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ON REGRESSION ANALYSIS OF A CERTAIN
RANDOM FIELD ON THE UNIT SPHERE

By

Takeaki Nacal

§1. Summary

Let a random field {X(z), ¢t € T} be the sum of an unknown mean value function
m(t)=E{X(¢)}, t € T and a second-order homogeneous random field on the unit sphere
T.

We shall consider in this report a test procedure for the null hypothesis Hy: m(t)=
m(gt), for all g€ Gy, ¢t € T against an alternative hypothesis H;: m(z)=<m(gt), for
g € Gy, t € T, where G, is rotations around z-axis.

By making use of A. M. Obukhov’s result [4] it can be shown that the statistic Sy
defined by (4) follows the x*-destribution with 2V degrees of freedom when the hy-
pothesis Hj is true. |

§ 2. Regression analysis

Let T*={(x, v, 2)| x*+ Y+ 2*=1} CR®. Let (6, ¢), 0<0<m, 0<p<2, be the
polar coordinates of points of T'*, say,

x =sinb cosg,
y=sin0 sing,
z =c0s0.

Let us write @={0|0<0<n}, 0={¢|0<p<27} and T=0x0={(6, ¢)|0¢€ 0O,
@€ D},

Let G*=S0(3) and G be a group consisting of transformations g: (0, ¢)—(0’, ¢"),
from T onto T induced by g* € G* such that

sinf cosgp sin@’ cos ¢’
g*| sinb sing | =| sind’ sing’
cos6 cosl’

For any metric space ¥ we denote by &z the o-field of Borel subsets of X. Let x(-)
be a measure defined on &7 such that
(D For any Ce€ &,
u(C)=u(gC) forany ge€G.
2  w(T)=1.
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Then, it is well-known that for any 4 € 8¢, B € &,
(A% B)= LS S sind dodg.
47 )alB

Let {X(¢), t € T} be a real-valued Gaussian random field measurable with respect

to 8r. Let m(t)=E{X(¢)}, t € T, be the mean value function of the random field and
let us assume that m(¢), t € T is unknown.

Let K(t, s)=Cov(X(t), X(s)), t, s € T, be the covariance function of the random field
satisfying the following conditions:

(1)  The covariance function K(¢, s), ¢, s € T, is known.

(i) K(t, s) is a continuous positive definite function on 7'x T.
(iii) For every g€ G,

K(gt, gs)=K(, s), t,se T.
Then, by the A. M. OBukHOV’s result [ 4 ], we may write X(¢), ¢ € T, as follows:

) XO=m()+ SiZupnD)+ 5 T Zioi®}, €T,

where

©n0(0, )=+2n 4+ 1-P,(cosh), n=0,1,2, ...,

W, z‘/2(2n+l)(n—m)!. m .
@05 @) e m] P(cos0)+cos me,

Pih(6, =y Xint LUnom)!

«P™(cos0)+sin me,
n=1,2,3, ..., m=1,2, ..., n.

{Zn, n=0,1,...; Z{@ i=1, 2, n=1,2, ..., m=1, 2, ..., n} are real Gaussian ran-
dom variables such that

E{Zx}=E{Z},} =0, n=0,1,...,m=1,2, ..., n, i=1, 2,
E{Z,Z,}=0,
E{Zy0* Zy0} =0pun-*dny
E{Z33) 2w}t =0nnOm.m0i.*
where
0n.m=1 if n=m
=0 otherwise.

{4s, n=0, 1, 2, ...} are determined by the following equations:
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Aano )= K(t, )0n(s)d(s)

{P(z), n=0, 1, ..., | 2| <1} are Legendre’s polynomials and {P?(z), n=1, 2, ...,
m=1, 2, ..., n; | z| <1} are associated Legendre functions.

Let Ly(X) be the Hilbert space consisting of all random variables U which may be
represented either as a finite linear combination

U= f ;i X(t;)
i=1

for some integer n, points ¢4, ¢3, ---, ¢, in T and real numbers ci, c3, ---, ¢, Or as a limit
in quadratic mean of such finite liner combinations under the inner product (U, V)
defined by

=Cov(U, V)+ E{U}-E,{V}.

The subscript m on an expectation operator E is written to indicate that the expec-
tation is computed under the assumption that m(-) is the true mean value function.
We shall now make use of a theorem of Moore-Aronsjazn [17]:

THEOREM 1. [See 6], page 7, theorem 2B7].

