker (-[Z]). Meanwhile,
Ker (-[Z]) = H,(Y,C)o by definition. Thus we have H,(Y,C), — H,(Y,C),. Hence

(1.26) H,(Y,C), — H,(Y,C)o N Ann(r"H"(X,C)y).

Next we will prove the converse inclusion. It suffices to show that if [y] € H,(Y,C)o N Ann(r"H" (X, C)y),
then f7 w =0 for any [w] € H"(X,C). To see this, we use the Lefshetz decomposition

H™(X,C)=H"(Y,C)o® LH" ?(X,C).



Assume [y] € H,(Y,C)o N Ann(r"H"(X,C)g). Then fvw = 0 for any [w] € H"(X,C)p, and for any
QAW] e LH?(X,C) (v'] € H"%(X,C),

/Q/\w’:/ Ww'=0
v [vY]

since [y - Y] = 0 by the assumption. Thus fvw = 0 for any [w] € H"(X,C) if [y] € H,(Y,C)o N
Ann(r"H™(X,C)p). This implies

(1.27) H,(Y,C), «— H,(Y,C)g N Ann(r"H" (X, C)o)

By (1.26) and (1.27), H,(Y,C), = H,(Y,C)o N Ann(r"H"(X,C)o) as requied. O

2 Rational De Rham groups of an algebraic manifold and Integrals
of the second kind on it

As in §1 we let X be a non-singular irreducible algebraic variety of dimension n + 1 embedded in a higher
dimensional complex projecyive space P¥(C) and Y a generic hyperplane section of X. By a meromorphic
q-form on X we shall mean an exterior differential form w of degree ¢, which has the form

w = ZfiliQ'“iqdzil A dZi2 VARERIVAN dzl-q

where (21, ,2p41) 18 a complex analytic local coordinate system on X and filiz...iq’ s are meromorphic
functions of the variables (21, -, z,41). We denote by Q% (kY') the sheaf of germs of meromorphic g-forms
having poles of order k (at most) along Y as their only sngularities. The direct limit of the sheaves Q% (kY
a k — oo we denote by Q% (xY). It is just the sheaf of germs of meromorphic ¢g-forms with poles of arbitrary
order along Y. We put Q' (xY) := > Q% (+Y"), which forms a complex of sheaves with respect to the exterior
derivative d. We define

U(kY) == Ker { QL(kY) L QU (k+1)Y) }

and call it the sheaf of germs of closed meromorphic q-forms having poles of order k (at most) along Y as
their only singularities. We define the sheaf Q% (log Y') to be the subsheaf of Q% (xY") consisting of the germs
of such local meromorphic ¢g-forms that both of fw and df A w are holomorphic if f is a local holomorphic
defining equation of Y. If g = 0 is another defining equation of Y, then g = uf where u is a non-vanishing
local holomorphic function and the relation gw = ufw, dg Aw = udf Aw + fdu A w shows that Q% (logY)
is well-defined. We call the sheaf of germs of meromorphic g-forms having logarithmic poles (at most) along
Y as thier only singularities. The reason for this naming is that a meromorphic ¢-form w (¢ > 1) has
logarithmic poles (at most) along Y as its only singularities if and only if w is locally written as

w=<pA%+w,

where ¢, ¥ are holomorphic forms and f = 0 is a local holomorphic equation of Y. The following lemma is
fundametal for calculations in the subsequel.

Lemma 2.1.

i) The following sheaf sequences are exact:

(i)

() 0— @ ((k—1)Y) = Q¢ ((h—1)Y) S dI(kY) -0 (¢>2,k>2)
() 0= @THY) = Q% (logY) S @U(Y) =0 (q>2)

(i1) There exist naturally the following exact sequences of sheaves:

@) 0—-Cx—O0(k—1)Y)L oY) S Cy—0 (k>1)

(@) 0—04(Y) = Q%(ogY) 5 OF(Y) 50 (¢21)

(e) 0— @4 —e%L(Y) Lol 0 (¢>1)



Proof. We take a local coordinate system (z1,- -+ ,2,,w) on X such that Y is defined by w = 0. First, we
prove for all pairs of integers (¢, k) with ¢ > 1, k > 1 that if ¢ is a local holomorphic section of the sfeaf
®I(kY), then ¢ is written as

AN dw B
2.1 =
(2.1) ¥ wk wh—1
where A, B are holomorphic and involve only dz1, - - - ,dz,. In fact, as to such ¢, since w*¢ is holomorphic,
we may write
ANdw B
T TR Tk

where A, B’ are holomorphic and do not involve dw. Since ¢ is closed,

dANdw  dB’ dw A\ B’
so that B := B’/w is holomorphic. Hence we have locally the expression in (2.1) as required. Now we

prove the exactness of (i)-(a) and (i)-(b). For a local holomorphic section ¢ of ®4(kY) (¢ > 1, k > 2 and
q > 2, k=1), we take such an expression as in (2.1). If k > 2, letting v; = —(1/(k — 1))(A/w*™1), ¢ — dip
is a local section of ®9(k — 1). Repeating this argument, we may find a local section ¢ of Q% ' ((k — 1)Y)
such that ¢ — di is a section of ®% (V). Thus

d
o—dp=ErNY 4R
w
where E, F' are holomorphic and involve only dz; - -+ ,dz,. We express F as follows:
E = Ey(2) + wE1(2z,w)

where Ey(z) does not involve w. Then,
d
(p—dd):Eo(Z)/\Iw+F0

where Fy = Ey + F. Since d(Edw/w + F) = 0, d,Eo(z)dw/w + dFy = 0. Hence d,FEy(z)dw + wdFy = 0.
From this it follows that d,Ey(z) = 0, dFy = 0. Therefore, there exist D(z) and G such that d,D = Ey and

dG = Fy, and so
d d
dDY +G)=E A Y 4 R,
w w

Hence,
dw
(2.2) <p:d(@/1+D/\;+G)7

namely, ¢ is a derived form. This shows the exactness of the sequence (i)-(a). If £ = 1, then ¢ does not
appear in the expression of ¢ in (2.2). This shows the exactness of (i)-(b).

Next we prove the exactness of the sequence (ii)-(c). If ¢ is a local section ®1(Y'), then it is written as

d
p=ANA Ry ,
w
where A is a holomorphic function and B is a holomorphic 1-form, involving only dzq - - ,dz, (cf. (2.1)).

