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Abstract

This paper newly designs the recursive least-squares fixed-lag smoother and filter using
covariance information in linear continuous-time stochastic systems. It is assumed that
the signal is observed with added white observation noise and the signal is uncorrelated
with the observation noise. The estimators require the covariance information of the
signal in the semi-degenerate kernel form and the variance of the observation noise.
The proposed estimators are appropriate for estimations of stationary or non-stationary

stochastic signal generally.

Keywords: Linear Continuous Systems, Fixed-Lag Smoother, Least-Squares Estimation,

Covariance Information, Wiener-Hopf Integral Equation, Stochastic Signal, fixed-lag smoother

1 Introduction

There are three types of smoothers known as fixed-interval Kalman smoother, fixed-point
Kalman smoother and fixed-lag Kalman smoother. These Kalman smoothers use the
information of the state-space model [1], [2]. Usually, the smoother shows better estimation
accuracy than the filter.

If the model used in the filter is different from the actual system dynamics, then the
filter will diverge. This may also happen if the system has multiple modes of operation; the
filter can only describe one of them. In interacting multiple model (IMM) [3], the fixed-lag
smoother shows that its accuracy in terms of mean squared error increases proportionally to
the lag [4]. In the target tracking on the behavior of fish, the Segmenting Track Identifier, a

non-Bayesian curve fitting and segmenting tracker, is shown to be most effective for tracking
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the unpredictable and complex horizontal motion of fish, while a Kalman fixed-interval and
fixed-lag smoothers using a constant-velocity model is shown to be most effective for tracking
the more predictable and piecewise linear vertical motion of fish [5].

By the way, in the estimation problems of the signal, there is an approach to use the
covariance information of the signal and the observation noise (6], [7], [8]. In [7] the estimation
technique on the recursive Wiener estimators etc. are considered. In [9], [10], the recursive
Wiener fixed-lag smoother is designed based on the innovations approach. The impulse
response function for the fixed-lag smoothing estimate is approximated and the suboptimal
fixed-lag smoothing algorithms are proposed. It is a characteristic that the recursive Wiener
estimator uses the information of the observation matrix, the system matrix for the state
variable and the cross-variance function of the state variable with the signal.

In the fixed-lag smoother [11], the auto-covariance function of the signal is expressed in
the degenerate kernel form. The degenerate kernel function has a limitation that it cannot
express the auto-covariance functions of stationary or non-stationary stochastic processes in
general. Hence, the fixed-lag smoother using the auto-covariance function in the form of
the degenerate kernel can not be applied to the estimation of the stochastic signal processes
with the auto-covariance function expressed except in the degenerate kernel form. In [12],
by assuming that the fixed-lag smoothing estimate is given as a sum of the filtering estimate
of the signal and correction term to the filtering estimate, the recursive least-squares (RLS)
fixed-lag smoother using the covariance information is designed in linear continuous-time
stochastic systems. The auto-covariance function of the signal is expressed in the semi-
degenerate kernel form. The semi-degenerate kernel can express the auto-covariance function
of the stationary or non-stationary stochastic signal processes generally by a finite sum of
nonrandom functions. It is a characteristic that the estimators in [11] and [12] do not use
the state-space model for the signal.

In this paper, under the same assumptions for the signal and the observations noise
with [12], the RLS fixed-lag smoother is newly designed in linear continuous-time stochastic
systems. It is assumed that the signal is observed with additive white observation noise and
the signal is uncorrelated with the observation noise. The fixed-lag smoother requires the
information of the covariance function of the signal and the variance of the observation noise.
The auto-covariance function of the signal is expressed in the semi-degenerate kernel form.

Unlike the fixed-lag smoother in [12], the fixed-lag smoothing estimate is not given as a sum

Seiichi Nakamori : RLS Fixed-Lag Smoother using Covariance Information in Linear Continuous Stochastic Syste ms

of the filtering estimate and the correction term based on the effect of the smoothing. The
current fixed-lag smoother is designed based on the linear least-squares criterion (5) and has
different calculation structure from the fixed-lag smoother in [12].

A numerical simulation example is shown to compare the estimation accuracy of the

proposed RLS fixed-lag smoother with that in [12].