A symmetric non-negaeive kernel K generates a unique Hilbert space, which we denote by H(K),
of which K s the reproducing kernel.

Let H(K) be the reproducing kernel Hilbert space with a reproducing kernel K(z, s),
ty s € T, that is, H(K) is a Hilbert space such that

(K.1) K(t, ) e HK) for each t€ T,
(K.2) For any f € HK),
(f’ K(ta '))K :f(t)a

where by (f1, f2)x we denote the scalar product of every pair of elements fi, f7 in
H(K).

Throughout this note we shall assume that m(-) € H(K).

Now, we have the following:

LeEmMA 1. H(K)C LT, 8, p).
(ProoF) For any h € H(K), the following inequality holds: For any ¢y, t; € T,
| h(s1)—h(e2)| = | (B, K(21, )—K(t2, ))& |
<Al x{2(K (21, £1)—K(1, 2))}*'>.

This implies that A(t), ¢ € T is a continuous function on 7. 7T is a compact metric
space and #(T)=1. Hence, it follows that H(K) Ly(T, 87, ).
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For every pair of functions fi, f> in Ly(T, 87, #), we denote the scalar product of

(fl, fz) bY
(f1 fZ)T = STfl(t)mdﬂ(t)-

THEOREM II. (L7, page 29, theorem 4A7].
Let M be a known class of functions in H(K) and let us assume that m(-) € M.
Then, we have the following results:

(D) There is a linear one-one mapping ¢ from H(K) onto Ly(X) with the following properties:
6) O(K(t, ))=X () for each t€ T,
(ii))  For any h € HK),
E,{¢(h)} =(h, m)x forall me M,
(i) For any hi, hy € H(K),
Cov(p(hy), P(h2))=(h1, ho)x,

(L) A random variable ¢(h), h € H(K) is said to be an unbiased lincar estimate of the value
m(t) at a particular point ¢ € T of the mean value function m(+) if

E{¢(h)}y=(h, m)xk=m(¢)  forall me M.
A~
The uniformly minimum variance unbiased linear estimate m(t) of m(¢) is given by

(D)= p(EX(K G, )| 1),

where EX(K(¢, +)| M) is the projection of K(t, +) onto the smallest subspace of H(K) containing
M. '

Now, we have the following:

LEMMA 2.
(1) D n0, ¢;z’ﬂ)zEH(K)a n=0,1, ..., m=1,2, ..., n, i=1, 2,
(ll) ¢(¢n0)=l;1°Xn0a n=03 1) 2> Tty
¢)(¢7(111I)L :'{ZI'X;;in)u n=1,2,..,m=1,2,...,n,1=1, 2,
where X,,O:STX(t)qono(t)dﬂ(t):(m, @n0)r + Zno
X = XOeidu®=(m, o + 2
(iii) (¢n0,¢n’0)K=6rm"'l;la

() ) — -
(@3> P )K = 0nn-*Omm0ij* 4, L

(¢n03 (9;;];;;)1{:0, f07" all n, n/a m, j'
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(ProoF) Let us consider the following integrals:

X ={ XOewdne),

X5 ={ X@ei®du.

From (3), we see that {X,0, n=0, 1, ..., X2}, i=1,2,n=1,2, ..., m=1, 2, ..., n} are
well-defined and elements of Ly(X), and it is clear that

Xuo :(m, (ﬂno)T“l‘Zno,
Xow =(m, @)1+ Zij.

From theorem II, for each n=0, 1, 2, ..., there is a unique function k,, € H(K) such

that ¢(ku0)= X, and for each i=1, 2, n—l 2, ...,m=1, 2, ..., n, a unique function
kym € H(K) such that ¢(kii)=X\5).
By virtue of the properties of the reproducing kernel Hilbert space we see that

Fno(t)=(kno, K(¢, ))&
=Cov.( X0, X(2))
= An@no(t),
and
byin(6)=(k3in> K(t5 )k
= Coo( X5, X(2))
= An* @ im(2).
Thus, it follows that ¢, € H(K), ¢, € H(K) and
O(@no) =251 Xuo=2;1{(my @uo)r + Zno},
Woum) =21 X0 =2,1{(m, @il)r+ 21}
From theorem II, it is immediate that
(@n0s @n-0)i=Cov(A,* Xnoy A3 Xn0)
=04y’
(Phins Pim )i =Cov(A; X\, A4 X, )
=0nn-*Omm-0ij* 451,
(Pn0s @ifm )i = Cov(Xno' 231, A4+ X i)
=0.
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Let G*y={U(p)| 0<p <27},

where we write

cosp, sing, 0
Ulp)=1 —sing, cosp, 0
0, 0, 1),

that is, G is a subgroup of G* consisting of all rotations around z-axis.