Writting A as
A(Za w) = AO(Z) + wAl(Zv U)),

where Ay(z) is a function of z1,--- , z,, we have

d
@ZAO(Z)/\%‘FBm



where By = A;(z, w)dw + B. Since

A
d<p= dz 0(2 A dw

+dBy = 0,

we have
d,Ao(z)dw +w dBy = 0,

Hence d,Ao(z) = dBy = 0. From these it follows that Ay (%) is constant and By = dC for some holomorphic
function C'(z,w). Thus ¢ is written as

d
o=A0n Y 1 4o,
w

This means ®%(Y)/dQ% is locally a constant sheaf. At each point y € Y, we take [(1/2mi)dw/w],, the class
of (% (Y)/dQ%), determined by (1/27i)dw/w, as a generator of (¥ (V)/dQ%),. We can easily see that
the class [(1/2mi)dw/w], is uniquely determined, not depending on the choice of a local defining equation of
Y. We denote by a,, : (24 (Y)/dQ2% ), — Cy, defined by

L du

— 1
21w L Yoy

at each point y € Y, which gives rise to a well-defined sheaf homomorphism « : (V) /dQ% — Cy as easily
seen. The surjectivity of the map « and that the kernel of the homomorphism d : Q% — ®% (V) coincides
with Cy is obvious. The sheaf homomorphism R? : Q% (logY) — Qg,_l, which we call Résidues map is
defined as follows (resp. R : ®% (V) — ®%'): A local cross-section ¢ of the sheaf Q% (log V) (resp. ®% (Y))
is written as

dw

w
where ¢ is a holomorphic (¢ — 1)-form and ¥ is a holomorphic g-form, involving only dz1,- - , dz,. For such
w, we define R(w) := ¢|y. We can easily seen that this map is well-deined and the sequences (c) and (d) are
exact. Thus we are done. O

Notation. We denote by Q' ((ko +-)Y) (ko: a non-negative integer), 2y (logY) and L'(Y') the complexes of
sheaves of C-modules described as follows:

Qx ((ko +)Y) : Q% (koY) — Qx (ko + 1)Y) — -+ Q% (ko + p)Y) —
ce— Q?(((k‘o + n)Y),

Qy(logY): Ox — Q% (logY) — -+ — Q% (logV) — -+ — Q% (log V),

L(Y): Q% — oL (Y).

Proposition 2.2. The natural homomorphisms of the complexes of sheaves of C-vector spaces
L(Y)— Qx(ogY) — Qyx((ko +)Y) — Qx (xY)

give rise to quasi-isomorphisms among them, and so all of the hypercohomology of these are isomorphic to
HP(X -Y,C).

Proof. The former part of the proposition follows directly from Lemma 2.1. The latter part is proved as
follows: What we shall prove is that HP(X,Qx(logY)) ~ HP(X —Y,C) (p > 0). To do this we form a fine
resolution of Qy (logY), using semi-meromorphic forms which have poles only on Y. Here, after J. Leray
([18]), we call a C'*°-differential form ¢ on X — Y semi-meromorphic form on X, having poles of order k
(at most) along Y if w*y is locally a C> regular differential form at every point of Y, where w = 0 is a
local defining equation of Y. Similarly, as in the case of meromorphic forms, semi-meromorphic forms having
logarithmic poles on Y is defined. We denote by 2%?(logY") the sheaf of germs of semi-meromorphic forms
of type (p,q), having logarithmic poles on Y. Using these sheves, we obtain a fine resolution of Qx (logY)
as follows:



T !

0,1 1,1
A Ay logY) T X (logY)

Tgo,o Tgl,o ng,o FrtLo

0.0 1.0 2,0 gm0

A —— A (logY) —F— A (log¥) —— - A (logY)

I I I I

Ox —% QL (logY) 4, Q% (logY)

I I I I

o211 gml

(2.3)

where 25?7 denotes the sheave of germs of C* differential forms of type (p,¢) on X. We put

A(logY) = T(X,A%'(logY)) (p=0, ¢=0),
Ak (logY) = @®piq—xAR(logY), dP9:= 8P+ (=1)?8"? and
Ay(logY) = @ Oprger AR (logY),  d* = @pygrd”?.

Then (A (logY'),d) forms a complex of C-vector spaces and
HP(X, Qx (log V) = H? (Ax (log V) (p > 0).
By Lemma 2.1,(d), we have the exact sequence of complexes of sheaves of C-vector spaces:
(2.4) 0— Qy — Qy(logY) L 0y [—1] — 0.
From this the following long exact sequence of hypercohomology is derived:
(2.5) — HP(Qx) — HP(Qx (logY)) — HP~H(Qy ) — HPFH(Qx) — -+

Letting Ay and Aj- be the complexes of C-vector spaces of global C*° differential forms on X and Y,
respectively, we have HP(Q ) >~ HP(A) and HP(Q; ) >~ HP(A ). Hence the sequence (2.5) is rewritten as:

(2.6) S HP(Ay) D HP (A (log Y)) B B (Ay) CL (A -
We claim that this is the dual of the homology sequence
(2.7) — Hy(X,C) <~ H{(X ~Y,C) 20 H,(V,€) 2 H, 1 (X,C) -

(cf. (1.3). In fact, since Ay (logY’) is a subcomplex of Ay, which is the complex of C-vector spaces of
global C'*° differential forms on X —Y ', we can define parings by integrations between the terms corresponding
to each other in (2.6) and (2.7). Furthermore, these pairings commute with the homomorphisms in (2.6)
and (2.7), since we can easily see A (logY) is the same one as defined in Definition 1.2 and the map
RP : HP(Ax(logY)) — HP71(Ai ) is the Résidue map defined just after Definition 1.2, and since GP~1 :
HP7Y(Ay-) — HP(Ay) is the Gysin map whose description by use of differential forms has been given
in Proposition 1.7. Therefore, by Five Lemma, we conclude that the paring between H” (A (logY")) and
HP?(X —Y,C) is non-degenerated. Hence H? (A (logY)) ~ HP(X —Y,C). O



Definition 2.1. We define
IP(X,+Y) == (X, ®% (xY)) /dD(X, Q% (+Y))

and
IP(X,kY) :=T(X, 9% (kY))/d(X, Qg{l((k - 1HY)).

We call them the p-th Y -rational De Rham group of X and p-th xY -rational De Rham group of X with pole
order k , respectively.

Then, by Proposition 2.2, we have the following;:

Proposition 2.3. Let kg be a positive integer such that
HP(X, Q% ((ho +@)Y)) =0 for p>1,q=0,

then,
I"(X,(ko+p)Y) ~IP(X,«Y) ~ HP(X - Y,C) for p>0.

Remark 2.1. The result in the propoition above is a special case of the theorem of Grothendieck (cf. [12]).

Now we are going to expalin the notion of closed meromorphic forms of the second kind, having poles
only along Y. There are the following three different definitions for this:

Definition 2.2. A cosed meromorphic g-form ¢ is of the second kind if

(A) (Picard-Lefshetz definition) at any point x of X, there exists a meromorphic ¢ — 1 form on X such that
¢ — dw is holomorphic in a neighborhood of z,

(B) (Geometric Résidue definition) it has no periods on résidue cycles (cf. Definition 1.4) of X — Y, if Y is
sufficiently large subvariety (depending on ¢),

(C) Hodge and Atiyah’s algebaric definition, using spectral sequences associated to the complex of sheaves
of C-vector spaces Q' (xY") (or Q' ((ko +-)Y).