2 Fixed-lag smoothing problem

Let an observation equation be given by

y(t) = 2(t) +v(t), (1)

in linear continuous-time stochastic systems, where z(t) is an n x 1 signal vector and v(t) is a
white observation noise. It is assumed that the signal and the observation noise are mutually
independent stochastic processes with zero means. Let the auto-covariance function of v(t)

be given by
Elv(t)wT(s)) = R(t)d(t—s), R(t) > 0. (2)
Here, 4(-) denotes the Dirac § function.

Let K (t, s) represent the auto-covariance function of the signal and let K (¢, s) be expressed

in the semi-degenerate kernel [12] form of

Here, A(t) and B(s) are bounded n x m matrices.

Let a fixed-lag smoothing estimate 2(t — D, t) of z(¢t — D) be given by
t
3(t—D,t) = / ht, 8)y(s)ds @)
0

as a linear integral transformation of the observed value { y(s), 0 <s <t }, where h(t, s)
and D are referred to be an impulse response function and the fixed lag.
The impulse response function, which minimizes the mean-square value of the fixed-lag

smoothing error z(t — D) — 2(t — D, t),

J = E[||z(t — D) — 2(t — D, t)||"], (5)
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satisfies
¢
K(t—D,s) /htT (1, 8)dr (6)
0
by an orthogonal projection lemma [1], [2]:
z2(t — D) — 2(t — D,t)Ly(s), 0< s < t. (7

Here, “1” denotes the notation of the orthogonality. From (1), (2) and (6), the linear least-

squares impulse response function satisfies

t
h(t, s)R(s) = K(t — D, s) — / h(t, ") K (, s)dr. (8)
0

3 Fixed-lag smoothing and filtering algorithms

The fixed-lag smoothing problem by starting with (8) has been considered to be difficult in
the derivation of the least-squares fixed-lag estimation equations. In this paper, for the values

of t and s, let the impulse response function h(t, s) be separated into hq(t, s) and ha(t, s) as

h(t’s):{ ha(t,s),

0<
ha(t,s), 0<t—

>

<s

Hence, from (4) and (9), the fixed-lag smoothing estimate might be written as
t-D

¢
2(t — D,t) = / hi(t, s)y(s)ds + / ha(t, s)y(s)ds. (10)
0 t—D
For 0 < s <t — D, the impulse response function h; (¢, s) satisfies

t
hi(t,s)R(s) = K(t — D, s) K(r,s)dr — / ho(t, 7)K (1, s)dr. (11)

o\l

t—D
From (3), by K(t — D, s) = A(t — D)BT(s), 0< s <t— D < t, (11) is written as
t—D
hi(t, s)R(s) = A(t — D)BT(s) — / ha(t, 7)K (7, 8)dr — / ha(t, P)A(r)drBT(s).  (12)
0 t—D

By introducing

F(t) = /hQ(t,T)A(T)dT, (13)
D
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(12) is written as

t—D

hy(t, $)R(s) = (A(t — D) — F(t))BT(s) — / ha(t, 7)K (7, s)dr.

Also, for 0<t—D < s <

From (3), by K (t

ha(t, s)R(s) =

By introducing

(16) is written as

ha(t, s)R(s) = (B(t — D) —

t—D

ha(t,8)R(s) = K(t — D, s) — / hl(t,T)B(T)dTAT(S) — / ho(t, 7)K (T, s)dr.

—D,s)=B(t-

B(t — D)A”(s)

0

/hltT

t—D
Gt) = / ha(t, 7)
0

G() A" (s) -

0

t, the impulse response function hq(t, s) satisfies

t

t—D

D)AT(s),0<t— D < s < t, (15) is written as

¢
7)dr AT (s) — / o(t, 7)K (7, s)dr.
b

t

B(r)dr,

ha(t, 7)K (1, s)dr.

|
o~

t

Introducing an auxiliary function Ji (¢, s) which satisfies

Ji(t, s)R(s) =

t—D

B (s) -

o

Ji(t, 7)K (7, s)dt

we obtain, from (14) and (19), the impulse response function

Also, introducing

from (18) and (21

hl (t, S) =

Ja(t, 8)R(s) = AT(s) - /
“p

), we obtain

h?(ta S) =

(At - D) -

t

(B(t - D) -

F(t))Ji(t, s).

Jo(t, 7) K (1, s)dT,

G(t))Ja(t, s).

(14)

(16)

(18)

(22)
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Substituting (20) into (17), we have

o

o

(23) is written as
G(t) = (A(t = D) — F())r(2).

