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§1. Summary

The prediction problem of a univariate nonstationary process represented by the sum
of a polynomial mean value function and a stationary process has been discussed by G.
E.P. Box and G. M. Jenkins [17]. It is our aim to consider the same problem in a
multivariate case. The result may be regarded as a multivariate analogue of the result
of E. Parzen [ 2] in the univariate case.

§ 2. Assumptions and notations

We deal with a n-dimentional nonstationary process X(¢), t=---, —1,0, 1, ---. We
shall consider a problem of predicting the value of X(¢+) on the basis of p previous
m-dimentional observation vectors Z(¢), Z(t—1), ..., Z(t—p+1). We shall restrict
ourselves to the linear predictor of the form

PZOAED

with the condition of unbiasedness

E[X(t+0)]=EL %, a2 —s)]

where u(s) is a n X m matrix, p>n and m=n. We need the following assumptions
and notations.

Assumptions
A 1. The process X(¢) is represented as the sum of two functions:

X(t)=M(t)+&().

We call a n-dimentional vector M(¢) the mean value vector, and the i-th component
M;(t) of M(t) can be represented by a polynomial of ¢ of known degree 0<d;<p—1
for i=1,2, ..., n. &(¢)is a n-dimentional stationary process with zero mean vector
and known n X n stationary covariance matrices R(¢),t=---—1,0, 1, ---, where R(z —s)
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=E[&(t)8(s)] for any ¢ and s.
A 2. The observation vector Z(t) is represented as the sum of the signal X(¢) mul-
tiplied by a known m X n matrix H and the noise U(t):

Z(t)=HX()+ UQ).

The rank of H is n and U(¢) is a m-dimentional stationary process with zero mean
vector and known m X m stationary covariance matrices S(¢), t=---, —1,0, 1, ---, where

S(t—s)=E[U@)U(s)].
A 3. Process &(¢) and U(t) are independent.
A 4. A mpxmp matrix T defined by
T= T(_ 1); T(O)a Tty T(P_ 2)

is positive definite, where T(:) is the covariance matrix of the process Z(¢), i.e. T(t—s)

= Cov(Z(t), Z/(s)).

Notations
N1. A m-dimentional vector g}(+) is the i-th row of the matrix g(+) and

2:(0)
pmpx1]= (1)

pi(p—1)
forall i=1, 2, ..., n.
N 2. A n-dimentional vector r(+) is the i-th row of the matrix R(+),

ri(7) R'(v)
Rnpx1]= | r(c+1) and R[npxn]= | R(r+1)

ri{t+p—1) R’(z‘—}—p——l)J
for all i=1, 2, ..., n.
N 3.
hi(1, 0, ..., 0 ), h(, 0, ..., 0)
Blmpx 33 (4 D)= | L, 1, -y 19, B, 1, o, 1%)

hl(la p_la ttty (P—l)dl): hZ(lg P—l) Tty (P_l)dz)

s b1, 0, ooy 0 )
s b1, 1, 1)

) hn(lap_l’ Tty (P'_l)d") ’
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where a m-dimentional vector A; is the i-th columm of the matrix H for all i = 1,2, ..
n

N 4.
Odlfl

Odi;l-l-].
1
(s, i)[ﬁ1<dj+ 1)x1]= 2

0,

H;1+1

0d,,+1

where 0., is a (d,+ 1)-dimentional zero vector for all j=1, 2, ..., n.

NS5. 1I,isa pxp unite matrix.
N 6.

CLE (@A Dxnl=(e(—7, 1), e —7, 2), -, e(—7, )
N7.
Z(t)
[ mpx1]= Z(t—l)
Z(:t—p-l-l)

§ 3. The best linear unbiased predictor
Lemma 1. The covariance matrix T(+) of the process Z(t) is given by
T()=HR@)H +S(¢)  forall .
Also the following relations hold:
Cov(X(¢), Z'(s))=R(t—s)H,
Cov(2(t), X'(s))=HR(:—s),
R(t—s)=R'(s—1),
S(t—s)=8(s—1t)
and T(@—s)=T'(s—¢t).

Lemma 2. The covariance matrix of the prediction error
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e, )=X(t+7)— L, pZ(—9)
is given by
RO~ R+ )H ()~ %, pBR (40 +5 ' )T = b ().

An unbiased linear predictor is said to be the best when the trace of the covariance
matrix of the prediction error is minimized. In order to derive the best one, we evalu-
ate the trace of the error matrix.

Lemma 3. Under the unbiasedness E[ X(t+7¢) |=E [iz;](l) p(s)Z(t—s)] we have
tr Cov(e(t, ), €'(¢, 7))
=tr RO)~25 #i(LOHR+ 3 (T
where K denotes the Kronecker product.

Lemma 4. A necessary and sufficient condition for the linear predictor Zn} H()Z(t—s) to be
s=0

unbiased is
B'ui=c(—r,i) forall p;i=1,2,...,n.
It is easy to show that rank (B)= i‘(di—l— 1) and B'T~'B is positive definite, so we can
i=1
obtain the best unbiased linear predictor by the Lagrange’s multiplier.

Theorem 1. The best unbiased linear predictor X(¢t + ) which minimizes the trace of the
covariance matrix of the prediction error subject to the unbiasedness is given by

1) X@+10)= RI,QH)T'Z+ (C’ — R’(IP®H)’T‘1B) (B'T-'B)"'B'T'Z
with a covariance matrix

(2) Cov(X(¢+1), X'(¢+1)=C(B'T-'B)"'C
+R'(I,QH)(T-'—T-'BB'T-'B)~'B'T-)(I,QH)R.

We now consider the estimate of the mean value function.

Theorem 2. Let us put
dit+1 .
M(t—s)=)] ais’"
i=1

where ¢ is the present time. Then the minimum variance unbiased linear estimate Mt —s) of
Mi(¢—s) is given by
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(3) M(t—s)=¢(s, i)(B'T'B)"'B'T-'Z
and
Mi(t—s) (s, 1)
) M(t—s)= ]Vfg(t—s) = | ¢(s,2) (BT 'B)'BTZ
Zl?l;(t—S)/ y C’(:s, n)

On the other hand, in case when the mean value functions were known, we have:

Theorem 3. In the case where all mean vectors M(¢), t=---, —1, 0, 1, --- are known, the
best unbiased linear predictor X(¢t+17) is given by

(5) X(t+7)=M+7)+RI,QH) T (Z—HM)
with the covariance matrix
(6) Cov(X(t+1), X'(t+1))=R'I,QH)T (I,QH)R,
where
HM(:)

HM= | HM(:—1)
HM(t—p+1))

If we substitute the best linear unbiased estimate of the mean value function (4) in
place of the mean value function in (5), it turns out to be equal to (1). Thus we have:

Theorem 4. This result may be regarded as a multivariate analogue of the minimum vari-
ance linear unbiased predictor derived by E. Parzen [ 2].
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