We shall explain the last Hodge and Atiyah’s definition ([16]) more precisely by use of the fine resolution
Ay (xY) of Qy (xY'), where A (xY") denotes the double complex of C-vector spaces comprising 257 (xY"), the
sheaf of germs of semi-meromorphic forms of type (p, ¢) on X, having poles only along Y. In the same manner
as for AR (log V), we define A57(xY) and A% (xY). We form the complex of C-vector spaces (Ay (xY),d)
for 2% (x*Y). Then we have

IP(X,4Y) = BP(X, Qy (+Y)) = HP (A (+))  (p>0).
under these isomorphisms, we identify I?(X,*Y") with HP (A (xY")) in the following. We set
"FPAY (+Y) 1= @ AR (+Y),

then {"F*};>¢ give a finite decreasing filtration to Ay (xY) and Ay (xY) becomes a filtered complex of
C-vector spaces. We define

ID(X,*xY) == Im {HP("F*(Ax (xY))) — HP(Ax (xY)) =~ IP(X,*Y) }
then we have a filtration on I?(X, xY):

IP(X,+Y) = ID(X,*Y) D IP(X,*Y) D - IB(X,+Y) D 7, (X, +Y) = {0}.

Hodge and Atiyah have defined that a closed meromorphic p-form ¢, having poles only along Y, is of the
second kind if its cohomology class [¢] € IP(X,*Y) belongs to the subspace IP(X,*Y), i.e., it has the
maximum filtration, and they have proved that the definitions (B) and (C) are equivalent in general. They
have also proved that the definition (A) is equivalent to other definitions if Y is a prime section of X.



Notation. We put
IP(X, %Y )o = ID(X,*Y)

Then we have:
Theorem 2.4.
(i) IP(X,«Y)g = rPHP(X,C) ~ HP(X,C)y (1<p<n+1),
where rP : HP(X,C) — HP(X —Y,C) is the map induced by restricting closed forms on X to X =Y,
(i) IP(X,*Y)o = IP(X,+Y) 1l<p<n,

n—1
(iii) I"(X,*Y)/I"(X,*Y ) ~ Ker { H" (Y, C)g o, H"2(X,C) },
where G"~1 denotes the Gysin map.

Proof. Replacing H*(Ax (logY)) by I*(X,*Y) in the exact sequence (2.6), we obtain the exact sequence

prA N T g RP prp—10 4.\ GP71 prpaig g
(2.8) — HP(Ax) — I"(X,+Y) — H" " (Ay) —— H"" (Ax) — -+,
which is dual to the homology sequence in (2.7). By the Résidue definition of the second kind, we have
IP(X, *Y)O = Ann(Rp—l(Hp—l(Ya (C)))’

where the right hand side above denotes the annihilator subspace of I?(X, *Y) by R,_1(Hp_1(Y,C)) through
the paring defined by integration between IP(X,*Y) and Hy(X —Y,C). By the duality between (2.8) and
(2.7),

Ann(Ry 1 (Hy (Y, ©))) = P HP(A) ~ 1" H?(X, C),
By Proposition 1.11, r?HP(X,C) ~ HP(X,C)y. Thus we have proved (i). By (i), (ii) follows from that
r?: HY(X,C) - H1(X —Y,C) is surjective for 0<g<n (cf. (1.10) and (1.11)). By the duality between (2.8)
and (2.7), (iii) is trivial if we note that RP(IP(X,*Y)) C HP~1(X —Y,C)o (Theorem 1.15). O

Remark 2.2. As in the case of Ay (*Y), we define a finite decreasing filtration {”F*};>¢ on the complex
A (logY’) by
"FEA(logY) := @ysr A (logY)

Then, as is well known in the homological algebra, there arises a spectral sequence from the filtered
complex (A (logY), F"') as follows:

EYY = HY(X,H!(Qx(logY))) = ELI = Grh.,, HPT4(X,Qy (logY)) = Grh.,, IPTY(X, xY),

where H?((logY)) (g > 0) are the cohomology sheaves of the complex of sheaves Q (logY). From

Lemma 2.1 it follows
HP(X,C) ¢=0

EpT =1 HP(X,C) =1
0 otherwise
Hence we have
EPP1 = Efffq = - =E2P = Grp/IP(X,xY) =0

(2.9)
for q #p,p—1, and r > 2

This amounts to

IP(X,+Y) = I0(X,«Y) = (X,+Y) = = I;;_l(X7 xY),
namely, the filtration of I7(X, *Y) induced by {"F*};>¢ of A (logY) is given by a single subspace ID(X, +Y).
From this we can derive the following exact sequence (cf. [7] Chapitre I, Théoreme 4.6.2, p.85):

p—1
ds WP

RN Eg—Qvl Eg:o v .

(2.10) ﬁl Zl

—_ HP_Q(Y,C) — HP(X,C) —— ---



P v _ dP
v EP _J E? L %

T

— IP(X,%Y) —— HP"LY,C) —— -,

where the maps appeared in this exact sequence are described as follows:
(i) d5~" and d5 - - - are the differentials of the second term {E%?} of the spectral sequence,
(ii) Since
EX = Ker {B2° % BIErA=r}/Im {BE77 1 20 B10)
E20/Im {Ea—rr=1 &, paoy p—9

0 r>3

there is a surjection from EJ*° onto B4 = Gri ,I4(X,+Y) ~ I¢(X,*Y). The map ¢” is the composite
of this surjection and the natural injection [(X,+Y) — EZ, = I1(X, xY).

(iii) Since
BIL = Ker (B0 %5 BET127) [Im (B0 25 BV

dr 19—
Ker {E¢~11 =5 patr=12=rt p =9
Ea—11 r >3,

there is an injection from E4 5! = Gri.'I9(X,*Y) into E{™"'. The map j” is the composite of
the natural surjection E4 = I(X,*Y) onto B4 bt = Gr,q,}llq(X, *Y") and the injection above from
EIN = Gri ! 19(X, +Y) into ESH

Chasing these maps more precisely by direct calculation, using differential forms, we can conclude that the
exact sequence (2.8) is dual to the homology sequence (2.7). Thus we have proved that I7(X,«Y) ~ HI(X —
Y, C) again. Besides, since the image of ¢ is Ig(X, xY") as explained above, this shows that Résidue definition
and Hodge-Atiyah’s algebraic definition of the closed meromorphic forms of the second kind coincide.

3 Mixed Hodge structures on *xY-rational De Rham groups of X

We call the attention of the readers to that Q' (logY) is the most simple example of a cohomological
mixed Hodge complex (CMHC) in the sense of Deligne and it induces mixed Hodge structures (MHS) on
H(X,Qy(logY)) ~ H(X-Y,C) ~ I'(X,*Y). Concerning these MHS’s a non-trivial weight filtration comes
out only on I"*1(X,*Y) (n+1 = dim X), and it is given by a single subspace. We shall now show that this
subspace is nothing but I"*1 (X, xY ). First, let us recall the definition of CMHC from [4]. A CMHC K on
a topological space X is given by

(i) A complex K € Ob D" (X,Z) such that H1(X, K) := HY(RI'(X, K)) (hypercohomology of K) is a

finite Z-module and H4(X, K)® Q ~ H%(X, K ® Q), where D¥(X,Z) denotes the derived category of
lower bounded complexes of sheaves of Z-modules over X.

(i) A filtered complex (Kg, W) € Ob D*F(X,Q) and an isomorphism Kg ~ K ® Q in DT F(X,Q) (W
increasing).