Substituting (22) into (13), we have
F(t) = (B(t - D)-G(t)) / Jo(t, 7)A(T)dT.
-D

By introducing

(26) is written as
F(t) = (B(t - D) = G(t))ra(t).
Differentiating (19) with respect to ¢, we have

t—D
ONL8) pig) = —Jy(t, ¢ - D)K(t = D, 5) — / -‘?-f%i—’-’l

0

0J; (t s)
ot

From (3) for 0 < s < t — D, comparing (29) with (19), we obtain

8]1 (t, S)

;. = ~(t:t = D)A(t — D).1i(t, s).

Differentiating (24) with respect to ¢, we have

t—D
dri(t) - - / 8Ji(t, 7)
== = A(tt-D)B(t-D)+ | =L2B

K(1,s)dr.

(27)

(28)

(29)

(31)
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Substituting (30) into (31), we have
t-D

41®) _ j (4t - D)B(t - D) — Ji(t,t — D)A(t - D) / Ji(t,7)B(r)dr.  (32)
0

dt
From (24), we obtain

dr1 (t)
dt

Here, from (24), the initial condition on the differential equation (33) is r1(D) = 0 and
ri(t)=0, 0<7<D .
Differentiating (21) with respect to ¢t and using (3), we have

= Ji(t,t — D)(B(t — D) — A(t — D)r1(t)). (33)

t
aJQa(:’ ) R(s) = —Ju(t, 1)K (t, ) + Jo(t, t — DK (t - D, ) — aL%(z’_T)K(T, 5)dr
t—D
[ o
— —Ja(t, ) A(t) BT (s) + Ja(t, t — D)K(t — D, ) — / Jigi’ ") K (r, )dr
t—D
(34)
Since 0 <t — D < s, (34) is written as
8‘]2(;;’ %) R(s) = —Ja(t, ) A() BT () + Ja(t, ¢ — D)B(t — D)AT(s) - / aJ?gt D K (r, 5)dr.
t—D
(35)
By introducing a function
t
Js(t, $)R(s) / Jo(t, VK (7, 5)dr, (36)
t—D
we obtain
ané:’ S) — (6, ) A)Js(t, 5) + Ja(t,t — D)B(t — D)Ja(t, s). (37)
Differentiating (36) with respect to ¢ and using (3), we have
t
6J3(,§t ) Ris) = ~Js(t, )K (£, 8) + Ja(t, ¢ — DYK(t D, 5) - / a—‘kéi;QK(T, s)dr
t—D
[0
— —Jy(t, ) A(t)B(s) + Js(t, ¢ — D)K(t - D, s) - / ST k(7 var
t—D

(38)
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Since 0 <t — D < s, (38) is written as From (27) and (43), we obtain

d'f‘3(t)
= J5(t, t)(A(t) — A(t)rs(t)) — J3(t,t — D)(A(t — D) — B(t — D)roft)). a7
OB3) p(s) = —dy(t,1) AW BT (s) + Jalt, ¢ — D) B - / OB (s, syar dt )m B D). D
Here, from (43), the initial condition on the differential equation (47) is r3(t — D) = 0.
(39) Putting s = ¢ — D in (19) and using (3) and (24), we have
Comparing (39) with (21) and (36), we obtain
o) Ji(t,t — D)R(t— D) = BT(t— D / Ji(t, 7)K (.t — D)dr
3(,% = —J3(t,t)A(t)Js(t, s) + Js(t,t — D)B(t — D)Ja(t, ). (40)
t-D
Differentiating (27) with respect to ¢, we have =BT (t-D)- / Ji(t,7)B(1)dr AT (t — D)
¢
dr;t(t) = Jo(t, 1) A(t) — Jo(t,t — D)A(t — D) + / QJ};E—’T)A(TMT. (41) = B'(t- D) - n(t)A"(t - D). (48)
t—D
Putting s =t in (21) and using (3), we have
Substituting (37) into (41), we have
¢
_yT
dr;( ) _ It A — Tt — DYAG - D) — Tt ORE) = AT(O) = [ (e, K (0
t t—D
¢ ¢ .
t t)A(t J3 t T)A dT+ JQ(t t— )B(t - D) / Jz(t, T)A(T)dT. (42) — AT(t) _ / Jg(t, T)B(T)dTAT(t). (49)
t-D t—D b
Introducing a function By introducing a function
¢ ¢
n®)= [ Bt A (13) nt)= [ an)B) (50)
t—D —
and using (27), we obtain (49) is written as
dra(t
——Tjt( ) Ja(t, 8)(A(E) — A(t)rs(t)) — Ja(t, t — D)(A(t — D) — B(t — D)ra(t)). (44) Jo(t, t)R(t) = AT () — r4(t) AT (). (51)
Here, from (27), the initial condition on the differential equation (44) is ro(t — D) = 0. Differentiating (50) with respect to t, we have
Differentiating (43) with respect to ¢, we have ¢
d’f'4(t) 6J2(t, T)
: e Ja(t,t)B(t) — J2(t,t — D)B(t — D) + —6t—B(‘r)d'r. (52)
58) _ Jy(t,)A() - Js(t,t - D)A(t - D) + / 0BT 5 7yar (45) D
t-D Substituting (37) into (52), we have
Substituti 40) into (45), we have
ubstituting (40) into (45), w dT;t(t) — Jo(t, ) B(t) — Ja(t,t — D)B(t — D) —
arst) — Ja(t,4) A(t) — Ja(t,t — D)A(t — D)~ t t
¢ ¢ 46 Jo(t, t)A(t t,7)B d+Jt,t—DBt—D/Jt, B(r)dr. 53
ME0AD | A+ et DB -D) | aemamn Bt ()t/D o)) = D)B(e=D) [ B o
t-D 2 7