Let G, be a subgroup of G isomorphic to G under the isomorphism between G and
G*.

Let M be such that

M={f|fe€ HK), f(gt)=f(¢) forall geGo,te T}
Then, we have the following:

Tueorewm III1. For all m € M, the best linear unbiased estimate of m(¢) is gion by

o~ e
m(t) :,4;0 X,00.0(), teT.

RS
The estimate m(t) follows the normal distribution with the mean value m(t) and the variance
~ o ;
Var (m(¢))= 23 (2v+1)+4,+{P,(cos6)}?,
v=0

where t=(0, ¢)€ T.

(ProoF) Let f¢ M. Then we may write

FO=Z A, er-on®+ 5 T (foiroi®l,  te T,

since {@n0, n=0,1, ...; @\ i=1,2, =" ;n=1, 2, ...; m=1, 2, ..., n} is a complete
orthonormal system of LT, &, x).

If f € M, then f(0, ¢)=1(0, ¢) for all ¢, ¢’ € @, that is, f(0, ¢) is independent of ¢.
Hence, it follows that for any f € M, (f, ¢ii,)r=0,i=1,2, ..., m=1, 2, ..., n.

Thus, we may write for any f € M,

OEAIRON

since for all v, ¢,o € M, we see that M=Ly(¢,, v=0, 1, ...).
The projection of K(z, ) onto M may be written as follows:

EX(K(, )| M) =5 a0y ¢.u(),  te T,

where a,(t) is a constant for each ¢t € T and y=0, 1, ... such that
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2 {a.()}? /2, < oo, foreach te€ T.
v=0

From theorem II, we have

A~ oo
m(®) = (X a.(0)-¢.0(")

I

T a0 9(e.0)

|
DM

au(t).lu_l'XuOO

v

I

0

PR
Since m(t) is unbiased for all m € M,
N
m(2)= E,{m(t)}
= i a,(t)(m, .0k, for all m € M.
v=0

In particular, let us put m=g,,.
Then, we have

@.0(2) :ngo an(t)(¢nos ¢10)K

=a,(t)4;}, for v=0,1,2, ...

Thus, we obtain

PR s
m(t) =n§0 Xn0¢n0(t)'

31

P
It is clear that the estimate m(t) follows the normal distribution with the mean value

/\ . .
m(t). The variance of m(¢) is given from lemma 3 by

A~ -
Var(m(0, 9))= 2 2,{¢.4(6, ¢)}*

= 20 2,2y +1)-{P,(cosO)}>.

Thus, we have proved theorem III.
Let us consider the following null hypothesis:

H,: The mean value function m(t) is invariant under every g € G, that is, m € M,

against an alternative hypothesis:
H1: m ¢ M.
Here, we have the following:

THEOREM IV. Let us put
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B

(X;;Il) 2}9 N=1’ 2, Tt

2
1i=1

N
@ sv=F g

I

Then, under the assumption that Hy is true, the statistic Sy follows the x*-distribution with 2N
degrees of freedom and for a large N

V2Sy—+y2N—1

Sollows approximately the normal distribution with zero mean and the unit variance.

(Proo¥) If the hypothesis Hy is true, then, m € M=Ly(¢p,0, v=0, 1, ...). Hence, (m,
eiNr=0 for all i=1, 2, n=1,2, ..., m=1, 2, ..., n. Therefore, the random variables
{X\9, i=1,2,n=1,2,...,m=1,2, ..., n} follow the normal distribution independ-

ently with zero means and Var(X,$;))=2,. Thus, the random variables {X\i)/y4,, i=
1,2,n=1,2,...,m=1, 2, ..., n} follow the N(0. 1) distribution independently. Now,
it it clear that under the hypothesis Hy, the statistic Sy follows the x*-distribution with
2N degrees of freedom.
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