(iii) A bifiltered complex (K¢, W, F') € Ob DT Fy(X,C) (W increasing and F decreasing) and « : (K¢, W) ~
(Ko, W) ®C in DYF(X,C), i.e., Gr' (K¢) and Gr'W (Kg) are quasi-isomorphic as graded comlexes,
satisfying the following axioms:



(A) RI'(X,Grl Kg), (RD(X,GrlV K¢), F) and RT'(X, Gr}Y o) : RT(X, Gr}Y K¢) ~ R[(X, Gr}Y Kq) ®
C is a Hodge complex (HC) of weight k,

where HC of weight k is defined as follows: A Hodge complex (HC) K of weight k is given by

(i) A complex K € Ob DT (X,Z) such that the cohomology H?(K) is a Z-module of finite type for each
q.
(ii) A filtered complex (K¢, F') € Ob DT FC and an isomorphism « : K¢ ~ K ® C in D*C, satisfying the

following axioms:

(AI) The differential d of K¢ is strictly compatible to the filtration F, i.e., F* N Im d = Im (d/F?) or
equivalently the spectral sequence defined by (K¢, F') degenerates at Fy (E1 = F).

(AII) The filtration F' induced on HY(K¢) ~ H(K) ® C defines a HS of weight q + k.

In our case, we take K € Ob DV (X,Z), (Kg,W) € Ob DTF(X,Q) and (K¢, W, F) € Ob DT F5(X,C) in
the definition above as follows:
K = Rj.Z,

where j : X —Y < X is the open immersion,

Kg :=Rj.Qx_v,
Wy (Kq) = 7<,(Kq),

where 7<,(Kq) denotes the subcomplex of Kq defined by

K" q=20
TSP(KQ)" =< Kerd g=1
0 n>np

(which we call the canonical filtration)

K¢ :=Qx(logY),

Wo(Kc) = Qx,

W1 (Kc) = Qx(logY),
FU(Kc¢) := 0>4(Qx (logY)),

where 0>4(Q% (logY’)) denotes the subcomplex of Q' (logY") defined by

(ooaltclosy )" = { ?lég(logY) 2;;

which we call the stupid filtration. Instead of the filtartion W, we shall use the filtraion W{g] defined by
Wiglp := Wp—q,

namely, a shift by ¢ to the right on the degree of W. Then (W/q], F') induces a mixed Hodge structure on
HI(RT(X, 2y (log Y)) := HI(X, Qy (log Y)) ~ [9(X, +Y). We shall calculate Gry’ “19(X, Y (k = q,q+1)
by use of spectral sequences. We put

K :=Ax(ogY), and
Wo(K') = Ax, Wi(K') = Ax(logY).

{Wo(K') € Wi(K') = Ax(logY)} is the filtration induced by the filtration {Wy € W1 = Q(logY)} on
Ny (logY). We define
W (K) :==W(g]—p(K) = W_p_o(K) (p<—q).

p



Then {W,(K")} is a decreasing filtration of K. Hence we can consider the spectral sequence concerning the
filtration complex (K, W/(K")), whose 0-th term and 1-st one are computed as follows:

wEyS = Griy. (K™)
Wo(K5~1) r=—q

= Wl(Ks_q_l)/Wo(Ks_q_l) r=—q—1

0 otherwise

A1 r=—q

= AT log V) JAS T AT p = g — 1

0 otherwise,

where the isomorphism A% ¢~ !(log V) /A% 7" ~ A37972 comes from the exact sequence of sheaves

0 — Wy — Ay (logY) & Ay[~1] — 0,
(cf. Proposition 1.7) which is the C'°° version of the exact sequence (2.4);

r,s di r+1,s
r.s Ker{W/El w’ El }

r—1,s di 7,8
Im{w- Ey —w By}

H*79(Ax)~ H*"9(X,Cx) r=—q, s>¢q

H*~97 (A (logY) /Ay ) = H*~17 1 (Ax (logY) /W)
~ H"972(Ay) ~ H 797 2(Y,Cy) r=—q—1, s>q+1,

0 otherwise.
Hence we have
=T _ =T _ _ p—r _ W _
W’Et =w Et+1 = =W Egop T—GTT Ip(X,*Y)—O

(3.1)
for r#—q—q—1 and t>2

This is equivalent to I?(X,*Y) = W’ (I*(X,*Y)) D W’ (I?(X,+Y)) = EZ %P9, From these we obtain
the following exact sequnece:

— P _ )P —q—1 1
RN W/El aor Y W’Egé q _J W/El q—1,p+

o2 | | |

. — HP9(X,C) BN IP=9(X, *Y) LN HP=9-1(Y,C)

drtt gt Bax!
W’El q;p W,Egé—q—kl N

LCH) H”*qH(X,(C) g ]p*qul(X, *Y) —— -

where the maps in this diagram are described as follows:

(i) d?*" is the differential at the first term of {E?~9TPT1Y of the spectral sequnece,



(ii) Since

d
—q, r —q+r,p—r+1
wE P = Ker{W'Er PP =y ESOTP }

r+1 o _ d, _
Im{W/ET g—r,ptr—1 w Er q,p}

w EZ9P /Tm{yy, B4~ 1P L. EZePY p=1

9

wE 0P, 22

there is a surjection from v E; " onto w' EZ%P = Gry/ i IP~4(X,+Y) = W’ IP~9(X,*Y). The map
(P is the composite of this surjection and the natural injection W’ IP79(X,*Y) < IP79( X, *Y) =~
EZap.

(iii) Since

d, —g— _
Ker{w E 9P =y Ba- 02}

a1 d, e
Im{W/Erq 1—r,p+r w Er q 1»p+1}

—q—1p+1 _
W/E”r’—‘,-l =

—g— d _
KGI'{W/EI a—1.p+l _I)W/ El q,erl}’ r=1

W,E:q—17p+17 T 2 2,
there is an injection from y EZ4~ 1P+ = Gry 7' [P=9( X, +Y) into woE; 9 "P*!. The map j7 is the
composite of the natural surjection yE2 9 = IP~9(X,xY) onto v E 4~ VP Gry IP~9(X,*Y) and
the injection above from y EZ9~ 1P into . By 7P,

Chasing these maps more precisely by direct calculation, using differential forms, we can conclude that the
exact sequence (?7?) is dual to the homology sequence (2.7). By the definition of the map (? and j7, we have

Pl ELPP) = W IPTUX,+Y) and

FP(w EPFY) = Gyt T IPTI(X, +Y),
which are rewritten as

rPTI(HPTYX,C) = WLqu*q(X,*Y) and

RP™I(IP79(X, %Y)) Gryd ' P 9(X, +Y),

If we put p = 2q, then we have
Hq(Xv (C)O = Tq(Hq(Xa (C)) = W/—qu(Xa *Y) - W[Q]q‘[q(Xv *Y)

and

Ker{G4™': HI7Y(Y,C)y — FFHIT?(X,C)} RI(I1(X,xY))

~ Gyt (X, +Y)
~ =Gl X, sy,
Therefore, combining these results with those of Theorem 2.4, we have
Theorem 3.1.
(i) Gry HIX —¥,C€) = Wgl,H'(X ~ Y.C) = I(X,Y ),
(i) GriWHI(X —Y,C) = I9(X,+Y) /I9(X,+Y)q,