t—D
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)= [ (DB, (54)
t—D
we obtain
Tl — 26 OB - AWrs(0) - Jatt - DB~ D)~ Bt~ Dyra(t).  (55)

Here, from (50), the initial condition on the differential equation (55) is r4(t — D) = 0.
Differentiating (54) with respect to ¢, we have

= J3(t,t)B(t) — J3(t,t — D)B(t — D) + /
t—D

drs(t)
dt

0Js(t, 7)
ot

B(r)dr. (56)

Substituting (40) into (56), we have

drs(t)

5 = Js(t:)B(t) = Js(t,t = D)B(t ~ D) ~

t t
J3(t, t)A(t) / Js(t,7)B(r)dr + Ja(t,t — D)B(t — D) / Jo(t, 7)B(r)dr.  (57)
t—D t—D

From (50) and (54), we obtain

drs(t)

pra J3(t,t)(B(t) — A(t)rs(t)) — J5(t,t — D)(B(t — D) — B(t — D)r4(t)). (58)

Here, from (54), the initial condition on the differential equation (58) is r5(t — D) = 0.

Putting s =t — D in (21), and using (3) and (27), we have

—

Jo(t,t — D)R(t — D) = AT(t = D) — [ Jy(t,7)K(r,t— D)dr

o
— AT(t- D) - / Ja(t, 7)A(r)dr BT (¢ - D)
t—D
= AT(t — D) — ro(t)BT (t — D). (59)

Putting s =t in (36), and using (3) and (54), we have

t
Ja(t,)R(t) = BT(t) - / Ja(t, 1)K (7, t)dr
t—D

= B (t) - rs(t) AT (¢). (60)
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Putting s =t — D in (36), and using (3) and (43), we have
t
J3(t,t — D)R(t — D) = BT(t -D)- / J3(t,7)K(7,t — D)dr
t-D
¢
=BT(t- D) - / J3(t, 7)A(T)BT (t — D)dr
t-D
= BT(t — D) — r3(t)BY (t — D). (61)
Substituting (20) and (22) into (10), we have
t—D t
2(t-D,t)=(A(t- D) - F()) / Ji(t, s)y(s)ds + (B(t — D) — G(t)) / Ja(t, s)y(s)ds
0 t—D
(62)
By introducing functions
t—D
a)= [ At (63)
0
t
e(t) = / Ja(t, 8)y(s)ds, (64)
t—-D
(62) is written as
2(t = D,t) = (A(t — D) — F(t))e1(t) + (B(t — D) — G(t))ea(t). (65)
Differentiating (63) with respect to ¢, and using (30) and (63), we obtain
des () P ons)
e1(t 1(t, s
= —_ D — _—
) ate- Dt -+ [ 2L Dy(s)as
0
t-D
= Ji(t,t — D)y(t — D) — Ji(t,t — D)A(t — D) / Ji(t, s)y(s)ds
0
= Ji(t,t — D)(y(t — D) — A(t — D)ex(?)). (66)

The initial condition on the differential equation (66) at ¢ = D is e;(D) = 0 and

ei(r)=0, 0<7<D .
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In the calculation of the fixed-lag smoothing estimate, the functions e;(t) and ey(t) are
used. From (64), the function ep(t) is calculated as the integral from ¢ — D to t. Here, we set

tp =t — D and consider the integral in the form
¢
ea(t) = /Jz(t, s)y(s)ds. (67)
tp

Differentiating (67) with respect to ¢, and using (37), we have

des(t)
dt

t
= ae,uo) + [ 22Dy s
tp

= It )y(t) — Jalt, ) A(E) / Js(t, 8)y(s)ds + Ja(t, t — D)B(t — D) / Ja(t, 8)y(s)ds.

(68)
From (64), introducing a function,
ealt) = [ it s)uls)ds, (69)
t-D
we obtain
de;t(t) = Jo(t, t)y(t) — Ja(t, t)A(t)es(t) + Jo(t,t — D)B(t — D)ea(t). (70)

The initial condition on the differential equation (70) at t = ¢p is e2(tp) = e2(t — D) = 0.
Differentiating (69) with respect to ¢, and using (40), (67) and (69), we obtain
t

= B(t,0(0) - St~ Dyt~ D)+ [ 2Ty (syas

t—D

des(t)
dt

t

= J3(t,t)y(t) — Js(t,t — D)y(t — D) — Ja(t, t) A(t) / J3(t, s)y(s)ds +
t—-D

Js(t,t — D)B(t - D) / Ja(t, 8)y(s)ds
D

t

= J3(t,t)y(t) — Js(t,t — D)y(t — D) — J3(t,t)A(t)es(t) + J3(t,t — D)B(t — D)ex(t).

(71)
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The initial condition on the differential equation (71) at t = tp is es(tp) = e3(t — D) = 0.
Finally, from (25) and (28), we obtain

F(t) = (B(t = D) = A(t — D)r1(t))r2(t)(I = r1(t)ra(t)) . (72)

Now, let us summarize the above results in [Theorem 1].

[Theorem 1]

Let the observation equation be given by (1). Let the auto-covariance function of the
signal z(t) be given by (3) in the semi-degenerate kernel form in continuous-time stochastic
systems. Then the fixed-lag smoothing estimate 2(t— D, t) of z(t— D) is calculated recursively

by (73)-(88).

2(t - D,t) = (A(t — D) = F(t))ex(t) + (B(t — D) — G(t))ez2(t) (73)
G(t) = (A(t — D) — F(t))r1(t) (74)
F(t) = (B(t = D) = A(t — D)ri(t))r2(t)(I — r1(t)ra(t)) ™" (75)
) htt - D)yl ~ D) - At~ D)er(®)), exD)=0, e 4()=0, 0<7<D
(76)
Ji(t,¢ - D) = (B™(t - D) — r(t)A"(t - DY)R™\(t - D) (77)
d’";t(t) = Ji(t,t — D)(B(t— D) — A(t - D)r1(t)), (D) =0, ry(r)=0, 0<7<D
(78)
de2l) _ 1, 0)y(t) - Jalt, ) A(D)es(t) + Ja(t, t — D)B(t — D)ea(t), ealtp) = ealt — D) =0

dt
(79)

290 — Jy(t,0u(e) — Js(t,t ~ DYy(t — D) = Jaft, ) AlW)ea(t) + Jo{t, — D)B(E — D)ea),

es(t— D) =0 (80)
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Ja(t,t) = (AT(t) — ra(t)AT(£)) R () (81)
Jo(t,t — D) = (AT(t — D) — ro(t)BT (t — D))R™(t — D) (82)
Ja(t,t) = (BT (t) — rs() AT())R7'(2) (83)
Js(t,t — D) = (BT (t — D) — r3(t)BY (t — D))R™}(t — D) (84)
2 — B(t,0(A) ~ A@rs(t) ~ Ja(t, ¢ ~ D)(A( ~ D) ~ Bt - Dyra(®), e~ D) =0
(85)
drst(t) = J3(t,t)(A(t) — A(t)ra(t)) — Ja(t,t — D)(A(t — D) — B(t — D)ro(t)), r3(t—D)=0
(86)
T4 — Bt O(B) - A©rs(®) - (et~ D)(B( -~ D) ~ Bt~ D)ra(t)), 7alt D) =0
(87)
o) = Jy(t, 0(BE) - AW)rs(e) ~ Jy(t, ¢~ D)B(t ~ D) ~ Bt~ Dyrat), (¢~ D) =0
(88)
4 Fixed-lag smoothing error variance function
Let P;(t — D, t) represent the fixed-lag smoothing error variance function as
P;(t — D,t) = E[(2(t — D) — 2(t — D,t))(2(t — D) — 2(t — D, t))7]
= K(t— D,t— D) — E[3(t — D,t)3T(t — D, )]
= A(t — D)BT(t — D) — E[3(t — D,t)3T(t — D, ). (89)