(iii) F*Gre’ W HI(X —V,C) ~ FFHI(X, C),,



(iv) FEar WX~ Y,C) = Ker(F[-1JFHT-1(Y,C)y & FFH2(Y,C))
From now on, we consider the following complex of sheaves of C-vector spaces:
QA (1 +)Y): 0x(Y) = QL (2Y) - - - Q8 (p+1)Y) — - — Qx ™ ((n +2)Y)
We define a decreasing filtration {Flk}ogkgn by

FRMQx (L4 )Y)) = { = 0= Q% (V) — Q5 (2Y) —

(33) P n+1
o B (p—k+1)Y) > = QY (n—k+2)Y)},
and an increasing filtartion {W) C W{} by

W (149Y) + Ox = Q= = Q= oo = O3

WiQx(1+) © Qx(1+).
Then we have
Proposition 3.2. The bi-filtered complexes of sheaves of C-vector spaces
(Qx(l0gY),W.F) and (Qx((1+)Y), W', F')
are quasi-isomorphic, i.e., bi-graded complex of sheaves of C-vector spaces
GreGrV (Qx(logY)) and GrpGr'V (0 ((1+)Y))
are quasi-isomorphic where the filtration F' of Q' (logY") is defined by

FH(Qy (logY)) = {--- — 0 — g (log V) — 2 (log ¥) — --- =05 (log V)}

(O<k<n +1),
Proof. First, we have
GriGry (Qx (L+)Y)) = QK[-H],
GrinGri" (Qx (1+)Y) = (T (1 +)Y)/5" (V))[—H],
GriGriV (Qy(logY)) = Q%[-k], and
GripGr (Qy(logY)) = (%" (logY)/Q5")[—F]

Thus Grk, GriV (2 (1 +)Y)) and GriGri’ (Qy (logY)) are quasi-isomorphic and

O (logY) /%, p=k>1

HP(GripGri¥ (U (logY)) = { 0 otherwise.

We shall calculate H? (Grk, GriV' (2 ((1 4 -)Y)). Obviously,
H?(Griaarl” (Qx (1 +)Y)) =0 for O0<p<k—1, 1<k.

Assume p > k+ 1. Let [w] € Q5 ((p —k +1)Y)/Q%((p — k)Y) be an element with d[w] = 0 in Q% ((p —
k+2)Y)/Q%((p — k +1)Y) where w is an element of Q%' ((p — k + 1)Y). Since dw is a closed form, by
Lemma 2.1, (i)-(a), there exists ¢ € Q% ((p — k)Y) such that dp = dw. Since w — ¢ € ®5((p — k +1)Y),
by the same reason, there exists 1 € Q% '((p — k)Y) such that di) = w — ¢. This means d[¢)] = [w]. Thus
HP(GriGriV' (Q (14 )Y)) = 0 for p > k+ 1. Let [w] € Q% (Y)/Q% be an element with djw] = 0 in



QL (2Y)/Q5(Y). This amounts to dw € Q5 (V). If k > 1, we can easily see that this is the case if and
only if w € Q% (log V). This fact tells us that

HY(Grb Grl (@ (L4 )Y)) = Ok (log ¥) /0% for k> L.

If k = 0, we can easily see that w € Oy, since w € Ox (Y), dw € Q% (Y). Hence H(Gr%, GriV' (2 (1+-))) =
0. This completes the proof. O

We define v
ROt 1y) = e PRV )
(X, Q% ((p = k)Y))
and denote by I} (X, (p+1)Y ) the subspace of I} (X, (p+1)Y") generated by closed moromorphic of p-forms
of the second kind. The CMHC (Q(logY’), W, F') induces a mixed Hodge structure on H?(X —Y,C) (~
HP (X, Qx(logY))). We denote by {F¥H?(X —Y, C) }o<r<, the Hodge filtration of H?(X —Y, C) concerning
this mixed Hodge structure, and by {F¥H?(X,C)o}o<j<, the ordinary Hodge filtration of H?(X,C)o, the
p-th primitive cohomology group of X. With this notation we have

Theorem 3.3. IfY is sufficiently ample so that

(3.4) HP(X,Q%(kY)) =0 for p>1,¢>0,k>1,
then we have

(3.5) FFHP(X - Y,C) ~IX(X,(p+1)Y) 0<k<p and
(3.6) FFHP(X,C)o = I)(X, (p+1)Y)o 0<k<p

under the isomorphisms HP(X —Y,C) ~ I?(X, (p+1)Y) and H?(X,C)y ~ I?(X, (p+ 1)Y)o in Proposition
2.8 and Theorem 2.4, respectively.

Proof. Using the sheaves 257(¢Y"), the sheaves of germs of semi-meromorphic forms of type (p,¢) on X,
having poles of order ¢ (at most) alomg Y, we can form a fine resolution of it by use of more small sheaves.
Let BR(LY) be the subsheaves of 57 (¢Y) characterized by the following prescription: Letting ¢ be a local
cross-section of AR?(¢Y") if and only if FEldf A @ is a O regular differential form where f = 0 is a local
holomorphic defining equation for Y. Using B%?(¢Y), we obtain a fine resolution of Q' ((14-)Y") as follows:

8L (y) 2 slley) 2 w2gy) 2 2 (4 2)Y)
Tgo 0 b0 320 TEW 0
(3.7) 0,0 %0 1,0 or° 2,0 920 om° n+1,0
By (Y) —— By (2Y) —— By (3Y) B0 (n+2)Y)
Q% (V) —— ok@y) —— 0%@Ey) —- L QU (n 4 2)Y)
0 0 0 0
We put

o
=T
2
=
Jr
=
>
|

DX, B ((p+1)Y) (p>0,9>0),
BY((k+1)Y) = @pq=BRI((p+1)Y) d»? =01+ (-1)P0"" and
By((1+)Y) = @ Opre=r B (p+1)Y)



Then (By ((1+-)Y),d) forms a complex of C-vector spaces and we have
HP (X, Qx (1 +)Y)) = H?(Bx (1 +-)Y))  (p=0).

The filtration {F"*} of Qx((1 +-)Y) defined in (3.3) induces a filtration on By ((1+ -)Y’), which we denote
by {F"*Bx ((1+)Y)}, ie.,

FEBY((1+)Y) i= @p @pogk B ((a + 1Y)

Since (Qx ((14+-)Y), W, F’) is a CMHC by Proposition 3.2, the spectral sequence, associated to the filtration
{F"*By((1+-)Y)} and whose final terms are

w BT = Grip, = Grip HPH(Bx (1 +1)Y)),
is degenerated at the 1-st term (cf. [2], Théoréme 3.2.5, [4], Théoréme 3.2.1). Therefore, we have

BT = HY(FN(B)/FM(BY)) (B = Bx((1+-)Y))

3.8
(3:8) ~p BRPR = Grk, HP(B)
Here we should recall that the filtration on H?(B’) induced by {F’} on B’ is defined by

F'*HP(B) := Im{HP(F*¥(B))— HP(B)} and

Grk,H?(B) = F'*H?(B)/F*"'H?(B)
From this and (3.8) it follows that the natural map
HP(F™(B")) — HP(F™*(B")/F**(B"))
is surjective. Hence the long exact sequence of cohomology associated to the exact sequence of complex
0— F*YB) - F*B)— F*B)/F*'(B)—0
breaks up into the following short exact sequences

0 — HP(F"**N(B")) — HP(F™(B")) — HP(F™(B")/F**1(B")) — 0
(0<p<n +1,0<k<p)
Here HP(F'*(B")/F'"**1(B")) ~ Grk,HP(B"). Hence
(3.9) HP(F'*(B) ~ F'*"HP(B') ~ F'*H?(X - Y,C) (0<k<p,0<p<n +1).
On the other hand, by the assumption 3.4, we have
HP(F™(B')) = HP(F™*(Qx (1 +)Y)))
— HP(Q4 (1 +)Y) [~ H)
=HH QK (1 +)Y)
LT K ((p— k+ DY)
—dAD(XLQ% H(p - R)Y))
=INX,(p+1)Y).