By substituting (73) into the second term on the right hand side of (89), the term is written

as

E[3(t - D, )27 (t — D,t)] = C() A1(t)CT (t) + Q1) (1) QT (t) + C(t) f3(1) QT () +
Q) f5 ()CT (1), (90)
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here,

C(t)=A(t-D)-F(t), Q) =B(t-D)-G(),

fit) = Elea)ef (1)), fo(t) = Ele2(t)eg ()], fa(t) = Elea(t)es (1)]. (91)
Differentiating fi(t) with respect to ¢, we have
e eT
B0 _ g @10 1)) + Bles (21 (92)

From (76), the first term on the right hand side of (92) is written as
del(t)

BEl—, ei (t)] = E[(Ji(t,t — D)(y(t — D) — A(t — D)ex(t))ef (t)]- (93)
From (3), (24) and (63), E[y(t — D)eT (t)] is written as
t-D

Ely(t - D)eF(t)] = Ely(t — D)( / u(t, s)y(s)ds)T]
0
t—D

_ / Ely(t - D)y"(s)]JT (¢, 5)ds

0

-D

/ (R(t — D)ok (t — D — 5) + A(t — D)BT(s))J7(t, s)ds
0

= R(t — D)JT(t,t — D) + A(t — D)ry(t). (94)
From (91-(94), we obtain
%ﬁ = 2J1(t,t — D)R(t — D)JL(t,t — D) + Ji(t,t — D)A(t — D)ry(t)

— A(t — D)fi(t) + r1()AT(t — D)JT (t,t — D) — f{ (t)AT(t - D),

A(D)=0. ' (95)
Similarly, by introducing functions
fa(t) = Eles(t)e3 ()], fs(t) = Elea(®)ed (1), fo(t) = Eles(t)es (¢)], (96)
the following recursive equations are obtained.
Bot) _ 16 1) (R + A@)ra(t)) — Ja(t, ) A@) fa(t) + Ja(t, t — D)B(t — D) f(t)

at
+ (R(t) +rT () AT ()T (¢, 1) — fT(4)AT(£)J5 (t,¢) + f3 ()BT (t — D)J3 (t,t — D),
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fa(t=D) =0 (97)

df;it) = Ji(t,t — D)(R(t — D)JZ(t,t — D) + B(t — D)r¥ (t))

— Ji(t,t — D)A(t — D) f3(t) + (ri()AT () + Ji(t, ) R(t)) J3 (t, 1)
— fs()AT(t)JT (t,t) + f3(t)BT (t — D)JF (¢,t — D),

fs(t—=D)=0 | (98)

df;it) = J5(t,t)(R(t) + A(t)r] () — Js(t,t — D)(R(t — D)JZ (t,t — D) + B(t — D)r3 (t))

— J3(t, t)A(t) fa(t) + J3(t,t — D)B(t — D) fa(t)
+ J3(t, ) R(t)JT (8, 8) + 5 () AT ()7 (8,t) — fe()AT ()] (¢, 1)
+ fa(t) BT (t - D)J3 (t,t - D),

fa(t-D) =0 (99)

ﬂzi—t) = Ji(t,t — D)(R(t — D)J¥ (t,t — D) + B(t — D)r} (t)) — Ji(t,t — D)A(t — D) f5(t)
+ (r1(t) AT () + Ji(t, t)R()) I3 (t,t) — (J1(t,t — D)R(t — D)