(3.10)

By Proposition 3.2, the ordinary Hodge filtartion F* H?(X —Y, C) of the cohomology H?(X —Y, C) coincides
with F’* HP(X — Y, C). Therefore, by (3.9) and (3.10), we conclude that (3.5) certainly holds. Noticing that
IP(X,(p+1)Y)o ~ IP(X,*Y ), we obtain (3.6) from (3.5) and Theorem 3.1. O



4 Generalized Poincaré résidue map

The setting under which we shall work in this section is as follows: Let X be a non-singular irreducible
algebraic variety of dimension n 4+ 1 embedded in a sufficiently higher complex projective space PV, Y a
generic hyperplane section of X which satisfies the condition (3.4) in Theorem 3.3, and Y a non-singular,
irreducible hypersurface section of sufficiently higher degree such that if we set Z =Y -Y”, then

(4.1) HY(Y, Q% (kZ))=0 for p>1,¢>0 and k>1.

When we refer to primitive cohomology, we always means the one concerning the Hodge metric whose
fundamental forms is dual to the homology class [Y] (resp. [Z]). Under this setting and with the same
notation as in the previous sections, the purpose of this section is to define the so-called generalized Poincaé

restdue map
Rés: I"™H(X, (n+2)Y) — I"(Y,(n+1)Z)o

and prove the following theorem:

Theorem 4.1. Under the setting above, we have

R

FRHM(Y,C)o = IM(Y.(n+1)2)

Rés(Ii7 (X, (n+2)Y) & r" (I (X, (n +1)Y")o)),

12

where 7™ denote the map induced by the natural map H"(X,C)y — H"™(Y,C)o.

We shall prove the theorem after several lemmas and Propositions. We denote by Q%(kY +*Y”) the sheaf
of germs of meromorphic ¢g-forms having poles of order k (at most) along Y and poles of arbitrary order along
Y’ as their only singularities. We denote by Q%(logY + kY”) the sheaf of germs of meromorphic g-forms
having logarithmic poles along Y and poles of order k£ at most as their only singulatities. We consider the
following homomorphisms of comlexes of sheaves of C-vector spaces:

Qe ((1L+)Y) ox(Y) ——  Qk@y) —— .

l l

(4.2)  Qx((1+)Y ++Y") : Ox (Y +%Y') —— QL 2V +%Y') — -

I I

Qy(ogY + (1+)Y"): Ox(Y) —— Q%(logY +2Y") —— -

— Q%+ 1Y) QU (n+2)Y)
—— Q% ((p+1)Y ++Y) QU (n+2)Y + +Y)
—— Q% (logY + (p+ 1)Y) QU (logY + (n +2)Y")

Proposition 4.2. The homomorphism of complexes of sheaves
Qy(logY + (14 )Y") = Qx (1 + )Y +xY)
in the diagram (??) is a quasi-isomorphism.

Proof. By virtue of Proposition 2.2 it suffices to show that the stalks of the cohomology sheves HP (2 (log Y +
(1+Y7) and HP(Qx((1 + )Y + +Y”) are isomorphic at a point o € Y NY’. Let (21, -+ ,2n41) be a



holomorphic local coordinate system at xg such that z; = 0 and 25 = 0 are local defining equations Y and
Y’ respectively. We are going to show that

HP(Qx (1 + )Y +xY7))

(CX p= 0

(C{@ dzy =1
(43) . , z1 ’ z9

~HP(Q(logY + (1+-)Y")) =

ledZQ

=2

{ o }op
0 otherwize

Now let ¢ = dz; A a+ 3 be a local cross-section of ®% ((p+1)Y ++Y’)  (p > 1) in a neighborhood of zy,
where «, 8 are local meromorphic forms, having poles of order p+1 (at most) along Y and poles of arbitrary
order along Y’ as their only singularities, and not involving dz;. Then we may write

(651 (65) Apt1
o — o + -_— + -y + tet +
0 2 Z% Z;1p+1
B, Do Bp+1
B = 504'21‘*‘2%"‘ +zf+1’

where «y, 3; (i > 1) do not involve z; and dz;, and a;,3; (¢ > 0) have poles of arbitrary order (at most)
along Y’ as their only singularities. Since dp = 0, we have

dzy N day + dfy _ dz1 N\ (dOLQ + 51) —dps

dp = —dz Ndag + dfy —

21 22
le/\(dOz 11 +p6p) —dBp+a dz1 N Bpy1
L rel TP r_ (py 1) 0 e
21 21
=0.
Hence,
(4.4) doy = dag + 31 = dag + 202 = -+ = doyq1 +pBp =0,
(p + 1)ﬁp+1 =0,
dfy =dBs = -+ =dBy11 =0,
dpg =0, where ¢g=dz; Aay+ Fo-
Put
g—_X2_ ¥ _ Optl
21 222 pal
then
le
(4.5) 90=d9+7/\041+9007 and dypg = 0.
1

Hence if p > 3, since day = dpg = 0, there exist local cross-sections v of QP~2(xY”) and ¢; of QP~L1(xY")
with dy = a; and dp; = ¢g in a neighborhood of zy. Put

dz
b1=— Ay+e1,
21
then 6 + 0; is a local cross-section of QP~1(pY + xY”) and » = d(6 + 6;). This shows that HP(Qy ((1 +
JY +xY")) =0 for p>3.If p=2, a in the expression (4.5) of ¢ is a local cross-section of ®!(xY”).



Hence, as shown in the proof of Lemma 2.1 (ii)-(c), there exists a constant A€C and a local cross-section
of Q% (xY") with

oy =222 4
Z2

Furthermore, since ¢q is a localcross-section of ®2(xY”), by Lemma 2.1 (i)-(a), there exists a local cross-
section g of Q' (xY’) with dp; = po. Put

dz
b= — AY+er
21

then 0 + 0, is a local cross-section of Q(2Y + *Y’) at zo and

dzy Nd d
e = d0+)\u+§/\dv+wo
1

zZ122

d d
ez A azy +d(0+ 6,)
Z1%22

= A

This shows that
le N dZQ

HAQi (14 )Y+ )y = C{=_—

If p1 =1, 1 is a meromorphic function, hence da; = 0 implies that a; = A, a constant. Since g is a local

cross-section of ®!(xY”), by Lemma 2.1 (ii)-(c), there exists ¢; € Q°(xY”),, such that

dz
0o = p— + depy.
Z2

Hence the expression of ¢ in (4.5) becomes

Since @1 + 0 € QY (Y + xY”), this shows

HY Qi (14 )Y +#77)) ~ oL, 922y,
Z1 Z9

HO(Qy (1 + )Y +#Y")) =~ Cx is obvious. To prove the same for HP(Qy (logY + (1 + -)Y”)) is rather easy.
If o is a local cross-section of ®?(logY 4 (p 4+ 1)Y”) in a neighborhood of x(, then ¢ is written as

dz
80:71/\044_67
21

where a € QP~Y((p + 1)Y’), B € QP((p + 1)Y’) do not involve dz;. Furthermore, we may assume that
a does not involve z;. Then dy = implies da = df = 0, and by the same arguments as in the case of
Qy((p+1)Y ++Y"), we can show that (4.3) for HP(Qy (logY + (p+ 1)Y)). O

Lemma 4.3. Assume we are under the setting at the begining of this section. Particularly, we assume that
the following conditions are satisfied:

HP (X, Q% (kY)) = O,

HY(Y, 0. (kZ)) = 0 for p>1,¢q>0,k>1.

Then we have
HP(X, Q% (logY + (¢+1)Y")) =0 for p>1,q>0.



Proof. We consider the following exact sequence
0-0% - 0%(logY) Ll -0 (¢>1),

where R is the résidue map (cf. Lemma 2.1 (ii)-(c)). Tensoring Ox((¢ + 1)Y”) to this exact sequence, we
have
0— Q% (¢ +1)Y') = Q% (log¥ + (¢ + 1)Y') — 9 (¢ + 1)Z) — 0.

From the long exact sequence of cohomology associated to this sequence, the assertion of the lemma follows.
O

We define

(X, % (logY + (p+1)Y"))
dD (X, Q% ' (log Y + pY"))

I'(X, 2% (p+1)Y ++Y7))
dU(X, Q57 (pY ++Y"))

I’(X,logY + (p+1)Y")

)

(X, (p+1)Y ++Y') =

Combining Proposition 4.2 with Lemma 4.3 implies the following:

Proposition 4.4. Assume that we are under the setting at the bigining of this section. Then

I’(X,logY + (p+ 1)Y") = I?(X,(p+ 1)Y +xY') for p>0.

We are now ready to define the Résidue map
Rés: I"(X, (p+1)Y) — ["~(Y,pZ)o

Let w € T(X, ®% ((p+ 1)Y)) be given. We think of w as an element of I'(X, ®% ((p + 1)Y + xY”). Then, by
Propostion 4.4, there exists a ¢ € T(X, Q% ' (pY +*Y”))) such that w — dp € T(®% (log Y + (p+1)Y")). We
take an open covering {U; };cs of X such that there is a local coordinate system (z,--- ,z.,,) on each U;,
satisfying the following conditions:

(a) If U;NY #0,2; =0 is a defining equation of Y in U;.
(4.6) M) If U;n(YNY')#0,2i =0 and 2, =0 are defining equations
of Y and Y’ in U;, respectively.
In each U; with U; NY # 0, we can write w — dp as
dz

%

1

(4.7) w—dp=—=Na; + B,

where a; € T(Uy, ®% '(p+1)Y")), i € T(Us, @5 ((p+1)Y")), o and §; does not involve dzi. We can easily
see gy = aj)y if Uy NU; NY # 0, hence {a;)y} defines an element of I'(Y, 2 ((p+1)Z)). O We claim
that {27/ —1ay)y} determine a unique element of I7~1(Y, (p + 1)Z)), not depending on the chice of ¢. In
fact, if ¢’ is another element of T'(X, Q% '((p+ 1)(Y +Y")) with w — dy’ € T(X, ®% (log Y + (p+1)Y")) and

i
dz}
i

1

w—dy =

Ao+ B

is the expression of w — dy’ as in (4.7), then

i ) = T4 A 0= ) + (5~ B) € TCX. P logY +(p+ 1Y)




is zero in IP(X,log Y 4+ (p+1)Y"). Hence, by Proposition 4.4, there exists an element v € Qf)’(_l(log Y +pY”))
such that dip = d(p’ — ¢). Let ‘
dzi

7
21

Y= N Y + 0

be the expression of ¢ as in (4.7). Then, since di) = d(¢’ — @), we have
(4.8) dvily = dy (vipy) = aipy — oy
for each i with U;NY # ), where dy denotes the exterior derivative on Y. Since {v;)y } is a global cross-section

of T(Y, Q5 (pZ)), (4.8) shows that {ayv} ={ajy}in IP=1(Y, (p+1)Z). Furthermore, the arguments above
also show that if w is a derived form, then so is {agly}. Therefore, we conclude that the correspondence

wr— {ajy}

determine a map I?(X, (p+1)Y) — IP71(Y, (p+1)Z). Since I?"1(Y, (p+1)Z) ~ I?~1(Y,pZ) by Proposition
2.3, this map is thought of as a map from I?(X, (p+1)Y) to IP~1(Y, pZ), which we define to be the generalized
Poncaré résidue map and denote it Rés. We denote {cy } by rés[w] (determined up to derived forms) and
call résidue form of w.

Proposition 4.5.
Rés(IP(X, (p+1)Y)) C IP"H(Y,pZ)o

Proof. For aw € T'(X, ®?((p+1)Y)), we shall show that its résidue form rés[w] = {ayy } (precisely speaking,
a closed form representing the class rés[w] of IP~1(Y, (p+1)Z)) is of the second kind in the sense of Picard-
Lefshetz. From this the assertion of the proposition follows, since IP~1(Y, (p + 1)Z)o ~ IP71(Y,pZ)o. As
before we take an open covering {U;}ic; of X such that there is a local coordinate system (z%,---,zf )
on each Uj, subject to the conditions in (4.6), and take a ¢ € T'(X,QP~1(pY + *Y”)) such that w — dyp €
I'(X, 2% (logY + (p+1)Y”)). On each U; with U; NY # 0, we write

i
dzi

7

1

(4.9) w—dp= Ao+ B

as in (4.7). We will show that for a point zo € Z N U;, réslw]jy, = oy is a holomorphic form modulo
derived meromorphic forms in a sufficiently small neighborhood of zy in Y. For this end we take a generic
prime hypersurface section Y which is linearly equivalent to Y, which does not go through zy and intersect
Y and Y’ transversely. We think w as an element of I'(X, ®?((p + 1)Y + *Y"))). Since I?(X,(p +1)Y +
xY")) ~ IP(X,logY + (p + 1)Y") by Proposition 4.4, there exists a ¢’ € I'(X,QP~L(pY + *Y")) with
w—d¢ eT(X,2P(logY + (p+ 1)Y")). Let

d 7
(4.10) w—dg' = =1 naf+

<1
be the expression of w — dy¢’ as in (4.7) on each U; NY # 0. If U;, is the coordinate neighborhood with
xo € U;, N Z, since Y does not go through xg, o |, is holomorphic in a sufficiently open neighborhood of
xo in U, NY. From (4.9) and (4.10),

’
io|

0
dz,

i
21

(4.11) (¢’ — @) =

A (aio - Oé;o) + (ﬁm - ﬁ; )