+r1 (AT (t — D)JT (t,t — D) — fs(t) AT (t)J3 (t,t) + f3(t) BT (t — D)J3 (t,t — D),
fs(t—=D)=0 (100)

ii%t—) = 2J5(t, ) R(t)JZ (t, 1) + Ja(t, t) A(t)rE
— 2J5(t,t — D)R(t — D)J¥ (t,t — D) — Ja(t,t — D)B(t — D)r3 (t)
— J3(t, ) A(t) fo(t) + Ja(t,t — D)B(t — D) fL (t)
+ () AT () JT (t,t) — r3(t) BT (t — D)JT (t,t — D + f& (t)AT(¢)J5 (¢, )

+ fa(t)BT (t — D)JE (t,t - D),

ot — D) =0. (101)

Hence, the fixed-lag smoothing error variance function is calculated by (77), (78), (81)-
(88), (89)-(91), (95), (97)-(101) recursively.
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5 A numerical simulation example

Let a scalar observation equation be given by
y(t) = 2(t) + v(t). (102)

Let the observation noise v(t) be a zero-mean white Gaussian process with the variance R,
N(0, R). Let the auto-covariance function of the signal z(t) be given by
3 5
K — 2 —lt—sl 2 —3(t—s|'
(t,9) 16¢ + 15¢ (103)

From (103), the functions A(t) and B(s) in (3) are expressed as follows:
A)=[ Fe™t FeBt], Bls)=[e &> ] (104)

If we substitute (104) into the fixed-lag smoothing algorithm of [Theorem 1], we can
calculate the fixed-lag smoothing estimate recursively. Figure 1 illustrates the signal z(t)
and the fixed-lag smoothing estimate 2(t — 0.01, t) for the white Gaussian observation noise
N(0,0.12) by the RLS fixed-lag smoother in [Theorem1]. Figure 2 illustrates the mean-square
values (MSVs) of the fixed-lag smoothing errors by the proposed RLS fixed-lag smoother in
[Theorem 1] and by the fixed-lag smoother in [12] for the observation noises N(0,0.07%),
N(0,0.1%) and N(0,0.15%) vs. the fixed lag D, A < D < 10A. The MSVs of the fixed-lag
smoothing errors are evaluated by 2.%0:0 (z(Ad) — z(Aid, Ai + L))%/2000, A = 0.001. Here, for
the numerical integration of the diff:;elzntia.l equations, the fourth-order Runge-Kutta method
is used. In Figure 2, as the fixed lag D becomes large, in the current fixed-lag smoother,
there is a tendency that the estimation accuracy of the fixed-lag smoother is improved for
the observation noises N(0,0.12) and N(0,0.152). For the observation noise N (0, 0.072), the
tendency applies in the region of D, A < D < 6A. From Figure 2, it is seen that the
estimation accuracy of the proposed fixed-lag smoother in [Theorem 1] is superior to the
fixed-lag smoother in [12]. Also, the smaller the variance of the observation noise becomes,
the better the estimation accuracy of the smoother becomes.

For references, the state-space model, which generates the signal process, is given by

2(t) = z,(t)
dx;t(t) = zo(t) + u(?), dx;t(t) = 301(t) — () — 2u(t),

Elu(t)u(s)] = é(t — s). (105)
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Fixed-lag smoothing estimate
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Signal and fixed-lag smoothing estimates
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Figure 1: Signal z(t) and the fixed-lag smoothing estimate 2(¢—0.01, t) for the white Gaussian
observation noise N(0,0.12) by the RLS fixed-lag smoother in [Theorem1
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Figure 2: Mean-square values of the fixed-lag smoothing errors by theproposed RLS fixed-lag
smoother in [Theorem 1] and by the fixed-lag smoother in [12] for the observation noises

N(0,0.07%), N(0,0.1%) and N(0,0.15%) vs. the fixed lag D, A < D < 10A, A = 0.001.
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6 Conclusions

In this paper, the RLS fixed-lag smoother, using the information of the covariance function
of the signal, in the semi-degenerate kernel form, and the variance of white observation noise,
have been devised in linear continous-time stochastic systems. From the simulation result in
section 5, the proposed RLS fixed-lag smoother is superior in estimation accuracy to the RLS
fixed-lag smoother in [12]. As the fixed lag D becomes large, in the current fixed-lag smoother,
there is a tendency that the estimation accuracy of the fixed-lag smoother is improved for
the observation noises N (0,0.1%) and N(0,0.152). For the observation noise N (0, 0.07%), the

tendency applies in the region of D, A < D < 6A.
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