Since d(¢’ — ¢) € T(X,®P(logY + x(Y' +Y"))) is zero in I?(X, (p+1)Y + (Y’ +Y")), by Proposition 4.4,
there exists a ¢ € T(X, Q% '(log Y + *(Y' + Y"'))) with di» = d(¢' — ¢). On each U;, we write

dz
Zil A Vi + g’io
1

(4.12) =

as in (4.7). O Then dyp = d(¢’ — ¢) implies
dvi = a; — o

Hence dy(’yi‘y) = Iy — ale for each i where dy denotes the exterior derivation on Y. This means

dy (rés[ip]) = rés[a] — rés[a’] where rés[y] € T(Y, Q8% (p(Y’ +Y"))). Since rés[a’] is holomorphic at g, so
is rés[a] modulo derived meromorphic forms as requied. O



Proof of Theorem 4.1:

We can now easily deduce Theorem 4.1 from what we have proved till now. First, by Theorem 1.15,
H™(Y,C)o = R™ (H"™ (X - Y,C)) & " (H" (X, C)o).
By Theorem 3.1,
(4.13) FE(H™(Y,C)g = R*TYFFIH"™ (X - Y,C)) @ r"(FFH™(X,C)o).
By Theorem 3.3, (3.5),
(4.14) FFIE X —Y,C)) = I (X, (n+2)Y).
Applying Theorem 3.3, (3.6) to the pair (X,Y”) instead of (X,Y"), we have
(4.15) FFH™(X,C))o ~ I} (X, (n + 1)Y")o.
From (4.13), (4.14) and (4.15) it follows that
FRH(Y,C))o = R X, (n+ 2)Y) @ (I (X, (n + DY )o).

Here the map R" ! : [""1(X (n+2)Y) ~ H""(X —Y,C) — H"(Y,C) should be interpreted in terms of
C* De Rham group as follows: By use of isomorphisms

H"WHX —Y,C) ~H" (X, Qy(logY)) ~ I"TH(X, (n +2)Y) ~ H" (A (logY)),

(cf. Proposition 2.2 and its proof), we can take a ¢ € Ker{(A""!(logY)) — A" 2(logY)} with w = ¢
modulo dA"(logY) for a w € T'(X, ®" 1 ((n + 2)Y)). ¢ is written as

p=aAn+p,

where 7 is C™ form of type (1,0) with the property On represents the first Chern class ¢;([Y]), and «a €
A" (X)), € AVTH(X) (cf. (1.4). dp = 0 implies dy (a|y) = 0. Then R"*([w]) ([w] € I""H(X, (n +2)Y))
is defined by

ARn+1Qaﬂ)::2W\/:T{aDJ,

where [a)y] denote the De Rham cohomology class represented by ayy. Taking into consideration this fact,
we will be done if we see

(4.16) RHITEHX, (n+2)Y)) = Rés(IH (X, (n+2)Y)

in the De Rham cohomology. To see this, we first note that both of the right and left hand sides of (4.16) are
included in H™(Y,C)p. due to Theorem 1.15 and Theorem 2.4. Hence, by Proposition 1.9 and Proposition
1.10, in order to prove (4.16), it suffices to show that

(4.17) /TE(’Y)w = [yrés[w]

for a w € T(X, " ((n+2)Y)) and an n cycle y lying in Y — Z, where 7.(7) is OU.|,, the restriction of the
boundary of a topological e tublorneighborhood U, of Y in X to v. We are now going to prove (4.17). We take
the local expression (4.7) of w with respect to some open covering {U, };c; of X and a local coordinate system
(21,--+, 24 ,1) on each U;, subject to the conditions in (4.6). Let {p;} be a partition of unity subordinate to
the covering {U; }icr. Then

d 7
/ w = / > o Zil/\Oéi+ﬂi)+d<P
() e (%) 1
d 7
/ Zm(% A a; + ;)
TE(’Y) 7 Zl

LA o + By).

I
~
2

>
3
=
Y
RS AN
N



Locally, 7-(7) looks like R**! x { |z| =¢ | 2 € C } (¢ > 0). Hence

S/ @ rasn - Y[ @ naes)
T (7)NU; (1) ' ' e—0 Z 7o (Y)NU; Zl !

i

= 2nv-1 Z(Piai)hmm
= 21/ —1rés[w]
as required. This completes the proof of Theorem 4.1.
Remark 4.1. For [w] € Ig_tll(X, (n+2)Y) it can be proved more directly that the Hodge type of R"T!([w]) =

Rés([w]) is (n,0) + (n —1,1) + --- + (k,n — k). By virtue of the isomorphism

L (X, (n+2)Y) ~ H (P

Ker{zn kB’rL €+1é(n_£_k+l)i> Zlok+1Bn Z+2Z( —E—k+2)}
{0 B = — k) L S B (- — k4 1)}

(cf. the proof of Theorem 3.3, (3.5)), w € T'(X,®%"((n + 2)Y) is cohomologous to a closd form ¢ of

n— an €+ll(

/=0 — ¢ —k+1) in the De Rham cohomology. If we wtite ¢ as

gp = Sﬁ(n+1’0) + Qo(n’l) + e + Qﬁ(k+1’n7k),

where =10 ¢ BUHM (n — ¢ — k 42)  (0<f<n — k), then each o("~+1.0) is written in each U; as

n—~,0 3 n—~0+14
1=+ ozl(: )dzi N 55' :
(Zi)n7€7k+1 (zi)nféfk

where 04(" &0 6(" LD are regular C*° differential forms of types (n — ¢,£), (n — £ + 1,£), respectively,

not 1nvolv1ng 21, where 2} = 0 is the local defining equation of Y. This is because (z})*~*~Fp("=+1.6) and
(20)" 7k dzt A p(n=tHLO are O regular forms by the definition of BY~ Ll —0—k+1). Put

(n £,0)
—L,0
then
n§n—€+1,€)+(n—é,€+1) — d¢§n_é7€) + (P(nferl,Z)
da(nff,f) ‘(nferl,E)
— i + ﬁz

(n— (=BG F T D

is a semi-meromorphic form of type (n — £+ 1,£) + (n — ¢, £ + 1) and has poles of order n — ¢ — k along Y.
Let {p1} be a partition of unity subodinate to the open covering {U;};cr as before. We put

1/}(n7e,z) _ Zpﬂf/(n_é’@v
n— n— n—~0+1,¢ n—~e.4
77( 41,0+ (n—L,0+1)  _ mezg +1,6)+( +1)

Now,

(p(nfﬁJrl,E) _ dw(nfﬁ,f) _ s0(n7€+1 J0) deﬂ,b(n £,0) + ZP dw(n 0,0)

_ Zpl Z(n e+1e)+n £,641) Zd zw(n 0,0)

[

—_ — n—~£,0)
n(n £+1,0)+(n—0,0+1) delwz

i



which is a semi-morphic form of type (n — €+ 1,£) + (n — ¢, + 1) having poles of order n — £ — k along
Y. Continuing this process, @"—¢+1.6) (0<fl<n — k) is reduced to a semi-meromorphic form of thpe
(n—0+4+1,0)+---+(k+1,n—k), having poles of order 1 along ¥ modulo derived forms. Hence ¢ is reduced
to a closed semi-meromorphic form ¢ of A"*19(logY) + - -+ A¥17=%(log V') modulo derived forms. Hence
the Hodge type of R""1([w]) = R""1([¢]) is (n,0) + (n — 1,1) + - + (k,n — k).
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